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1. Introduction

Lévy process models have played a role as the standard framework for option pricing,
since these models allow for stochastic volatility and the volatility smile effect observed for
the Black Scholes model (Black and Scholes (1973)). For instance, Hurst et al. (1999) applied
an α-stable process, Carr et al. (2002) used the Carr, Geman, Madan, and Yor (CGMY)
process, which is a subclass of the tempered stable process (Rosiński 2007), and Bianchi
et al. (2010) presented the tempered, infinitely divisible model. Moreover, Lévy process
models with time-varying volatility have been used for option pricing in discrete time
models, since empirical studies show that Brownian motion is often rejected (see Rachev
and Mittnik (2000), Kim et al. (2010), Kim et al. (2011)). Carr et al. (2003) defined the
class of continuous time stochastic volatility models on Lévy processes (SVLP) using the
time-changed Lévy process. The SVLP model has been successfully applied in European
option pricing, but the absence of an efficient sample path generation method makes
the SVLP model hard to apply to path-dependent options, such as American, Barrier, or
Asian options.

This paper proposes a sample path generation method for the stochastic volatility
version, CGMYSV, of the CGMY process, which is a subclass of the SVLP model. The
method is constructed by an approximation to the series representation of the CGMY
process with the time-varying scale parameter. The series representations for the tempered
stable and tempered infinitely divisible distributions are discussed in Rosiński (2007)
and Bianchi et al. (2010), and they are applied to the Monte-Carlo simulation (MCS) of
the CGMY market model with a GARCH volatility in Kim et al. (2010). We note that the
CGMYSV model is a continuous-time model, different from the GARCH model with CGMY
innovations. We develop an algorithm for CGMYSV sample path generation, and apply it
to MCS. The algorithm is used to price European and American options and to calibrate
the risk-neutral parameters to the S&P 500 index option (European style) data and S&P 100
option (American style) data. We use the least square regression method by Longstaff and
Schwartz (2001) for pricing American options with MCS. We verify empirically that the
new sample path generation method performs well in pricing American options. We also
apply the algorithm to the pricing of Asian and Barrier options with MCS.
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This paper is organized as follows. A continuous time stochastic volatility model
and the CGMY process with the series representation are presented briefly in Section 2.
The sample path generation method based on the series representation is constructed in
Section 3. In Section 4, we calibrate the CGMYSV model to S&P 500 index option and
S&P 100 index option data, and discuss Asian and Barrier option prices. Conclusions are
presented in Section 5.

2. Preliminary

To construct the CGMYSV model, we take the CGMY process and employ the Cox-
Ingersoll-Ross (CIR) process (Cox et al. 1985) for the stochastic volatility, which, as in
Heston (1993), enhances the Black Scholes model. In this section, we briefly discuss the
CIR model and the CGMY process. The CGMYSV model is presented in the next section.

2.1. CIR Model

The CIR model is given by

dvt = κ(η − vt)dt + ζ
√

vtdWt and v0 > 0, (1)

for κ, η, ζ > 0 and Brownian motion {Wt}t≥0. Let F v
t be a smallest σ-algebra generated

by the process {vs}0≤s≤t, then vt+∆t|F v
t

d
= ξ/(2c) where c = 2κ

(1−e−κ∆t)ζ2 and the random

variable ξ is a noncentral χ2-distributed random variable with 4κη/ζ2 degrees of freedom
and noncentrality parameter 2cvte−κ∆t.

Let Vt =
∫ t

0 vsds. Then, the joint distribution of (vt,Vt) has the characteristic function
(Ch.F) Φt(a, b, x) = E[exp(aVt + ibvt)|v0 = x] given by (Proposition 6.2.5 in Lamberton
and Lapeyre (1996)):

Φt(a, b, x) = A(t, a, b) exp(B(t, a, b)x), (2)

with

A(t, a, b) =
exp

(
κ2ηt
ζ2

)
(

cosh
(

γt
2

)
+ κ−ibζ2

γ sinh
(

γt
2

))2κη/ζ2

B(t, a, b) =
ib
(

γ cosh
(

γt
2

)
− κ sinh

(
γt
2

))
+ 2ia sinh

(
γt
2

)
γ cosh

(
γt
2

)
+ (κ − ibζ2) sinh

(
γt
2

)
γ =

√
κ2 − 2ζ2ia.

2.2. CGMY Process

Let α ∈ (0, 2), C, λ+, λ− > 0, and µ ∈ R. Suppose X is an infinitely divisible random
variable with Ch.F

φX(u) = E[eiuX ] = φCGMY(u; α, C, λ+, λ−, µ)

= exp
(
(µ− CΓ(1− α)(λα−1

+ − λα−1
− ))iu− CΓ(−α)((λ+ − iu)α − λα

+ + (λ− + iu)α − λα
−)
)

.

