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Abstract: The onset of the COVID-19 pandemic and lockdown announcements by governments have
created uncertainty in business operations globally. For the first time, a health shock has impacted
the stock markets forcefully. India, one of the major emerging markets, has witnessed a massive fall
of around 40% in its major stock indices’ value. Therefore, we examined the short-term impact of the
pandemic on the Indian stock market’s major index (NIFTY50) and its constituent sectors. For our
analysis, we used three different models (constant return model, market model, and market-adjusted
model) of event study methodology. Our results are heterogeneous and largely depend on the
sectors. All the sectors were impacted temporarily, yet the financial sector faced the worst. Sectors
like pharma, consumer goods, and IT had positive or limited impacts. We discuss the potential
explanations for the same. These results may be useful for investors in safeguarding equity portfolios
from unforeseen shocks and making better investment decisions to avoid large, unexpected losses.

Keywords: crisis; NIFTY50; COVID-19; sustainable; event studies; India; risk; investment

1. Introduction

The financial system plays an important role in the global economy (Maiti et al. 2021).
Systemic events cause widespread financial instability that disrupts the functioning of the
financial system, which in turn creates shocks in the real economy (Duca and Peltonen 2013;
Thanh et al. 2020). Systemic shocks or contagious idiosyncratic shocks lead to systemic
crises, thus severely impairing the financial system and destabilising the economy (De
Bandt and Hartmann 2000). Therefore, academia and policymakers closely follow the
stability and soundness of an economy’s financial system.

An important constituent of the Indian financial system is the Indian stock market.
India is one of the emerging economies. It follows an open economy policy and is one of
the largest recipients of FDI (foreign direct investment) in major sectors. Over the past
two decades, the Indian stock market has shown impressive growth, especially in terms of
turnover rate, market capitalisation, and the number of listed companies. Having said that,
globalisation also makes the country vulnerable to various global risks (Maiti 2020). For
example, the recent developments in asset markets depend on international capital flows.
Therefore, any reversal of these flows creates an adverse impact on future capital raising and
asset valuations. According to the Global Risk Report published by the World Economic
Forum (2018), policymakers and entrepreneurs, especially in the emerging economies, are
not well prepared to face serious economic or financial turmoil. Therefore, analysing the
impact of major events on the emerging economies like India is very important. The impact
of any such risks is immediately reflected in stock markets.

Stock markets are highly volatile and often spread the risks caused by systemic events
such as asset bubbles, macro imbalances, negative externalities, correlated exposures,
information disruptions and contagions, etc., to the existing economic and financial markets
using various channels. In general, investors in the stock market are regarded as poor
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Bayesian decision-makers and evidence shows that they overreact to recent information.
Investor optimism leads to a reduction in earnings volatility, whereas investor pessimism
causes an increase in earnings volatility. As a result, stock prices deviate from their
underlying fundamental value (De Bandt and Thaler 1987; Lee et al. 2002). Having said
that, the decisions on the financial markets are ruled by “collective belief.” Investors pay
attention to the way a collective opinion is formed and react accordingly (Orleéan 2004,
2008). This results in herding and stock prices deviating from their underlying fundamental
value. Therefore, the investor overreaction hypothesis (IOH) challenges the efficiency of
markets. Studying the effect of various unanticipated events on the stock price is important.
One such unanticipated event that recently crashed the world economy and created adverse
impact in the global stock market is the COVID-19 pandemic.

COVID-19, or coronavirus disease 2019, caused by the SARS-CoV-2 virus, was first
detected in Wuhan, China. Consequently, numerous cases were traced around the world
and the World Health Organization declared it a global pandemic on 11 March 2020. Unlike
in developed economies, emerging markets such as India with (i) relatively poor public
health infrastructure, (ii) a distressed and burdened banking sector and bond markets,
and (iii) slowdown in economic growth face extreme difficulties while the effects of the
pandemic unfold. On 24 March 2020, a nationwide lockdown was announced in India
to reduce the adverse consequences. Such social distancing measures and restrictions
on transportation negatively impacted firms’ productivity via increasing operation costs,
decreasing revenue, and cash flow challenges. The usual consumption pattern was affected
due to the growing panic among consumers. All these led to market abnormality (Bora and
Basistha 2021). NIFTY rapidly dropped 40% of its market value compared to its value at the
start of the year. The sudden fall in the indices affected the individual portfolios of investors.
However, active retail investors found this as an opportunity to time the market, invest,
and earn considerable returns. A total of 10 million new demat accounts were opened in
2020 owing to the low cost of trades and an industry-wide shift to online trading1. Reports
show that the MSCI World Index, which includes stocks from 23 developed countries
and 24 emerging markets, lost 10.7% of its value between 23 January and 6 March 2020.
The outbreak of COVID-19 affected economies globally and India was one of them. The
pandemic created an unprecedented global shock, increasing the financial market volatility.
The global economy crashed, unemployment increased, and oil prices fell during the initial
stage but increased significantly at the later phase (Alam et al. 2020). Since the Indian
stock market is well integrated and responds to global situations, elucidating the impact
of COVID-19 on the Indian stock market is important. One such method to measure this
impact is the use of event study methodology, introduced by Fama et al. (1969).

