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Abstract: We present a novel technique for cardinality-constrained index-tracking, a common task
in the financial industry. Our approach is based on market graph models. We model our reference
indices as market graphs and express the index-tracking problem as a quadratic K-medoids clustering
problem. We take advantage of a purpose-built hardware architecture to circumvent the NP-hard
nature of the problem and solve our formulation efficiently. The main contributions of this article
are bridging three separate areas of the literature, market graph models, K-medoid clustering
and quadratic binary optimization modeling, to formulate the index-tracking problem as a binary
quadratic K-medoid graph-clustering problem. Our initial results show we accurately replicate the
returns of various market indices, using only a small subset of their constituent assets. Moreover, our
binary quadratic formulation allows us to take advantage of recent hardware advances to overcome
the NP-hard nature of the problem and obtain solutions faster than with traditional architectures
and solvers.

Keywords: graph clustering; K-medoids; market graph; combinatorial optimization; QUBO; portfolio
construction; index-tracking

1. Introduction

We present a novel clustering-based formulation for cardinality-constrained index-
tracking, a common task in the financial industry. We apply it to data from eight different
equity indices from the OR-Library open-source index-tracking data sets and obtain very
promising results. We also compare our formulation solved using a purpose-built com-
putational architecture to traditional constrained quadratic formulations solved using a
widely available commercial solver, Gurobi.

Our work is an empirical implementation of the K-medoid clustering technique ex-
pressed as a quadratic unconstrained binary optimization model (QUBO) and applied to
market graphs, for the purpose of obtaining cardinality-contrained index-tracking portfo-
lios. It is inspired by the seminal work of Mantegna (1999), Onnela et al. (2002), Boginski
et al. (2003, 2005), Cornuéjols and Tutuncu (2006) and that of Bauckhage et al. (2019). The
main contribution in this paper consists of bridging these pieces of complementary but
disjoint work, to formulate the index-tracking problem as a QUBO K-medoid clustering of
a broader market graph problem. In doing so, we also demonstrate that QUBO reformula-
tions reduce computational times and yield better solutions, because of their suitability to
novel purpose-built computer architectures.

Graph clustering is an unsupervised learning task, consisting of assigning common la-
bels to vertices deemed similar. It has found applications in many areas. Chemistry, biology,
social networks and finance are a few examples where graph clustering has been applied.
However, while there are many competing techniques, the graph clustering problem re-
mains NP-hard, which limits its scope of the application Fortunato (2010); Schaeffer (2007).
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QUBO formulations of many mathematical problems have recently gained in interest.
This recent spike in interest is, in no small part, due to recent advances and the availability of
purpose-built computer architectures that circumvent the NP-hard nature of the problem.
Examples of this novel architecture are Fujitsu’s Digital Annealer (DA) and D-Wave’s
Quantum Annealer.

Graphs were initially introduced as models of the stock market to gain a robust
systemic picture of the market as a whole. In addition, clustering of stock market data is a
topic of longstanding interest for both practitioners and academics. Clustering has been
used for various purposes, like risk management and portfolio diversification, for example.
Index-tracking is another topic of longstanding interest in finance. It consists of building
tracking-portfolios whose returns follow a broader index’s returns, but with only a subset
of the index constituents. These tracking-portfolios offer the benefit of lower turnover
and transaction costs. In the past, some authors in the field have used clustering for the
purpose of index-tracking. Their methods identify exemplars of an index and construct
tracking-portfolios consisting of only those exemplars.

We formulate the index-tracking problem as a QUBO graph-clustering problem. Our
formulation restricts the number of assets while identifying the most representative exem-
plars of an index. Our thesis is that a portfolio consisting of the most representative set
of exemplars will minimize tracking-error. Initial results are very encouraging. Our tests
show we accurately replicate the returns of broad market indices, using only a small subset
of their constituent assets. Moreover, our QUBO formulation allows us to take advantage
of recent hardware advances to overcome the NP-hard nature of the clustering problem.
Using these novel architectures we obtain better solutions within small fractions of the
time required to solve equivalent problems formulated in traditional constrained form and
solved on traditional hardware. Our initial results certainly offer hope and set the stage for
larger-scale problems, in finance and beyond.

The remainder of this article is organized as follows. We begin with an overview of
three disjoint but complementary areas of the literature, market graph modeling, index-
tracking and clustering. We then describe our K-medoid based formulation for clustering
the market graph and the novel purpose-built computational tools we use to solve it.
Finally, we apply our technique to a set of equity indices.