We refer to X as a CGMY-distributed random variable with parameters (α, C, λ+, λ−, µ)1,
which we denote as X ∼ CGMY(α, C, λ+, λ−, µ).

Let C = (Γ(2− α)(λα−2
+ + λα−2

− ))−1 and µ = 0. Then, a CGMY random variable
Z ∼ CGMY(α, C, λ+, λ−, µ) has zero mean (E[Z] = 0) and unit variance (var(Z) = 1). In

1 The class of tempered stable processes has been introduced under different names including: “truncated Lévy flight” (Koponen 1995), “KoBoL”
process (Boyarchenko and Levendorskiĭ 2000), “CGMY” process (Carr et al. 2002), and classical tempered stable process (Rachev et al. 2011). Rosiński
(2007) and Bianchi et al. (2010) have generalized the notion of tempered stable processes.
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this case, we say that Z is standard CGMY-distributed, and denote this by Z ∼ stdCGMY(α,
λ+, λ−). Moreover, the Ch.F of Z is given by

φstdCGMY(u; α, λ+, λ−) = φZ(u) = E[eiuZ]

= exp

(
λα−1
+ − λα−1

−
(α− 1)(λα−2

+ + λα−2
− )

iu +
(λ+ − iu)α − λα

+ + (λ− + iu)α − λα
−

α(α− 1)(λα−2
+ + λα−2

− )

)
. (3)

Since the CGMY distribution is non-Gaussian and infinitely divisible, it generates a
pure jump Lévy process {Xt}t≥0, such that X1 ∼ CGMY(α, C, λ+, λ−, µ). In this case, we
say that {Xt}t≥0 is a CGMY process with parameters (α, C, λ+, λ−, µ). The Ch.F of Xt is
equal to

φXt(u) = exp(t log(φCGMY(u; α, C, λ+, λ−, µ))).

Following the same argument, a pure jump Lévy process {Zt}t≥0 is generated by the
standard CGMY distribution, such that Z1 ∼ stdCGMY(α, λ+, λ−) is referred to as the
standard CGMY process with parameters (α, λ+, λ−). The CGMY and standard CGMY
processes are characterized by their Lévy symbols

ψCGMY(u; α, C, λ+, λ−, µ) = log φCGMY(u; α, C, λ+, λ−, µ),

and
ψstdCGMY(u; α, λ+, λ−) = log φstdCGMY(u; α, λ+, λ−), (4)

respectively.

2.3. Series Representation of the CGMY Process

Rosiński (2007) introduced the series representation form for the tempered stable
random variable and process. The series representation form has been used for CGMY
sample path generation by Kim et al. (2010) and Rachev et al. (2011). Assume that X ∼
CGMY(α, C, λ+, λ−, 0). Let {Uj}j=1,2,··· be an independent and identically distributed
(i.i.d.) sequence of uniform random variables on (0, 1). Let {Ej}j=1,2,··· be i.i.d. sequences
of exponential random variables with parameters 1, and let {Γj}j=1,2,··· be a Poisson point
process with parameter 1. Let {Vj}j=1,2,··· be an i.i.d. sequence of random variables in
{λ+, λ−} with P(Vj = λ+) = P(Vj = λ−) = 1/2. Suppose that {Uj}j=1,2,···, {Vj}j=1,2,···,
{Ej}j=1,2,···, and {Γj}j=1,2,··· are independent. Then, X is represented by the following
series form:

X =
∞

∑
j=1

[(
αΓj

2C

)−1/α

∧ EjU
1/α
j |Vj|−1

]
Vj

|Vj|
+ b,

where b = −CΓ(1 − α)
(

λα−1
+ − λα−1

−

)
. Let {τj}j=1,2,··· be an i.i.d. sequence of uni-

form random variables on (0, T) independent of {Uj}j=1,2,···, {Vj}j=1,2,···, {Ej}j=1,2,···, and
{Γj}j=1,2,···. Suppose

Xt =
∞

∑
j=1

[(
αΓj

2CT

)−1/α

∧ EjU
1/α
j |Vj|−1

]
Vj

|Vj|
1τj≤t + tbT , t ∈ [0, T],

where bT = −CΓ(1− α)
(

λα−1
+ − λα−1

−

)
. Then, the process {Xt}t∈[0,T] is the CGMY process

with parameters (α, C, λ+, λ−, 0) for the time horizon T > 0.
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3. Stochastic Volatility Version of the CGMY Process

Suppose {Zt}t≥0 is the standard CGMY process with parameters (α, λ+, λ−) and
{vt} is the stochastic volatility process given by the CIR model in (1). We define a process
{Lt}t≥0 by

Lt = ZVt + ρvt, (5)

where Vt =
∫ t

0 vsds, and {Zt}t≥0 is independent of the process {vt}t≥0. The process {Lt}t≥0
is referred to as the stochastic volatility version of the CGMY process, or simply the CGMYSV
process2, with parameters (α, λ+, λ−, κ, η, ζ, ρ, v0). By (2), the characteristic function of Lt is

φLt(u) = Φt(−iψstdCGMY(u; α, λ+, λ−), ρu, v0), (6)

where ψstdCGMY(u; α, λ+, λ−) is the Lévy symbol of {Zt}t≥0 defined in (4).