Event study methodology is incorporated into investments and accounting to assess
the volatility of stock prices and to check whether an event can affect the performance
of various stocks and produce abnormal returns. Generally, event analysis is used (1)
to test whether any new information is efficiently incorporated by the markets and (2)
to examine the effect of an event on the security holder’s wealth, assuming that the
market efficient hypothesis holds true, at least with respect to the information available
to the public (Binder 1998). The important characteristics of event analysis is that it does
not take into account the issues of stationarity and seasonality in a time series, whereas
autoregressive moving average (ARMA) models are only applied to stationary time series
and are not applicable directly on a seasonal time series. This method also examines
whether the correlation between the variables is positive or negative. Hence, event study
analysis is widely used in finance literature. Numerous studies have examined the effect
of emergencies on stock price using event study analysis, such as the impact of terrorist
attacks (Arin et al. 2008; Drakos 2010), political events (Beaulieu et al. 2006; Bash and
Alsaifi 2019), nuclear disasters (Kawashima and Takeda 2012), the severe acute respiratory
syndrome (SARS) pandemic disease outbreak (Chen et al. 2007), epidemics (Chen et al.
2007; Ichev and Marinč 2018; Salisu and Vo 2020), etc.
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The objective of this study is to examine the impact of the global pandemic in the
Indian stock market. The National Stock Exchange (NSE), one of the two major stock
exchanges in India, is globally the third largest stock exchange in terms of the number of
equity trades and has the world’s largest derivatives by volume. Therefore, this paper
studies the effect of the COVID-19 outbreak by employing event study methodology on
the NIFTY50 index and its constituents. The NIFTY50 index is the benchmark index of the
NSE. One of the salient features of the paper is examining the effect of the pandemic on the
major constituent sectors of the NIFTY50 index—financial services, consumer goods, IT,
and pharma.

The rest of this paper is organised as follows: Section 2 briefly reviews the existing
literature about the impact of the COVID-19 pandemic on stock returns. Section 3 describes
the data and methodology. Section 4 reports and discusses the empirical findings, and
Section 5 concludes the study.

2. Literature Review

The COVID-19 pandemic increased uncertainty and risk around the globe and affected
both developed and emerging economies such as the United States, Italy, Spain, Brazil,
and India. Existing studies recorded diversified results. Ozili and Arun (2020) used major
government policies such as public health measures, restrictive measures, social distancing
policies, and fiscal monetary policies to elucidate the impact of COVID-19 on the global
economy. According to them, higher fiscal policy and restriction on movement had a
negative impact on the level of economic activities. In line with the results, Adda (2016)
employed quasi-experimental variation and showed that the travel restrictions during a
viral disease outbreak decreased the earnings and adversely impacted the economy. In
addition, Gormsen and Koijen (2020) documented that the lock-down in Italy due to the
COVID-19 pandemic caused a downward trend in the GDP growth and dividends of
US and European countries. Similarly, Zhang et al. (2020) examined the top 10 COVID-
19-infected countries using a simple statistical analysis method and suggested that the
pandemic created greater risk and uncertainty in the global market. This is in line with
the conclusions drawn by Baker et al. (2020), who showed that the market swings due
to COVID-19 were extremely high when compared with the times of SARS, swine flu,
MERS, Ebola and bird flu. Similarly, Liu et al. (2020) employed event study methodology,
analysing 21 leading stock exchanges and concluding that the COVID-19 outbreak had
a significant negative impact on the stock markets of all affected countries, with Asia
recording a greater decrease in terms of abnormal returns. This explanation is consistent
with the findings of Harjoto et al. (2021), who used event analysis to show the strong
negative impact of COVID-19 on the global markets, especially emerging markets and
small firms. According to this study, large firms and the US stock market recorded positive
abnormal returns compared to the other emerging market economies. Adding to this
result, Ramelli and Wagner (2020) analysed the international trade and financial policies
of individual firms and concluded that internationally oriented US firms, especially those
with exposure to the Chinese market, faced adverse impacts. Several studies focused on
analysing individual market economies. For example, Al-Awadhi et al. (2020) used a panel
regression approach to examine the impact of the global pandemic on the different sectors
of the Chinese stock market. According to this study, high market capitalisation stocks were
adversely affected, but the performance of the information technology and pharma sectors
were relatively better. According to Topcu and Gulal (2020), Asian emerging economies
were more affected by the outbreak than European emerging economies. This increased
the rate of interest on the sovereign debt of emerging markets (Goldberg and Reed 2020).

Various methods were employed by different studies to address the impact of the
COVID-19 outbreak in different stock markets and financial assets (Maiti et al. 2020; Maiti
2021; Vukovic et al. 2021). Cepoi (2020) employed panel quantile regression and Bora and
Basistha (2021) used a generalised autoregressive conditional heteroscedasticity model
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to gauge the impacts. One such method popularly used to measure the impact of an
unprecedented event is event study methodology.

Over the years, event study methodology has evolved with several advancements.
Event analysis was first used by Dolley (1933) to examine the impact of stock splits on stock
price. By the 1960s, several researchers (Myers and Bakay 1948; Barker 1956; Ashley 1962)
had contributed to this methodology. Nevertheless, Ball and Brown (1968) and Fama et al.
(1969) are regarded as the pioneers in the event study methodology. The former worked
on the information content of earnings, whereas the latter, popularly known as the event
study of FFJR, designed a classic market model to elucidate the effect of stock splits after
the removal of the simultaneous dividend increase effect (Mackinlay 1997). The market
model was patterned after the development of the capital asset pricing model (Sharpe 1964;
Corrado 2011). In the earlier days, around the time of an event, the market model was
mainly used to calculate the cumulative mean abnormal returns. The number of papers
contributing to event study in the 1980s increased. In the late 1990s, various sophisticated
methods to estimate abnormal returns were introduced, especially for long-run event
studies. Windows of one year or more are termed “long-horizon.” The advancement
was mainly due to various developments in the asset pricing literature, such as the three-
factor model by Fama and French (1995) and the use of daily or intraday data instead
of monthly data (Mackinlay 1997). However, long-run events lack reliability and long-
horizon abnormal returns are precarious (Brown and Warner 1980; Lyon et al. 1999).
Long-horizon tests have low power and are subjected to joint-test problems (Kothari and
Warner 2006). According to Fama (1991), short-run tests give the “cleanest evidence on
efficiency.” Therefore, this study employed short-horizon event study methodologies, as
they are relatively trouble-free and straightforward.