2. Previous Work

Our work lies at the intersection of graph models of the stock markets, clustering,
combinatorial optimization (QUBO) and (stock market) index-tracking. In this section, we
briefly review these areas of research. Our goal is not to provide the reader with a detailed
review of state of the art in these very broad fields, but rather to focus specifically on their
relevance to the work in this article, in order to put it in proper context.

2.1. Market Graph

The use of graphs as models of the stock market was initially introduced in the
literature by Mantegna (1999) and Onnela et al. (2002). These authors introduced graph-
based modeling because of its ability to capture hierarchical structures in markets and its
robustness to market movements. Other authors have also highlighted the advantage of
using market graphs in lieu of covariance matrices, due to their robustness to noise and
estimation error Tola et al. (2008). The extensive work of Boginski et al. (2003, 2004a, 2004b,
2005, 2006) was also pivotal in establishing graphs as a modeling tool for financial markets.
The common thread connecting all these authors’ work is the modeling of stocks as vertices
in a weighted graph, where edge weights are proportional to their returns correlations.

Other authors have also followed up on and expanded this work by studying market
graph dynamics over time Arratia and Cabaña (2011); Kocheturov et al. (2014) and exam-
ined methods for building the graph Bautin et al. (2013); Kalyagin et al. (2018); Koldanov
et al. (2013). In fact, to this day, the topic of graphs as a model for equity markets remains a
subject of discussion in the literature Abrams (2016); Marti et al. (2019).
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2.2. Cardinality-Constrained Index-Tracking

Typically, portfolio optimization consists of finding a combination of financial assets
that maximize expected returns, subject to some return volatility constraints, through
the use of mathematical (quadratic) programming. This mathematically formal portfolio
construction technique was initially introduced by Markowitz (1952), in the 1950s. Unfortu-
nately, this approach is not robust to errors in returns forecasting or covariance estimation
Michaud (2014). Additionally, it has been documented that equally-weighted portfolios of-
ten outperform portfolios with more complicated weighting schemes DeMiguel et al. (2007)
and that index funds offer the best risk-return trade-off Cornuéjols and Tutuncu (2006).

In the presence of estimation error and the problem of obtaining reliable return
forecasts, some authors suggested that the optimal investment strategy consists of simply
following broad market indices Cornuéjols and Tutuncu (2006); Treynor and Black (1973).
In line with the goal of designing portfolios that follow an index’s returns, the index-
tracking problem consists of minimizing a portfolio’s return deviations from those of a
reference market index.

Cardinality-constrained index-tracking is the process of tracking an index with a
subset of its constituents. Portfolio managers opt for this approach because it reduces
turnover and transaction costs and allows for more liquid portfolios. For example, in 2008,
a mixed integer linear programming approach was applied to a large array of equity market
indices Beasley (1990); Canakgoz and Beasley (2009). More recently, some authors have
formulated the cardinality-constrained index-tracking problem in QUBO form Corp (2018).
These authors’ work differs from our formulation. They seek to minimize tracking-error
using a traditional portfolio risk metrics and do not make use of the more robust market
graphs. Nevertheless, these authors set the stage for the work presented in this article. It
should also be noted that finding the subset of at most k assets whose returns best track a
given index’s was shown to be an NP-hard problem Mutunge and Haugland (2018).

2.3. Clustering for Index-Tracking

Clustering is the process of grouping similar (dissimilar) observations. Graph cluster-
ing is the process of assigning common labels to vertices deemed (dis)similar. It has a long
history in the literature. A thorough review of the graph clustering literature is beyond
the scope of this article. For a very comprehensive view of the field, we refer the reader
to the foundational work of Schaeffer (2007), Fortunato (2010) and the recent contribution
by Fortunato and Hric (2016). We do, however, echo these authors and emphasize the fact
that graph clustering is an NP-hard problem.

The link between clustering and portfolio construction is of particular relevance to
the work in our article Boginski et al. (2014); Chen and Kwon (2012); Cornuéjols and
Tutuncu (2006); Kalyagin et al. (2014); Puerto et al. (2020); Wu et al. (2017). Although
not focused specifically on graph clustering, Cornuéjols and Tutuncu (2006) presented
a K-medoid formulation for index-tracking . These authors used a K-medoid technique
Hastie et al. (2009) to find k representative stocks (exemplars) that compose a portfolio
that replicates the returns of a broader index. Unfortunately, their formulation leads to an
NP-hard problem Nascimento et al. (2012)