3.1. Discrete Time Approximation of the CGMYSV Process

Suppose that we have: a CIR process {vt}t≥0 with parameters κ, η, and ζ, as defined
in (1); Vt =

∫ t
0 vsds for t > 0; and suppose that {F v

t }t≥0 is natural filtration generated
by {vt}t≥0. Let P = {0 = t0 < t1 < · · · < tm < · · · < M = T} be the time partition,
∆tm = tm − tm−1 for m ∈ {1, 2, · · · , M}, and let ||P|| = max{∆tm |m = 1, 2, · · · , M}.
Suppose that {vtm}tm∈P and {Ltm}tm∈P are discrete sub-sequences of the CIR process and
the CGMYSV process, respectively. Let ∆Ltm = Ltm − Ltm−1 , ∆Vtm = Vtm − Vtm−1 , and
∆vtm = vtm − vtm−1 . Then we have

∆Ltm |F v
tm−1

d
= (ZVtm−Vtm−1

)|F v
tm−1

+ ρ(vtm − vtm−1)|F v
tm−1

= Z∆Vtm
|F v

tm−1
+ ρ(∆vtm |F v

tm−1
),

where
Z∆Vtm

|F v
tm−1
∼ CGMY

(
α, C(∆Vtm |F v

tm−1
), λ+, λ−, 0

)
,

and C =
(

Γ(2− α)(λα−2
+ + λα−2

− )
)−1

. Since we approximate

∆Vtm |F v
tm−1

=
∫ tm

tm−1

vt dt ≈ vtm−1∆tm,

we have

Z∆Vtm
|F v

tm−1
≈ Zvtm−1 ∆tm |F v

tm−1
∼ CGMY

(
α, Cvtm−1∆tm, λ+, λ−, 0

)
.

Suppose {Ytm}tm∈P is a process defined by

Ytm = Ytm−1 + Zvtm−1 ∆tm |F v
tm−1

, m = 1, 2, · · · , M, (7)

with Y0 = 0, then Ytm ≈ ZVtm
|F v

tm−1
and {Ytm}tm∈P is an approximation of the process{

ZVtm
|F v

tm−1

}
tm∈P

.

By the series representation, we have

Zvtm−1 ∆tm |F v
tm−1

d
=

∞

∑
j=1

[(
αΓj

2cm∆tm

)−1/α

∧ EjU
1/α
j |Vj|−1

]
Vj

|Vj|
+ bm∆tm,

where bm = −cmΓ(1 − α)
(

λα−1
+ − λα−1

−

)
, cm = vtm−1 C, and {Uj}j=1,2,···, {Vj}j=1,2,···,

{Ej}j=1,2,···, and {Γj}j=1,2,··· are given in Section 2.3. Following the same argument as

2 In Carr et al. (2003), {Zt}t≥0 is assumed to a CGMY process. We assume a standard CGMY process in this paper to simplify the model. The stochastic
volatility Lévy process model is not a Lévy process in general.



J. Risk Financial Manag. 2021, 14, 77 5 of 18

the series representation of the CGMY process presented in Section 2.3, we can define a
series representation of Ytm as follows:

Ytm =
∞

∑
j=1

( αΓj

2c(τj)T

)−1/α

∧ EjU
1/α
j |Vj|−1

 Vj

|Vj|
1τj≤tm +

m

∑
k=1

bk∆tk, (8)

where

bk = −
vtk−1

(
λα−1
+ − λα−1

−

)
(1− α)(λα−2

+ + λα−2
− )

,

c(τj) = C
M

∑
m=1

vtm−11tm−1<τj≤tm ,

and {τj}j=1,2,··· is an i.i.d. sequence of uniform random variables on (0, T) independent of
{Uj}j=1,2,···, {Vj}j=1,2,···, {Ej}j=1,2,···, and {Γj}j=1,2,···.