The event study method is a tool to assess the impact of an unanticipated event on
the firm value. Assuming rationality in the market, the effect of an event is immediately
reflected in the share price (Mackinlay 1997). In stock markets, unexpected events affect
investor sentiment, which in turn impacts their decision-making ability. This results in
changes in the stock price (He et al. 2020). In the past, several studies have contributed to
the literature on event analysis but only a few studies analysed the impact of a health crisis
on the stock market. Among the very few, most of the studies concentrated on influenza
and the severe acute respiratory syndrome (SARS) pandemic disease outbreak (Chen et al.
2007; Goh and Law 2002). Recently, one such health crisis that has had an adverse and
sustained impact on the global economy is the outbreak of COVID-19 (Iyke 2020).

Very few studies have contributed to analysing the impact of COVID-19 on the Indian
stock market using event study methodology. Therefore, the motivation of this study is to
contribute to the growing literature by constructing three different models—the constant
return model, the market adjusted model, and the market model. Some studies addressed
the impact of the pandemic on different sectors of various international stock markets
(Ramelli and Wagner 2020; He et al. 2020; Albuquerque et al. 2020). However, evidence
pertaining to the Indian stock market is scarce. This paper attempts to fill this gap by
analysing the impact of COVID-19 on different sectors of the NIFTY50 index. The overall
objective of the paper is to test whether the onset of the COVID-19 pandemic produced
abnormal returns by analysing the constituents of the NIFTY50 index using event study
methodology.

3. Data and Methodology
3.1. Data

The study aims to check the impact of the COVID-19 outbreak on the Indian stock
market in March 2020. Stock prices adjusted for stock splits and dividends were taken from
the Yahoo Finance and CMIE Prowess databases. Daily security prices were considered
for the analysis. The NIFTY50 index is the float-adjusted market-capitalisation-weighted
index consisting of 50 stocks of blue-chip companies and represents about 65% of the
NSE’s float-adjusted market capitalisation. The NIFTY50 index was chosen as the proxy
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for market returns. The analysis was carried out on the constituents of the NIFTY50 index.
Figure 1 shows the movement of the index during the onset of the pandemic. It exhibits
that the market fell by about 15–17% in March during the onset of the pandemic in India.
The month of April was relatively better as the market tried to recover from the lows of
March and showed an upward trend.
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Figure 1. NIFTY50 price chart (source: NSE).

3.2. Methodology

The effect of an event is immediately realised in the stock price, unlike other productivity-
related measures that require months of observation. An event’s impact is assessed by
measuring abnormal returns. Event study methodology helps to check whether such
unanticipated events caused abnormal returns. An abnormal return is defined as the
difference between the actual ex-post security’s return over the event window and the
expected normal return (Mackinlay 1997). Three models—the constant mean return model,
the market adjusted model, and the market model were used to measure the associated
abnormal returns.

Step 1: Define event window and estimation window
The initial step in an event analysis is to define the event of interest and the event

window. The Government of India imposed a nationwide lockdown on the evening of 24
March 2020. Since the impact of that announcement on the stock market is realised the next
day, 25 March 2020 was the event of interest. The event window is the time period during
which the security prices are impacted by a particular event. The event window consists of
two components—the anticipation window and the adjustment window. The day of impact
or the event day is set as day 0. The 15 days prior to the event are called the anticipation
window and the 15 days after the event constitute the adjustment window. This study
deviated from the usual practice of selecting a 10-day anticipation and adjustment window.
Since the virus is throwing surprises daily and is still in the stage of being discovered
around the globe, a 15-day event window helps capture investor behaviour in a prominent
manner. The next step was to define the estimation window. The estimation window is a
pre-decided time frame before the occurrence of an event. The estimation period is day
−135, −16, i.e., it ends 15 days prior to the event day and covers a period of 120 trading
days. Figure 1 depicts the timeline of the event analysis. In order to eliminate potential
biases, the estimation period is separated from the event period (Hendricks and Singhal
2003).
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Unlike a short event window (at most 1 month prior and 1 month after), a long event
window (i) decreases the power of the test statistics, (ii) leads to confounding effects, and
(iii) results in false conclusions (McWilliams and Siegel 1997). Since event analysis depends
on forecasting, the results’ accuracy decreases over time. The probability of any other
event influencing the stock price and creating noise is relatively higher in long periods.
Therefore, a short event window was considered for the analysis. Figure 2 shows the
timeline of the event window considered in our analysis. In this work, we considered an
event window of 15 days prior and 15 days after to capture a better picture of the COVID-19
pandemic-related impact, as this was not a single-day event. Instead, the event was spread
over days as the COVID-19 numbers increased every day. Therefore, to capture a better
picture, we increased the size of the event window by 5 more days (usually 10 days before
and after the window are considered for a single-day event).
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Step 2: Calculate abnormal returns
The reaction of the stock market to the arrival of new information is reflected by

abnormal returns (McWilliams and Siegel 1997). It is assumed that the asset returns are iid
(independently and identically distributed) through time and jointly multivariate normal.
The three different models used to calculate abnormal returns are outlined below.