More recently, Bauckhage et al. (2019) reformulated the K-medoids problem in QUBO
form Glover et al. (2018); Lucas (2014). They formulated a QUBO model that selects the
most central points that are also the most mutually distant, in order to obtain a good
summary of the underlying data set. To obtain an unconstrained model, these authors
applied a penalty function to relax their model’s constraints. In the end, they offered
a model that can be implemented on purpose-built hardware designed to circumvent
the NP-hardness of such reformulated combinatorial optimization problems. Indeed,
this reformulation allows us to take advantage of recent hardware advances specifically
designed for QUBO formulations Aramon et al. (2019); Matsubara et al. (2020). In the same
vein, to circumvent the NP-hardness of a problem closely related to graph clustering, the
maximum weighted independent set of the graph, and produce a well diversified portfolio
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of Dow Jones stocks, Marzec (2013) implemented the work of Boginski et al. (2005) using
the D-Wave adiabatic quantum computation system.

In recent years, others have also examined portfolio construction via graph models.
For example, Kalyagin et al. (2014) compared the Markowitz portfolio theory Markowitz (1952)
to the market graph Boginski et al. (2005). They reduced the pool of assets using historical
returns, variance, and Sharpe ratio to build a market graph. Then, they examined the effi-
cient frontiers of the maximal independent set and the maximal clique of a market graph.

3. Methods

We begin by representing eight different equity indices as market graphs. Each index
is modeled as a weighted complete graph. The constituent stocks are represented by a
vertex and edge weights are a function of each asset-pair’s returns correlations. We then
apply a K-medoid index-tracking technique to find k exemplars that will form our tracking-
portfolio. To take advantage of a fast purpose-built computer architecture, the Fujitsu
Digital Annealer (DA), we express the K-medoid problem as a QUBO problem. Finally, the
tracking-portfolios are developed following the weight allocation method described in
Cornuéjols and Tutuncu (2006). In the end, we create a tracking-portfolio for each index in
our study.

3.1. Market Graph

We represent each index as a complete weighted graph, where edge weights represent
the association between stocks ‘i’ and ‘j’. These weights are defined using the Pearson
correlation coefficient (ρ) Walpole (2011) of the log daily returns of each asset pair,

dij =

√
1
2
(
1− ρij

)
.

In modeling the market in this way, our investment universe is modeled as a set of
complete weighted graphs (one for each index), with no self-loops (since ρii = 1). Also,
our transformation from returns correlation (ρij) to distance (dij) provides a smoother and
more robust measure of returns (dis)similarity and market fluctuations.

To be consistent with the QUBO formulation of Bauckhage et al. (2019), we convert
our adjacency (distance) matrix into a more robust matrix ∆ = [δij], with the elements
δij = 1− exp(− 1

2 × dij). We note that this formulation requires all-pairs distances (dij) be
known, which is why we use a complete graph representation.

3.2. Data Sets

We use the freely available data sets of Beasley’s OR-Library Beasley (1990). This
curated data set, which was updated in 2007, contains weekly data for a portion of the
constituents of eight major equity indices. Some data cleaning was conducted on these
indices, by its curators. As a result, the published data sets only contain a subset of the
constituent securities of the indices. The indices and the number of constituents included
in the final published data sets are shown in Table 1.

Table 1. Indices and Number of Constituents in Sample.

Index Num Stocks

DAX 100 84
FTSE 100 88
Hang Seng 30
Nikkei 225 224
Russell 2000 1317
Russell 3000 2150
Standard and Poors 100 97
Standard and Poors 500 456
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The data covers period from March 1992 to September 1997. For each asset, there are a
total of 290 observations. We use the first 145 to construct our market graphs and the other
half of the data to measure the tracking performance.

3.3. QUBO Model

We follow the method developed by Bauckhage et al. (2019). Our K-medoids formu-
lation makes use of a tradeoff parameter to find an optimal combination of dispersed and
central stocks, on the market graph. These stocks are selected because their fluctuations
are representative of those of their respective index (market graph). For this reason, these
stocks are also referred to as “exemplars”.

In the formulations that follow, zi = 1 if vertex i is selected as an exemplar and zi = 0
otherwise. The vector 1 is a vector of ones of appropriate dimension. The matrix ∆ is an
(n× n) matrix containing the distances separating all stock-stock pairs denoted dij.

z = [z1z2 . . . zn], ∀zi ∈ {0, 1}
1 = [11 . . . 1] ∈ Rn

∆ = [δij]

Model (1) seeks to find k nodes that are considered the most central within the graph,

min
z

zT∆1

s.t zT1 = k

zi ∈ {0, 1}, ∀i ∈ V .