Since we have

Ltm =
m

∑
k=1

∆Ltk |F v
tk−1

≈
m

∑
k=1

(
Zvtk−1 ∆tk |F v

tk−1
+ ρ∆vtk |F v

tk−1

)
=

m

∑
k=1

(
Ytk −Ytk−1 + ρ∆vtk |F v

tk−1

)
by (7),

we obtain
Ltm ≈ Ytm + ρvtm , (9)

as ||P|| → 0 . Let
L̂tm = Ytm + ρvtm , tm ∈ P \ {0}

and L̂0 = L0. Then, the discrete process {L̂tm}tm∈P is an approximation of {Ltm}tm∈P. In this
case, the process {L̂tm}tm∈P is referred to as the discrete time approximation of the CGMYSV
process, or simply the CGMYSV
∧

process. Combining Equations (8) and (9), we can generate
a CGMYSV
∧

sample path, as illustrated in Algorithm 1.

3.2. Simulation of the CGMYSV Process

In order to verify the performance of Algorithm 1, we generate a set of example
sample paths of the CGMYSV
∧

process {L̂tm}tm∈P and compare it to the distribution of the
CGMYSV process {Lt}t≥0 with parameters α = 0.52, λ+ = 25.46, λ− = 4.604, κ = 1.003,
η = 0.0711, ζ = 0.3443, v0 = 0.0064, and ρ = −2.0280. We set M = 100, J = 1024,
N = 10, 000, and ∆t = 1/252, which is the annual fraction represented by one trading
day. For example, 20 sample paths are presented in the first plate of Figure 1. The second
plate of the figure is for 20 sample paths of the CIR process. For the goodness-of-fit test
for the generated path, we perform the Kolmogorov–Smirnov (KS) test. We compare the
distribution L̂10∆t to the distribution of L10∆t. That is, we compare the distribution of 10-day
simulated random numbers {Ln,10|n = 1, 2, · · · , N} with the distribution of L10∆t. The
cumulative distribution function of L10∆t can be obtained by the Ch.F of the CGMYSV
using the inverse Fourier-Transform method (See Rachev et al. (2011) for more details).
Table 1 presents the results of the KS test. The p-value for the KS statistic for 10 days is
70.29%, which is not rejected at the 5% significance level. Using the same argument, we
perform KS tests for 25 days, 50 days, and 100 days of simulated random numbers. They
are not rejected at the 5% significance level, either. We graphically compare the empirical
probability density function (pdf) of the simulated sample path and the CGMYSV pdfs for
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those four cases. We draw empirical pdfs using gray bar charts and draw solid lines for
CGMYSV pdfs in four plates in Figure 2.

Algorithm 1: CGMYSV sample path generation.
Result: SVMYSV sample path
Let T be the time horizon ;
Let M, J, and N be large positive integers ;
∆t = T/M, vn,0 = v0, c = 2κ

(1−e−κ∆t)ζ2 , C = (Γ(2− α)(λα−2
+ + λα−2

− ))−1 ;

n = 1 ;
while n ≤ N do

m = 1;
while m ≤ M do

ξ = non-central χ2-distributed random variable with degrees of freedom 4κη/ζ2 and noncentrality
parameter 2cvn,m−1e−κ∆t ;

vn,m = ξ/(2c) ;
m = m + 1

end
j = 1, Γ0 = 0;
while j ≤ J do

Uj = uniform random number on (0, 1) ;
U′j = uniform random number on (0, 1) ;
Ej = exponential random number with parameter 1 ;
E′j = exponential random number with parameter 1 ;
Γj = Γj−1 + E′j ;
if U′j ≤ 0.5 then

Vj = λ+

else
Vj = λ−

end
τj = uniform random number on (0, T) ;
c(τj) = C ∑M

k=1 vn,k−11(k−1)∆t<τj≤k∆t ;
j = j + 1 ;

end
m = 1, Yn,0 = 0 ;
while m ≤ M do

bm = − vn,m−1(λα−1
+ −λα−1

− )
(1−α)(λα−2

+ +λα−2
− )

;

Yn,m = Yn,m−1 + ∑J
j=1

[(
αΓj

2c(τj)T

)−1/α
∧ EjU

1/α
j |Vj|−1

]
Vj
|Vj |

1(m−1)∆t<τj≤m∆t + bm∆t Ln,m = Yn,m + ρvn,m ;

m = m + 1;
end
n = n + 1;

end

Table 1. KS test for distributions of simulated sample paths.

KS Statistic p-Value

10 days 0.0070 0.7029
25 days 0.0122 0.1026
50 days 0.0069 0.7296
100 days 0.0110 0.1748
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Figure 1. CGMYSV sample paths (left) and CIR sample paths (right).
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Figure 2. CGMYSV pdfs based on the simulated sample path (gray bar-plots) vs pdf using FFT method (solid curves).
Distributions of Xt are for t = 10∆t (top-left), t = 25∆t (top-right), t = 50∆t (bottom-left), and t = 100∆t (bottom-right),
where ∆t = 1/252 is one day of year fraction.