3.2.1. Constant Mean Return Model

The constant mean return model is the simplest model but yields the same results as
other sophisticated models (Brown and Warner 1980, 1985). It only takes into account the
average return of the stock and does not adjust for index returns. Hence, this model tends
to give inflated abnormal returns. An abnormal return from the constant mean return
model is given below in Equation (1).

ξi,t = Ri,t − E(Ri,t|Xt) (1)

where ξi,t is the abnormal return with E[ξi,t] = 0 and Var[ξi,t] = σξ,i
2, Ri,t is the actual return

on stock i on each day t of the estimation period, Xt is the conditioning information at time
t, and E(Ri,t|Xt) = µi is the average return of the stock in the estimation window.

3.2.2. Market Model

The market model isolates the impact of market-related factors and controls systematic
risk. It is considered a benchmark model to calculate normal return. This model is preferred
to the constant mean return model, as it removes the excess returns due to market return
variation, thus reducing the variance of abnormal return (Mackinlay 1997). Expected
return/normal return from the market model is given below in Equation (2).

E(Ri,t) = αi + βi x Rm,t (2)
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where Ri,t is the actual return on stock i on each day t of the estimation period. Similarly,
Rm,t is the market return on each day t. The estimated alpha and beta are obtained from
the estimation period. The ordinary least square method over a period of 120 estimation
days is employed to estimate αi and βi.

The abnormal return for a market model is characterised in Equation (3).

ξi,t = Ri,t − E(Ri,t) (3)

where E(Ri,t) is the expected return (Equation (2)). The abnormal return (ξi,t) with E[ξi,t] = 0
and Var[ξi,t] = σξ,i

2 is the difference between the actual daily return of the stock i and the
estimated normal return of stock i on day t.

3.2.3. Market Adjusted Model

The market adjusted model is the constrained market model where αi = 0 and βi = 1
(Mackinlay 1997). The market adjusted model takes the index returns into account. Hence,
this model does not give inflated abnormal returns. Abnormal returns from the market
adjusted model are measured as in Equation (4).

ξi,t = Ri,t − RIi,t (4)

where Rit is the actual return on stock i on each day t of the estimation period and RIi,t is
the actual return of the index on each day t of the estimation period.

Step 3: Calculate average abnormal returns
The daily average abnormal return (AAR) is given by:

AAR =
N

∑
i=1

ξi,t/N (5)

where N is the number of firms for which the average abnormal returns are being calculated.
The t-test is employed to test the significance:

t =
t=t2

∑
t=t1

AARi,t/SDi,t (6)

Significance is tested for the 3 models in the event period.
Step 4: State the hypothesis
The null and alternative hypotheses are:

Null Hypothesis (H0): Average abnormal returns in the event window are not statistically
significant.

Alternate Hypothesis (H1): Average abnormal returns in the event window are statistically
significant.

4. Results and Discussions
4.1. Average Abnormal Returns from NIFTY50 Index Components

Unlike the US, the stock markets in India reacted even before the actual outbreak
of COVID-19 at its peak in India owing to the knowledge from the experience of other
countries (Verma et al. 2021). Therefore, this paper analyses the initial stage of the outbreak.
The average abnormal returns for 50 stocks constituting the NIFTY50 index were calculated
using the three different models—the constant return model, the market model and the
market adjusted model. With a 5% significance level, the t-test was employed to test the
significance. AAR was calculated for 30 days in the event window and is tabulated in
Tables 1 and 2. Table 1 represents the results of the constant return model. It exhibits that,
on the day of the event, i.e., day 0, there was a significant negative mean abnormal return
of 12.8%. The median AAR on the day of the event was −12.9%. Two days before and
after the event, the AAR significantly differed from 0. Table 2 represents the results of
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the market model and market adjusted model. It shows that on the event day, the AARs
of both models were not statistically significant. The null hypothesis cannot be rejected
and the abnormal return on the event day was not statistically significant. However, a
significant negative abnormal return two days before and after the event was also recorded.
The abnormal return in each sector was analysed to elucidate the presence of positive
abnormal returns on the event day.

From Tables 1 and 2, we observed that some days did record significant AARs before
and after the event. Firms with lower flexibility and high operating leverage faced adverse
impacts. Since the components of NIFTY50 are blue-chip companies, firms with low
operating leverage, more scalable operations, and greater operational flexibility suffered
less loss in market value (Verma et al. 2021). Therefore, the AARs calculated from the
market model and market adjusted model during the 30 days of the event window ranged
only from −1.69 to 1.70 and from −1.72 to 1.69, respectively. Nevertheless, the analysis of
the individual sectors helps identify the most affected sectors.

Table 1. AAR from the constant return model.

Constant Return Model

Day AAR p-Value Median

−15 −3.9075 0.0003 −3.7883
−14 −0.9435 0.3461 −0.8835
−13 2.5322 0.0138 1.9477
−12 −0.3179 0.7499 −0.3824
−11 0.1801 0.8567 0.0740
−10 −2.3608 0.0212 −2.1408
−9 −4.3327 0.0001 −4.3044
−8 −0.8893 0.3742 −0.7925
−7 −8.4939 0.0000 −8.1839
−6 3.3572 0.0014 3.4589
−5 −6.9487 0.0000 −6.8194
−4 −2.0126 0.0478 −1.8790
−3 −5.4523 0.0000 −5.0853
−2 −3.4991 0.0009 −3.5709
−1 5.7786 0.0000 5.9868
0 −12.8067 0.0000 −12.9117
1 2.1497 0.0351 1.6780
2 4.8656 0.0000 3.8818
3 3.7934 0.0004 2.9943
4 −0.6171 0.5366 −0.2112
5 −2.7408 0.0080 −2.5794
6 3.5554 0.0008 3.9330
7 −3.4137 0.0012 −3.5644
8 −1.5683 0.1202 −1.8574
9 8.7703 0.0000 8.8821
10 0.0995 0.9205 −0.2617
11 4.1997 0.0001 3.7250
12 −0.6202 0.5346 −0.9234
13 0.2874 0.7732 0.0819
14 0.9406 0.3475 1.2790
15 2.0956 0.0397 1.3415
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Table 2. AAR from the market adjusted model and the market model.