(1)

Meanwhile, model (2) seeks to find k nodes that are considered most dispersed within
the graph,

max
z

1
2

zT∆z

s.t zT1 = k

zi ∈ {0, 1}, ∀i ∈ V .

(2)

We then apply the α− β tradeoff parameters to weigh the contributions of Model (1)
and Model (2). Our ultimate goal is to find portfolios consisting of k exemplars that best
replicate the returns of each index in our study. To achieve this goal, we proceed as follows:

min
z

{
f = βzT∆1− α

1
2

zT∆z
}

s.t zT1 = k

zi ∈ {0, 1}, ∀i ∈ V .

(3)

By applying a quadratic penalty, we obtain a QUBO K-medoids formulation:

min
z

{
fo = βzT∆1− α

1
2

zT∆z + γ
(

zT1− k
)2
}

zi ∈ {0, 1}, ∀i ∈ V .
(4)

The model shown in Equation (4) defines the optimization problem where the decision
variables, zi, take on the value zi = 1 if node i is an exemplar node and 0 otherwise. The
parameter α is the weight assigned to the total contribution of the max-sum dispersion
model. The parameter β is the weight of the total contribution from the centrality of
exemplars. Finally, the parameter γ is the penalty coefficient that enforces feasibility. It
pushes the solution z∗ towards k non-zero entries.
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3.4. Parameters

We follow the example of Bauckhage et al. (2019) and set α = 1
k and β = 1

n , as
suggested. However, the convergence of the QUBO model and the feasibility of the
solution both depend on the penalty coefficient γ. The process for determining an adequate
value of γ is a bit more complicated and involves trial and error.

To make these trials, which we conduct over a range of values, more efficient, we
begin with a reasonable guess. Here, we follow the advice of Glover et al. (2018), who
suggest exploring a range of reasonable values. To obtain our initial guess, we use a naïve
average-case approximation for γ, which we label γ̃. For the purpose of this approximation,
we use an average distance matrix ∆̄ = [δ̄ij], instead of the matrix ∆. The elements of this
matrix are defined as:

δ̄ij =

{
1

n(n−1) ∑n
i=1 ∑n

j=1 δij, if i 6= j (recall δii = 0)

0, otherwise .

We also note the parameter γ multiplies squared deviations from feasibility and the
unit penalty is observed when we have (k ± 1) non-zero entries. However, the value
of the un-penalized objective function is higher when we have (k + 1) non-zero entries.
Since optimization routines will naturally favor solutions with fewer non-zero elements,
the (k + 1) case is uninteresting. For this reason, we define our initial guess for γ as the
difference between the naïvely approximated un-penalized objective functions, f (), with
solutions containing k and (k− 1) exemplars. To do so, we define the following variables.

• z is a solution containing (k− 1) exemplars. It is infeasible.
• z∗ is a solution containing k exemplars. It is feasible.
• Both these vectors are in Rn.
• Therefore, we have the equality ∑i z∗i = (∑i zi) + 1 = k.

Our initial guess for γ, which we call γ̃, is defined as:

f (z∗) ≈
(

β
n

∑
i=1

z∗i
n

∑
j=1

δ̄

)
−
(

α

2

n

∑
i=1

n

∑
j=1

z∗i z∗j δ̄

)

≈ βknδ̄− α

2
k(k− 1)δ̄ ,

f (z) ≈
(

β
n

∑
i=1

zi

n

∑
j=1

δ̄

)
−
(

α

2

n

∑
i=1

n

∑
j=1

zizj δ̄

)

≈ β(k− 1)nδ̄− α

2
(k− 1)(k− 2)δ̄ ,

γ̃ =
(

βknδ̄− α

2
k(k− 1)δ̄

)
−
(

β(k− 1)nδ̄− α

2
(k− 1)(k− 2)δ̄

)
=

δ̄

k
(Substituting for α, β) . (5)

We then use this initial guess as a starting point to perform 20 numerical tests with
varying γ coefficients, for each data set in our study. For each graph, we examine the
impact of the penalty parameter on the objective function by testing values in the range
γ ∈ [0.85× γ̃, 1.8× γ̃]. Results are shown in Figure 1. The actual values of our initial
guesses γ̃ are shown in Table 2. Since distance matrices are specific to each index (market
graph), we have an initial guess for each.
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Figure 1. Penalty Parameter γ and Objective Function Values (lower is better).

Table 2. Initial Guesses γ̃.