4. The CGMYSV Option Pricing Model

In this section, we discuss the option pricing model using the CGMYSV model. We
define the model and calibrate its parameters using the European style, S&P 500 index
option (SPX option) data, and the American style S&P 100 index option (OEX option) data.

Let r and q be the risk-free rate of return and the continuous dividend rate of a given
underlying asset, respectively. The risk-neutral price process {St}t≥0 of the underlying
asset is assumed to be

St =
S0 exp((r− q)t + Lt)

E[exp(Lt)]
, (10)
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where {Lt}t≥0 is the CGMYSV process with parameters (α, λ+, λ−, κ, η, ζ, ρ, v0). By (6),
we also have

St =
S0 exp((r− q)t + Lt)

Φt(−i log φstdCTS(−i; α, λ+, λ−),−ρi, v0)
.

4.1. Calibration to European Options

For the risk-neutral price process {St}t≥0 defined by (10), the European call and put
prices, with strike price K and time to maturity T, are given by C(K, T) = e−rTE[(St −K)+]
and C(K, T) = e−rTE[(K − St)+], respectively. Using the fast Fourier transform (FFT)
method of Carr and Madan (1999), we can calculate European call/put prices numerically.
We calibrate the CGMYSV parameters (α, λ+, λ−, κ, η, ζ, ρ, v0) using the SPX option prices
for 11 September 2017. We observed 247 call prices and 289 put prices on that day. The S&P
500 price, S0, risk-free rate of return, r, and continuous dividend rate, q, on that day were
S0 = 2488.11, r = 1.213%, and q = 1.884%. The calibration results for SPX calls and puts
are provided in Table 2. Figure 3 shows observed SPX call and put prices, and calibrated
CGMYSV prices using the FFT.

Table 2. Calibrated Parameters for the SPX option on 11 September 2017.

Parameter Call Put

α 0.5184 0.0089
λ+ 25.4592 2.0852
λ− 4.6040 6.2380
κ 1.0029 1.4333
η 0.0711 0.1961
ζ 0.3443 1.1931
ρ −2.0283 −0.1695
v0 0.006381 0.0619
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Figure 3. Cont.
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Figure 3. Observed SPX option price and model prices calibrated to the market prices for Call (top)
and put (bottom) on September 11, 2017. ‘◦’ stands for the market price and ‘+’ stands for the
FFT price.

We recalculate the European call and put prices using the MCS method with the
calibrated parameters from Table 2. The sample paths of the MCS method are generated
by Algorithm 1. We used 10,000 sample paths. To compare the MCS method with the FFT
method, we use the four error estimators: the average absolute error (AAE), the average
absolute error as a percentage of the mean price (APE), the average relative percentage error
(ARPE), and the root mean square error (RMSE) (see Schoutens (2003)).3 The measured
values for these error estimators, for the FFT method and the MCS method, are in Table 3.
In all cases but one, for both the call and put cases, the MCS method has larger error values
than the FFT method. This is not surprising because we calibrated the parameters using
the FFT method. However, while larger, the error values for the MCS method are similar
to those of the FFT method. That means the sample path generation with Algorithm 1
performs well, and prices by the MCS perform similarly to those for the FFT method.

3 The measures are computed as follows: AAE=∑N
j=1

|P̂j−Pj |
N , APE=

∑N
j=1 |P̂j−Pj |/N

∑N
j=1 P̂j/N

, ARPE= 1
N ∑N

j=1
|P̂j−Pj |

P̂j
, and RMSE=

√
1
N ∑N

j=1
(P̂j−Pj)

2

N , where N

is the number of observations, and P̂j and Pj denote the model price and the observed market call/put prices, respectively.
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Table 3. Error estimators for the parameter calibration to the call and put option market price on 11
September 2017.

Call Put

Error FFT MCS FFT MCS

AAE 0.4442 0.6220 0.4047 0.5512
APE 0.0053 0.0074 0.0226 0.0308

ARPE 0.0711 0.0813 0.2094 0.1672
RMSE 0.6016 0.8019 0.7006 0.8608

For the option prices computed with the MCS method, we obtain standard error
estimates for each 247 call and 289 put option. (Not presented due to page limitations.)
Instead, in Figure 4, we plot MCS prices and the 95% confidence intervals for case 2400 <
K < 2600, and time to maturity T = 48 days.

Finally, we perform the bootstrapping. We select an at-the-money call, and an at-the-
money put of K = 2500 and T = 28 days as examples, and calculate call and put prices
with the MCS parameters in Table 2. Table 4 shows that the MCS prices and their standard
errors for 100, 1000, 5000, and 10,000 sample paths. We repeat this process 100 times.
Boxplot summaries of the statistics for the resulting call and put prices for each number
of sample paths are presented in Figure 5. We also show (by the symbol ’*’) the call/put
prices computed using the FFT method. We observe that, as the number of sample paths
increases, the interquartile distance of MCS prices narrows to that of the FFT price and
dispersions are reduced.