Market Adjusted Model Market Model

Day AAR p-Value Median AAR p-Value Median

−15 −0.1293 0.6178 0.0564 −0.1388 0.5922 −0.0822
−14 −0.2589 0.3197 −0.1646 −0.2764 0.2883 −0.3256
−13 1.0688 0.0001 0.4584 1.0458 0.0002 0.5044
−12 0.2134 0.4113 0.0782 0.1955 0.4514 0.2275
−11 0.0887 0.7320 0.0540 0.0692 0.7893 −0.0144
−10 0.1885 0.4675 0.4055 0.1758 0.4979 0.1528
−9 0.6315 0.0178 0.7591 0.6250 0.0189 1.0219
−8 −0.8871 0.0012 −0.7450 −0.9064 0.0009 −0.8152
−7 −0.1233 0.6341 0.1617 −0.1210 0.6405 −0.1552
−6 −0.3807 0.1457 −0.3582 −0.4097 0.1180 −0.4701
−5 0.7320 0.0065 0.8211 0.7326 0.0065 0.7971
−4 0.5606 0.0343 0.7200 0.5479 0.0384 0.6191
−3 0.1728 0.5054 0.5783 0.1680 0.5172 −0.5460
−2 −1.0057 0.0003 −1.0815 −1.0186 0.0002 −1.0812
−1 0.0143 0.9559 0.1633 −0.0198 0.9389 −0.3792
0 0.2424 0.3511 0.1772 0.2568 0.3235 0.0706
1 −0.2888 0.2675 −0.6913 −0.3144 0.2279 −0.7162
2 −1.6905 0.0000 −2.6865 −1.7267 0.0000 −1.5993
3 −0.0285 0.9125 −0.6826 −0.0576 0.8239 −0.5200
4 −0.7660 0.0045 −0.3449 −0.7857 0.0037 −0.4052
5 1.7059 0.0000 1.7648 1.6981 0.0000 1.7452
6 −0.1997 0.4417 0.3024 −0.2287 0.3788 0.8310
7 0.6553 0.0141 0.3035 0.6466 0.0154 0.9920
8 0.5600 0.0345 0.2276 0.5462 0.0390 0.2145
9 0.0757 0.7701 0.2106 0.0339 0.8957 0.6737
10 0.6623 0.0132 0.3425 0.6445 0.0157 0.2997
11 0.1174 0.6504 −0.4657 0.0876 0.7351 −0.2594
12 0.7440 0.0057 0.4835 0.7282 0.0068 0.2387
13 1.1182 0.0001 0.7501 1.1011 0.0001 0.6618
14 0.2529 0.3308 0.6241 0.2319 0.3722 0.5030
15 −0.8821 0.0012 −1.6177 −0.9091 0.0009 −1.7541

4.2. Impact of the Pandemic in Different Sectors of the NIFTY50 Index

The NIFTY50 index consists of 13 different sectors—automobile, cement and cement
products, construction, consumer goods, fertilisers and pesticides, financial services, IT,
metals, oil and gas, pharma, power, and services. Figures 3–6 show the average abnormal
returns from the event window of four—pharma, consumer goods, financial services, and
the IT sector, respectively. Since the financial services sector had the highest weightage
(22%) in the index followed by consumer goods (14%), the automobile sector (12%), and IT
(10%)2, these sectors were included in the analysis. When there is a change in the economic
environment of a particular sector, the operating conditions of the firms in that sector are
highly correlated (Moskowitz and Grinblatt 1999). Since the onset of pandemic had a direct
impact on pharmaceutical companies, the pharma sector was included in the analysis.

From the graphs, all the sectors included in the graphs recorded the highest positive
ARR on the ninth day after the event owing to the reports of positive trial results on
experimental virus treatment3. Owing to the onset of the COVID-19 pandemic, it is evident
that the pharma sector has to lead the way by producing the requisite set of drugs and
vaccines to control and thereby reduce its adverse impact. On the day of the event, when
the constant return model showed an AAR of about −6%, the market adjusted model
showed a positive AAR of the same quantum. Pharma stocks did not fall as much as
the index and the shares from this sector were long, as investors expected an upward
growth in this sector in the near future. Certain pharma stocks recorded positive returns
on the same day when the index fell by about 12%. Figure 3 records the AAR obtained
from the stocks included in the pharma sector of the NIFTY50 index. On the event day,
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the constant return model recorded a negative ARR, whereas the market adjusted model
recorded a positive ARR. Even though the first and second day after the event recorded a
downward trend in AAR, the aftermath of the event did record a positive AAR. After the
event day, all the models showed fluctuating AAR. This is similar to the results obtained
by Ramelli and Wagner (2020), who documented that the pandemic had a huge impact on
the pharmaceutical companies of the US market.
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Similarly, Figure 4 highlights that the market adjusted model recorded positive returns
for the consumer goods sector. Even after the adverse impacts of the lockdown and the
prevailing uncertainties, the consumption stocks did not see a sharp decline. This is
because (i) essential commodities are inelastic and their demand and supply would not
decline even under these circumstances, and (ii) the consumer sector demonstrated low
operational fragility and the market value did not face a severe blow during the crisis
(Verma et al. 2021).