Index γ̃

DAX 100 0.026
FTSE 100 0.025
Hang Seng 0.019
Nikkei 225 0.022
Russell 2000 0.004
Russell 3000 0.003
Standard and Poors 100 0.027
Standard and Poors 500 0.007

3.5. The Fujitsu DA: Purpose-Built Architecture

To circumvent the NP-hard nature of the clustering problem, we use a purpose built
computer architecture, the Fujitsu Digital Annealer (DA). The DA provides fast compu-
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tation and is designed specifically for combinatorial optimization problems expressed in
QUBO form Aramon et al. (2019); Matsubara et al. (2020).

With the exception of the benchmark tests described in Section 4.3, all of our compu-
tations for the minimization of the model described in Section 3.3 were done using this
architecture 1. For benchmarking, we compare our computational results to those obtained
using the Gurobi solver.

3.6. Asset Weights

Once the k exemplar assets have been identified, an allocation weight for each asset
is determined following the method described by Cornuéjols and Tutuncu (2006). We
begin by assigning every stock to a cluster formed by grouping nodes around their nearest
exemplar node. Then, each exemplar node i is weighted using the following equation:

wi =
∑j Pjxij

∑i ∑j Pjxij
, where Pj is the market value of security j,

with

xij =

{
1, if node i is the closest exemplar node to node j
0, otherwise .

(Naturally, ∑i wi = 1.)

4. Numerical Experiments

We use our K-medoid technique to construct eight index-tracking-portfolios, one for
each index in our study (see Table 1). For each index, we use the first 145 observations to
compute stock-to-stock distances, build a market graph and corresponding distance matrix
∆. We then optimize the QUBO model to obtain the k exemplars that form each of our
tracking-portfolios.

To assess tracking accuracy, we use tracking-error, as per industry practice. For each
index, we compute the differences between the daily log returns of our tracking-portfolio
and it respective benchmark’s. We calculate the standard deviation of the differences to
obtain the annual tracking-error.

For benchmarking purposes, we also examine the computational performance of our
QUBO model solved on purpose-built hardware. We compare it to an equivalent 0–1
quadratic constrained program solved using a commercial solver, Gurobi, running on
conventional hardware. While performing these comparisons, we also examine the effect
varying γ has on the QUBO solutions.

4.1. Test Data

As mentioned earlier, we use Beasley’s OR-Library data Beasley (1990) to build our
market graphs and assess the performance of our tracking-portfolios. We use the same
cardinality constraints as Canakgoz and Beasley (2009). The number of assets in each of
the tracking-portfolios is shown in Table 3.

1 More specifically, these DA computations were done using an environment built exclusively for the University of Toronto’s research.
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Table 3. Indices and Number of Constituents in Tracking-Portfolios.

Index Cardinality Constraint (k)

DAX 100 10
FTSE 100 10
Hang Seng 10
Nikkei 225 10
Russell 2000 90
Russell 3000 70
Standard and Poors 100 10
Standard and Poors 500 40

As also mentioned previously, these data sets contain 290 weekly observations. We
use the first 145 observations to build our graphs and tracking-portfolios and the remaining
145 to assess the tracking performance.

4.2. Index-Tracking Performance

Tracking-error is the standard deviation of the difference in returns between each
index-portfolio–tracking-portfolio pair of observations, at a given time point (weekly in
this case). We denote log weekly returns for the reference index and the tracking-portfolio
as rindex and rport, respectively. We denote, tracking-error as ε and compute it as

d = rindex − rport

ε =
√

Var[d] .

We report the tracking-error of each of our tracking-portfolios, in Table 4.

Table 4. Tracking-Error.

Index Tracking-Error

DAX 100 0.0118
FTSE 100 0.0096
Hang Seng 0.0089
Nikkei I225 0.0223
Russell 2000 0.0187
Russell 3000 0.0123
Standard and Poors 100 0.0097
Standard and Poors 500 0.0137

Our empirical results show that our tracking-portfolios yield returns that closely
reflect those of their reference index. For all our index-tracking portfolios, we note that
tracking-error remains in the order of two percent, or less. This performance is very typical
of tracking-portfolios. In fact, our tracking-errors are of the same order of magnitude as
those obtained by Wu et al. (2017) on a different data set.