Table 4. MCS prices and standard errors for SPX call and put with the strike price K = 2500 and time
to maturity T = 28 days using calibrated parameters on 11 September 2017.

Call Put

Number of Simulation Price Standard Error Price Standard Error

100 15.9651 2.1001 34.3371 7.9356
1000 17.8790 0.7511 32.5601 2.2353
5000 19.6536 0.3634 32.7791 1.0458

10,000 19.6840 0.2551 32.6914 0.7617

FFT Price 19.6590 32.9541
Market Price 19.05 31.50
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Figure 4. Confidence Intervals for the MCS option prices. Dots are observed market prices, dot-coves
are MCS prices, and ‘I’ shape bars are 95% confidence intervals of MCS prices. The first (top) plate is
for call option pricing and the second (bottom) plate is for put option pricing.
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Figure 5. Bootstrapping for call (left) and put (right).

4.2. Calibration to American Options

In Section 4.1, we have seen that the sample path generation method using the series
representation works for the MCS method for European option pricing. In this section,
we discuss the American option pricing with the same sample path generation method.
We use the least squares regression method (LSM) of Longstaff and Schwartz (2001) for
American option pricing with the MCS method. When we perform the regression for the
expected value of an option, we consider St, S2

t , σt, σ2
t , and σtSt as independent variables,

following the idea in Chapter 15 of Rachev et al. (2011).
For empirical illustration, we use market prices of the American style OEX option. We

calibrate the parameters of the CGMYSV model with fixed seed numbers for each random
number generation. That is, we fix the seed value for the chi-square random number
generator in the CIR process, and generate uniform and exponential random numbers
Uj, U′j , Ej, E′j, and τj with the predefined seed values. Then we set the model parameters,

generate CGMYSV
∧

sample paths using Algorithm 1 with the fixed seed number and the
fixed random number sets, and then calculate American option price using LSM. We
find the optimal model parameters to minimize RMSE. As a benchmark, we calibrate the
parameters of the CGMY option pricing model (See Carr et al. (2002)) with the OEX option
price data using LSM, with sample paths generated by the series representation explained
in Section 2.3.

The calibration results are presented in Table 5. We calibrate the CGMY and the
CGMYSV model parameters for 12 Wednesdays in 2015 and 2016. Values for the four error
estimators, AAE, APE, ARPE, and RMSE, are provided in Table 6. As smaller error values
imply better calibration performance, smaller errors are written in bold letters. Table 6
shows that the CGMYSV calibration performs better than the CGMY calibration, except
for 10 February 2016, and 10 June 2015. On 9 March 2016, AAE and APE values for the
CGMY model are less than those of CGMYSV, but ARPE and RMSE values for CGMY
are larger than those for CGMYSV. The ARPE value for CGMY is smaller than that of
CGMYSV on 10 November 2015, but the other three error values for CGMY are larger than
that for CGMYSV. Therefore, we can conclude that, in this investigation, the CGMYSV
option pricing model typically performs better than the CGMY option pricing model,
except in a few cases. Hence, the LSM with Algorithm 1 works well for the American
option calibration.
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Table 5. Parameter Calibration Results for the OEX Option market.