J. Risk Financial Manag. 2021, 14, x FOR PEER REVIEW 10 of 15 
 

 

vaccines to control and thereby reduce its adverse impact. On the day of the event, when 
the constant return model showed an AAR of about −6%, the market adjusted model 
showed a positive AAR of the same quantum. Pharma stocks did not fall as much as the 
index and the shares from this sector were long, as investors expected an upward growth 
in this sector in the near future. Certain pharma stocks recorded positive returns on the 
same day when the index fell by about 12%. Figure 3 records the AAR obtained from the 
stocks included in the pharma sector of the NIFTY50 index. On the event day, the constant 
return model recorded a negative ARR, whereas the market adjusted model recorded a 
positive ARR. Even though the first and second day after the event recorded a downward 
trend in AAR, the aftermath of the event did record a positive AAR. After the event day, 
all the models showed fluctuating AAR. This is similar to the results obtained by Ramelli 
and Wagner (2020), who documented that the pandemic had a huge impact on the phar-
maceutical companies of the US market. 

 
Figure 3. Event period AAR for the pharma sector (source: the authors). 

Similarly, Figure 4 highlights that the market adjusted model recorded positive re-
turns for the consumer goods sector. Even after the adverse impacts of the lockdown and 
the prevailing uncertainties, the consumption stocks did not see a sharp decline. This is 
because (i) essential commodities are inelastic and their demand and supply would not 
decline even under these circumstances, and (ii) the consumer sector demonstrated low 
operational fragility and the market value did not face a severe blow during the crisis 
(Verma et al. 2021). 

 

-10

-5

0

5

10

15

-15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
er

ag
e 

Ab
no

rm
al

 R
et

ur
n

Days

Constant Return Model Market Adjusted Model Market Model

-15

-10

-5

0

5

10

-15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
er

ag
e 

Ab
no

rm
al

 R
et

ur
n

Days

Constant Return Model Market Adjusted Model Market Model

Figure 4. Event period AAR for the consumer goods sector (source: the authors).

However, the financial services sector, which accounted for 22% weight in the index,
was the worst hit. This sector was negatively impacted due to the anticipation of an
increase in NPAs (non-performing assets) in the future. Since a nationwide lockdown was
introduced, the revenues of the firms were expected to fall. Investors also expected defaults
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in the personal loan segment. Therefore, an expected increase in the credit risk of corporate
and retail clients led to negative sentiments4 and investors started selling shares in this
sector. This was also proven by the negative AAR on the event day (see Figure 5).
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Figure 6 shows that the IT sector had a deep negative AAR in the days prior to the
event. Due to the uncertainty prevailing in the market owing to the performance of the
stocks, a heavy FII (foreign institutional investor) sell-off was recorded before the event.
However, the INR depreciated after the occurrence of the event. The IT sector is an exporter
of services. With most of the clients based outside India, Indian IT companies were expected
to earn greater revenues. Investors were positive about this sector and some IT stocks even
gave positive returns on the day of the event. The IT sector also had relatively low fragility
due to the benefits from work-from-home production arrangements. Such speculations led
the IT sector to produce A positive AAR after the announcement.
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Apart from these sectors, the automobile sector also faced adverse impacts. Demand
for automobiles decreased due to less disposable income and subdued economic activity.
Most of the raw materials and finished goods in the electronics sector are imported from
China. The adverse impact on the Chinese economy disrupted the supply chain and
due to the prevailing uncertainty in growth, the demand for white goods like electronics
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decreased. Lack of demand has an adverse impact on sectors irrespective of their economic
nature. Evidence shows that capital intensive firms were relatively more vulnerable to
the shocks. However, firms demonstrating greater supply chain fragility did not face a
severe impact in their market value (Verma et al. 2021). Other sectors were also affected
by the pandemic, with tourism and real estate falling under the category of worst affected
industries. However, lockdowns and social distancing measures had a positive impact on
the telecommunication sector (Ramelli and Wagner 2020). Overall, uncertainty prevailed
and the sentiments were negative. This fuelled the sell-off in the Indian stock market. The
results from the market adjusted model and the market model imply that relying on the
constant return model may lead to spurious conclusions, as the latter produces inflated
returns compared to the former models.

5. Conclusions

This study examined the impact of COVID-19 on the Indian stock market by gauging
the presence of abnormal returns during the onset of the pandemic. We use three different
event study methodologies, including the constant return model, the market adjusted
model, and the market model, for our analysis. Abnormal returns were noticed on many
days before and after the occurrence of the event. After the announcement of complete
lockdown, all the models showed consistently positive AARs on most of the days. Further-
more, we conducted sectoral analysis to understand the impact of the COVID-19 pandemic
on individual sectors. Overall, we found that COVID-19 has increased the risk in the stock
market. However, our results are heterogeneous and largely depend on the sectors. The
findings are in line with Guru and Das (2021) and Shankar and Dubey (2021). All the
sectors were impacted temporarily, but the financial sector faced the worst. Sectors like
pharma, consumer goods, and IT had positive or limited impacts. Our result is similar to
that of Bora and Basistha (2021), who found the pharma sector to be attractive during this
health-related pandemic time.