4.3. Computation Times, Objective Function and γ

In order to examine the computational performance of our QUBO reformulation and
purpose-built architecture, we solve the equivalent constrained 0–1 quadratic program
using Gurobi version 7.5.2. We run Gurobi on a 64-bit Supermicro X10DAi with an Intel
Xeon CPU E5-2697 v4 @2.3GHz with 18 cores and 256GB of RAM. We set an upper run time
limit for Gurobi of 10,700 s (approx 3 h), an amount approximately 20 times the average
DA run time. Here again, we repeat these experiments for each index in our study.

In Table 5, we note that Gurobi very quickly converges to a sub-optimal solution, in
the case of the Hang Seng, the easiest problem instance in our tests. That problem instance
consists of obtaining a set of 10 exemplars from a set of 30 stocks. The DA returns an
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equivalent solution, although after a much longer computation. In contrast, Gurobi fails to
converge, in all other instances. Meanwhile, the DA returns better solutions in less than
nine minutes, in all other experiments. Details of these experiments are shown in Table 5.

Table 5. Run Times and Objective Function.

Index DA Run Time DA Obj Fn Gi Run Time Gi Obj Fn

DAX100 520 1.388 10,712 1.389
FTSE100 522 1.351 10,712 1.352
Hang Seng 520 1.050 70 1.050
Nikkei 225 522 1.165 10,701 1.167
Russell 2000 532 9.892 10,700 9.893
Russell 3000 589 12.585 10,703 12.586
SP 100 522 1.473 10,700 1.474
SP 500 523 5.426 10715 5.427

The solutions returned by the DA are better (lower) than those yielded by Gurobi, in
seven out of eight experiments. These results are shown in Figure 2. It should be noted,
however, that neither the DA nor Gurobi solutions are optimal. Through a Monte-Carlo
simulation of randomly generated feasible solutions, we were able to observe marginally
better solutions.

DAX 100 FTSE 100 Hang Seng Nikkei 225 Russell 2000 Russell 3000 SP 100 SP 500
Benchmark
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1.0501 1.1669
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1.4744

5.4272

QUBO
Gurobi

Figure 2. Objective Function Values of the Digital Annealer (DA) and Gurobi (lower is better).

To examine the sensitivity of the QUBO objective function to the penalty cofficient γ,
we test a range of values and record the resulting objective function values obtained. As
described in Section 3.4, we explore a range of γ values in the interval [0.85× γ̃, 1.8× γ̃].
Experimental results are shown in Figure 1, where objective function values for varying γ
coefficients are also compared to those obtained by solving the constrained program using
Gurobi (solid line).

While variations in γ do affect the objective function, this effect remains very small.
Nevertheless, for the purpose of portfolio construction we set γ to the value that minimizes
the objective function, for each index. (It also yields a better objective value than what was
attained with Gurobi.) Actual values for each index are shown in Table 6.
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Table 6. Penalty Coefficients γ that Minimize the Objective Function.

Index Best γ

DAX 100 0.022
FTSE 100 0.021
Hang Seng 0.019
Nikkei 225 0.021
Russell 2000 0.003
Russell 3000 0.003
Standard and Poors 100 0.023
Standard and Poors 500 0.006

5. Conclusions and Discussion

In this article, we have joined three complementary areas of the mathematical sci-
ences, to efficiently solve a concrete commercial problem, cardinality-constrained equity
index-tracking. Our work combines the complementary but disjoint areas of graph mod-
els of equity markets, QUBO reformulations of combinatorial optimization problems
and clustering.

Our results show that a QUBO formulation of the K-medoid problem can be success-
fully used to replicate broad market indices, using just a small portion of their constituent
assets. In all eight of our experiments, we track our target indices with a tracking-error
in the order of two percent, or less. These results show significant commercial promise,
since they demonstrate that large indices can be replicated with a small portion of their
constituents. By applying our technique, portfolio managers can reduce transaction costs
and turnover significantly.

Naturally, our conclusions are limited to the data sets and time period in our study.
Broader tests are still required to determine the commercial viability of our technique.

On the mathematical and computational side, our results illustrate the usefulness
of QUBO reformulations and purpose-built architecture for solving them. Through our
reformulation, we obtain better results faster than with a traditional constrained quadratic
programming formulation and solver. This QUBO advantage is likely to be even greater on
larger-scale problems. We can also realistically expect the QUBO advantage to hold even
more strongly in large-scale optimization problems in other areas, especially those dealing
with “big data”.

Our future work will begin with tests of the techniques described in this article on
other data sets, especially data sets covering a wider array of time periods. We will also
explore alternate techniques for building the market graph and determining the optimal
cardinality of the tracking subset. From a mathematical and computational point of view,
we also intend to investigate other applications, alternate problem formulations and larger
scale optimization.
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