Date Model α C λ+ λ− κ η ζ v0 ρ

Apr. 6, 2016 CGMY 0.5459 0.3495 6.3595 7.7563
CGMYSV 1.1356 35.2115 7.7883 1.9322 0.3550 1.2211 0.0100 1.2237

Mar. 9, 2016 CGMY 1.6885 0.0246 21.2919 2.8805
CGMYSV 0.0353 20.3911 9.9256 2.1262 0.4570 1.2665 0.0236 1.3434

Feb. 10, 2016 CGMY 0.9287 3.5284 72.5855 46.4594
CGMYSV 0.0257 1.3491 0.7503 2.4301 0.4185 1.8126 0.2711 0.3567

Jan. 6, 20166 CGMY 1.2290 0.4104 64.6344 21.3096
CGMYSV 1.3081 33.2233 32.5605 2.0656 0.4237 1.8947 0.0810 0.1172

Dec. 9, 2015 CGMY 1.3241 0.2984 57.6574 30.2749
CGMYSV 0.6308 40.5190 24.3874 5.0247 0.3299 3.5989 0.0593 0.2334

Nov. 10, 2015 CGMY 1.5907 0.0184 26.4398 2.7714
CGMYSV 0.0266 1.6365 0.7506 1.0354 0.5658 0.3936 0.1111 1.2914

Oct. 7, 2015 CGMY 0.9792 0.2955 53.8624 8.4758
CGMYSV 0.8763 65.0630 67.4571 1.8555 0.2794 2.1050 0.0422 0.0080

Sep. 9, 2015 CGMY 1.2572 0.5862 54.0807 15.3905
CGMYSV 0.5836 30.2731 17.2115 5.1193 0.3569 4.8231 0.1189 0.1158

Aug. 12, 2015 CGMY 0.7574 0.5926 61.7876 14.2761
CGMYSV 0.4848 42.9235 31.7027 2.1644 0.1964 2.1032 0.0283 0.1639

Jul. 8, 2015 CGMY 1.1742 0.2429 78.6224 11.4198
CGMYSV 0.9127 46.3671 46.3013 2.2125 0.2173 2.0394 0.0547 −0.0637

Jun. 10, 2015 CGMY 1.3849 0.0407 64.9276 7.8355
CGMYSV 0.0391 1.0381 0.7820 1.1451 0.6167 0.6062 0.0518 1.2736

May. 6, 2015 CGMY 1.2247 0.1125 87.0744 8.6069
CGMYSV 0.8628 53.8182 54.3726 2.0949 0.2023 2.0731 0.0352 0.0647

Finally, we perform bootstrapping. We selected the at-the-money, 6 April 2016 put
option with strike price K = 910 and T = 31 days to maturity. Put prices were obtained by
LSM using the parameters calibrated for that day in Table 5. On that day, the underlying
S&P 100 index price was 918.21, and the market put price was 13.95. Table 7 shows the LSM
prices and their standard errors for simulation using 100, 1000, 5000, and 10,000 sample
paths. The LSM prices approach the market price, and the standard error decreases as the
number of sample paths increases. We repeated these simulations 100 times, and present
numerical summaries for the statistics for those 100 prices in Table 8. As the number of
sample paths increases, means and medians approach the market put price, while the
standard deviations and ranges are decreased. We present boxplot summaries in Figure 6
for those 100 prices. Market put prices are also represented (’*’ symbols) with the boxplots.
We observe that the interquartile distance of LSM prices narrows to that of the market price,
and dispersions are reduced as the number of sample paths increase.
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Table 6. Error Estimates for the calibration of the OEX option.

Date Model AAE APE ARPE RMSE

Apr. 6, 2016 CGMY 0.6623 0.1726 0.4587 0.8833
CGMYSV 0.1881 0.0490 0.1242 0.2497

Mar. 9, 2016 CGMY 0.6780 0.1106 0.2871 0.8323
CGMYSV 0.6833 0.1115 0.2492 0.8086

Feb. 10, 2016 CGMY 0.7755 0.0513 0.1282 1.1076
CGMYSV 0.9267 0.0613 0.2075 1.2042

Jan. 6, 2016 CGMY 0.6945 0.0644 0.1617 0.9379
CGMYSV 0.4140 0.0384 0.0784 0.6574

Dec. 9, 2015 CGMY 0.7986 0.0931 0.1855 1.1230
CGMYSV 0.5903 0.0688 0.0957 0.7885

Nov. 10, 2015 CGMY 0.3137 0.0576 0.2169 0.4159
CGMYSV 0.2337 0.0429 0.2560 0.3815

Oct. 7, 2015 CGMY 0.5268 0.1018 0.3741 0.6891
CGMYSV 0.2186 0.0423 0.1520 0.3221

Sep. 9, 2015 CGMY 0.8948 0.0880 0.1681 1.2499
CGMYSV 0.5874 0.0577 0.1002 0.9153

Aug. 12, 2015 CGMY 0.6464 0.0941 0.1894 0.9097
CGMYSV 0.4137 0.0602 0.1401 0.5652

Jul. 8, 2015 CGMY 0.7636 0.0800 0.1456 1.0079
CGMYSV 0.2518 0.0264 0.1023 0.3238

Jun. 10, 2015 CGMY 0.2535 0.0671 0.2576 0.3483
CGMYSV 0.3180 0.0841 0.3676 0.4120

May. 6, 2015 CGMY 0.7361 0.0765 0.1479 0.9776
CGMYSV 0.3880 0.0403 0.1097 0.5137

100 1000 5000 10000

10

15

20

25

30

American Put

Figure 6. Bootstrapping for OEX put option with time to maturity of T = 31 days and strike price
K = 910.

Figure 7 provides a graphical illustration of the calibration for 6 April 2016. Calibrated
CGMYSV prices are drawn by "×", the market observed prices are drawn by "◦", and the
95% confidence intervals are marked by a "I" shape. The days to maturities T are written
on the plate.
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Table 7. MCS prices and standard errors for the OEX put with time to maturity of T = 31 days and
strike price K = 910 using parameters calibrated on 6 April 2016.