Overall, this work indicates that a COVID-19-like shock would cause a sudden and
large decline in stock market returns, and could pose an existential threat to the financial
sector due to the possibility of extreme downturns in its stock prices. As the financial sector
is the backbone of economic stability, policies should be formulated to mitigate mass panic
during any pandemic. Looking at the connection between the dynamics of investors’ fear
and financial markets, regulators should have effective mechanisms in place to deal with
sudden extreme pessimism in the market. Furthermore, governments and central banks
should communicate effectively and in a timely manner to help reduce the impact in the
financial market (Al-Awadhi et al. 2020). The volatility of financial markets also depends
on the speed with which extraordinary fiscal policies intervene to reduce the damages
caused by COVID-19. Therefore, an increase in resources directed towards the health care
system could also have a positive impact on reducing financial volatility. Furthermore,
investors can learn from this kind of event to safeguard equity portfolios from unforeseen
shocks and make better investment decisions to avoid large unexpected losses by choosing
effective hedging or safe-haven strategies (SG and Kayal 2020; Conlon et al. 2020; Conlon
and McGee 2020).
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Notes
1 https://www.moneycontrol.com/ (accessed on 1 February 2021).
2 National Stock Exchange.
3 Financial express.
4 KPMG Global: The impact of COVID-19 on the banking sector.

References
Adda, Jérôme. 2016. Economic activity and the spread of viral diseases: Evidence from high frequency data. The Quarterly Journal of

Economics 131: 891–941. [CrossRef]
Alam, Mohammad Noor, Md Shabbir Alam, and Kavita Chavali. 2020. Stock market response during COVID-19 lockdown period in

India: An event study. The Journal of Asian Finance, Economics, and Business 7: 131–37. [CrossRef]
Al-Awadhi, Abdullah M., Khaled Alsaifi, Ahmad Al-Awadhi, and Salah Alhammadi. 2020. Death and contagious infectious diseases:

Impact of the COVID-19 virus on stock market returns. Journal of Behavioral and Experimental Finance 27: 100326. [CrossRef]
[PubMed]

Albuquerque, Rui, Yrjo Koskinen, Shuai Yang, and Chendi Zhang. 2020. Resiliency of environmental and social stocks: An analysis of
the exogenous COVID-19 market crash. The Review of Corporate Finance Studies 9: 593–621. [CrossRef]

Arin, K. Peren, Davide Ciferri, and Nicola Spagnolo. 2008. The price of terror: The effects of terrorism on stock market returns and
volatility. Economics Letters 101: 164–67. [CrossRef]

Ashley, John W. 1962. Stock prices and changes in earnings and dividends: Some empirical results. Journal of Political Economy 70: 82–85.
[CrossRef]

Baker, Scott R., Nicholas Bloom, Steven J Davis, Kyle Kost, Marco Sammon, and Tasaneeya Viratyosin. 2020. The unprecedented stock
market reaction to COVID-19. The Review of Asset Pricing Studies 10: 742–58. [CrossRef]

Ball, Ray, and Philip Brown. 1968. An empirical evaluation of accounting income numbers. Journal of Accounting Research, 159–78.
[CrossRef]

Barker, C. Austin. 1956. Effective stock splits. Harvard Business Review 34: 101–6.
Bash, Ahmad, and Khaled Alsaifi. 2019. Fear from uncertainty: An event study of Khashoggi and stock market returns. Journal of

Behavioral and Experimental Finance 23: 54–58. [CrossRef]
Beaulieu, Marie-Claude, Jean-Claude Cosset, and Naceur Essaddam. 2006. Political uncertainty and stock market returns: Evidence

from the 1995 Quebec referendum. Canadian Journal of Economics/Revue Canadienne D’économique 39: 621–42. [CrossRef]
Binder, John. 1998. The event study methodology since 1969. Review of Quantitative Finance and Accounting 11: 111–37. [CrossRef]
Bora, Debakshi, and Daisy Basistha. 2021. The outbreak of COVID-19 pandemic and its impact on stock market volatility: Evidence

from a worst-affected economy. Journal of Public Affairs, e2623. [CrossRef] [PubMed]
Brown, Stephen J., and Jerold B. Warner. 1980. Measuring security price performance. Journal of Financial Economics 8: 205–58.

[CrossRef]
Brown, Stephen J., and Jerold B. Warner. 1985. Using daily stock returns: The case of event studies. Journal of Financial Economics 14:

3–31. [CrossRef]
Cepoi, Cosmin-Octavian. 2020. Asymmetric dependence between stock market returns and news during COVID-19 financial turmoil.

Finance Research Letters 36: 101658. [CrossRef] [PubMed]
Chen, Ming-Hsiang, SooCheong Shawn Jang, and Woo Gon Kim. 2007. The impact of the SARS outbreak on Taiwanese hotel stock

performance: An event-study approach. International Journal of Hospitality Management 26: 200–12. [CrossRef] [PubMed]
Conlon, Thomas, and Richard McGee. 2020. Safe haven or risky hazard? Bitcoin during the COVID-19 bear market. Finance Research

Letters 35: 101607. [CrossRef]
Conlon, Thomas, Shaen Corbet, and Richard J. McGee. 2020. Are cryptocurrencies a safe haven for equity markets? An international

perspective from the COVID-19 pandemic. Research in International Business and Finance 54: 101248. [CrossRef]
Corrado, Charles J. 2011. Event studies: A methodology review. Accounting & Finance 51: 207–34.
De Bandt, Olivier, and Philipp Hartmann. 2000. Systemic Risk: A Survey. European Central Bank Working Paper No. 35. Available

online: https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp035.pdf (accessed on 1 April 2021).
De Bandt, Werner F. M., and Richard H. Thaler. 1987. Further evidence on investor overreaction and stockmarket sensitivity. Journal of

Finance 42: 557–81. [CrossRef]
Dolley, James C. 1933. Open market buying as a stimulant for the bond market. Journal of Political Economy 41: 513–29. [CrossRef]
Drakos, Konstantinos. 2010. Terrorism activity, investor sentiment, and stock returns. Review of Financial Economics 19: 128–35.

[CrossRef]
Duca, Marco Lo, and Tuomas A. Peltonen. 2013. Assessing systemic risks and predicting systemic events. Journal of Banking & Finance

37: 2183–95.
Fama, Eugene F. 1991. Time, salary, and incentive payoffs in labor contracts. Journal of Labor Economics 9: 25–4. [CrossRef]
Fama, Eugene F., and Kenneth R. French. 1995. Size and book-to-market factors in earnings and returns. The Journal of Finance 50:

131–55. [CrossRef]

https://www.moneycontrol.com/
http://doi.org/10.1093/qje/qjw005
http://doi.org/10.13106/jafeb.2020.vol7.no7.131
http://doi.org/10.1016/j.jbef.2020.100326
http://www.ncbi.nlm.nih.gov/pubmed/32292707
http://doi.org/10.1093/rcfs/cfaa011
http://doi.org/10.1016/j.econlet.2008.07.007
http://doi.org/10.1086/258592
http://doi.org/10.1093/rapstu/raaa008
http://doi.org/10.2307/2490232
http://doi.org/10.1016/j.jbef.2019.05.004
http://doi.org/10.1111/j.0008-4085.2006.00363.x
http://doi.org/10.1023/A:1008295500105
http://doi.org/10.1002/pa.2623
http://www.ncbi.nlm.nih.gov/pubmed/33786019
http://doi.org/10.1016/0304-405X(80)90002-1
http://doi.org/10.1016/0304-405X(85)90042-X
http://doi.org/10.1016/j.frl.2020.101658
http://www.ncbi.nlm.nih.gov/pubmed/32837370
http://doi.org/10.1016/j.ijhm.2005.11.004
http://www.ncbi.nlm.nih.gov/pubmed/32287849
http://doi.org/10.1016/j.frl.2020.101607
http://doi.org/10.1016/j.ribaf.2020.101248
https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp035.pdf
http://doi.org/10.1111/j.1540-6261.1987.tb04569.x
http://doi.org/10.1086/254507
http://doi.org/10.1016/j.rfe.2010.01.001
http://doi.org/10.1086/298257
http://doi.org/10.1111/j.1540-6261.1995.tb05169.x


J. Risk Financial Manag. 2021, 14, 558 14 of 15

Fama, Eugene F., Lawrence Fisher, Michael C. Jensen, and Richard Roll. 1969. The adjustment of stock prices to new information.
International Economic Review 10: 1–21. [CrossRef]

Goh, Carey, and Rob Law. 2002. Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and
intervention. Tourism Management 23: 499–510. [CrossRef]

Goldberg, Pinelopi Koujianou, and Tristan Reed. 2020. The effects of the coronavirus pandemic in emerging market and developing
economies: An optimistic preliminary account. Brookings Papers on Economic Activity 2020: 161–235. [CrossRef]

Gormsen, Niels Joachim, and Ralph S. J. Koijen. 2020. Coronavirus: Impact on stock prices and growth expectations. The Review of
Asset Pricing Studies 10: 574–97. [CrossRef]

Guru, Biplab Kumar, and Amarendra Das. 2021. COVID-19 and uncertainty spillovers in Indian stock market. MethodsX 8: 101199.
[CrossRef] [PubMed]

Harjoto, Maretno Agus, Fabrizio Rossi, and John K. Paglia. 2021. COVID-19: Stock market reactions to the shock and the stimulus.
Applied Economics Letters 28: 795–801. [CrossRef]

He, Pinglin, Yulong Sun, Ying Zhang, and Tao Li. 2020. COVID–19′s impact on stock prices across different sectors—An event study
based on the Chinese stock market. Emerging Markets Finance and Trade 56: 2198–212. [CrossRef]

Hendricks, Kevin B., and Vinod R. Singhal. 2003. The effect of supply chain glitches on shareholder wealth. Journal of Operations
Management 21: 501–22. [CrossRef]

Ichev, Riste, and Matej Marinč. 2018. Stock prices and geographic proximity of information: Evidence from the Ebola outbreak.
International Review of Financial Analysis 56: 153–66. [CrossRef]

Iyke, Bernard Njindan. 2020. Economic policy uncertainty in times of COVID-19 pandemic. Asian Economics Letters 1: 17665.
Kawashima, Shingo, and Fumiko Takeda. 2012. The effect of the Fukushima nuclear accident on stock prices of electric power utilities

in Japan. Energy Economics 34: 2029–38. [CrossRef]
Kothari, Sagar P., and Jerold B. Warner. 2006. Econometrics of event studies. In Handbook of Corporate Finance: Empirical Corporate

Finance, Forthcoming (vol. A, ch. 1.). Edited by Espen Eckbo. Handbooks in Finance Series; Amsterdam: Elsevier.
Lee, Wayne Y., Christine X. Jiang, and Daniel C. Indro. 2002. Stock market volatility, excess returns, and the role of investor sentiment.

Journal of Banking & Finance 26: 2277–99.
Liu, H., Aqsa Manzoor, CangYu Wang, Lei Zhang, and Zaira Manzoor. 2020. The COVID-19 outbreak and affected countries stock

markets response. International Journal of Environmental Research and Public Health 17: 2800. [CrossRef]
Lyon, John D., Brad M. Barber, and Chih-Ling Tsai. 1999. Improved methods for tests of long-run abnormal stock returns. The Journal of

Finance 54: 165–201. [CrossRef]
Mackinlay, A. Craig. 1997. Event studies in economics and finance. Journal of Economic Literature 35: 13–39.
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