Put

Number of Simulation Price Standard Error

100 15.4565 2.7280
1000 15.0373 1.0173
5000 13.9616 0.3990

10,000 13.8768 0.2856

Market Price 13.950

Table 8. Numerical Summary of the bootstrapping. We repeat the MCS pricing 100 times for various
number of simulation, and calculate basic statistics for the 100 MCS put prices.

Number of
Simulation Mean Std Q1 Median (Q2) Q3 IQR Range

100 16.6119 3.2399 14.3966 16.5589 18.6850 4.2885 21.9747
1000 14.4190 0.7568 13.9394 14.4343 14.8609 0.9215 3.9857
5000 14.0073 0.3258 13.8295 14.0252 14.1876 0.3581 1.8799

10,000 13.8599 0.2524 13.6766 13.8640 14.0410 0.3644 1.1730

Market Price 13.950
Std: Standard Deviation, Q1: the 1st quartile, Q2: the 2nd quartile, Q3: the 3rd quartile, IQR: inter quartile range.
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Figure 7. OEX put prices on April 6, 2016 and LSM prices with their confidence intervals. Circles
(‘◦’) are observed OEX put prices, ‘×’ points are LMS prices, and ‘I’ shape bars are 95% confidence
intervals of LMS prices.
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4.3. Asian and Barrier Options

The sample path generation method for the CGMYSV model can also be used for
Asian and Barrier option pricing. In this section, we briefly show examples of Asian
and Barrier option pricing using the MCS, with sample paths generated by Algorithm 1.
We generated 10,000 sample paths of the CGMYSV model with parameters α = 0.52,
λ+ = 25.46, λ− = 4.604, κ = 1.003, η = 0.0711, ζ = 0.3443, v0 = 0.0064, and ρ = −2.0280.
Then, we generated the underlying price process {St}t≥0 using (10), where S0 = 2, 488,
r = 0.0121, and d = 0.0188.

For the Asian option, we consider the arithmetic average call and put prices for strike
price K = 2500 and a time to maturity of T = 25 days. Table 9 shows the MCS prices
for Asian call & put prices and their standard errors for simulations with 100, 1000, 5000,
and 10,000 sample paths. The standard error of the MCS prices decreased as the number
of sample paths increased. We repeated this process 100 times, and present boxplots for
those 100 prices in Figure 8. We observe that the MCS prices converge, and dispersions are
reduced as the number of sample paths increase.
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Figure 8. Bootstrapping for Asian call (left) & put (right).

Table 9. MCS prices and standard errors for Asian call & put.

Call Put

Number of Simulation Price Standard Error Price Standard Error

100 22.0834 1.7485 11.7400 3.4463
1000 21.0078 0.5866 9.7009 1.0759
5000 21.4664 0.2785 10.5634 0.5443

10,000 21.6513 0.1937 9.9964 0.3679

Similarly, we found the MCS price for Barrier options. We considered the down-and-
out call and the up-and-out put Barrier options having a strike price of K = 2500 and time
to maturity of T = 25 days. Barriers of the down-and-out call and the up-and-out put are
2400, and 2750, respectively. Table 10 shows the MCS prices and their standard errors for
simulations with 100, 1000, 5000, and 10,000 sample paths. The standard error of the MCS
prices decreased as the number of sample paths increased. We repeated this process 100
times, and present boxplots for those 100 prices in Figure 9. We also observe that the MCS
prices converged, and dispersions are reduced as the sample paths increase.
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Table 10. MCS prices and standard errors for the down-and-out call and the up-and-out put.

Down & Out Call Up & Out Put

Number of Simulation Price Standard Error Price Standard Error

100 12.9019 1.4535 36.2543 3.6254
1000 15.3738 0.5165 30.0687 0.9509
5000 16.6097 0.2460 31.8030 0.4498

10,000 16.5518 0.1749 30.2590 0.3026
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Figure 9. Bootstrapping for Barrier options: the down-and-out call (left) and the up-and-out put (right).

5. Conclusions

In this paper, we developed the CGMYSV sample path generation algorithm using
the discrete-time approximation method with series representation. Performance of the
discrete-time approximation of the CGMYSV process was tested by comparing the sim-
ulated distribution to the pdf calculated by the inverse Fourier transform method. We
applied the sample path generation algorithm to European and American option pricing
with MCS and LSM. We compared the MCS method to the FFT method in European option
pricing with the SPX option market data. We calibrated the parameters of the CGMYSV
model to the American style OEX option using LSM. We measured the performance of
the calibration using four error estimators and the boot-strapping method. We conclude
that the sample path generation method of the CGMYSV model performs well, and can
successfully be applied to American option pricing with LSM. Finally, we also presented
Asian and Barrier option pricing examples with the MCS method using the sample path
generation algorithm.
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