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Abstract: We propose a novel multi-period trading model that allows portfolio managers to perform
optimal portfolio allocation while incorporating their interpretable investment views. This model’s
significant advantage is its intuitive and reactive design that incorporates the latest asset return
regimes to quantitatively solve managers’ question: how certain should one be that a given in-
vestment view is occurring? First, we describe a framework for multi-period portfolio allocation
formulated as a convex optimization problem that trades off expected return, risk and transaction
costs. Using a framework borrowed from model predictive control introduced by Boyd et al., we
employ optimization to plan a sequence of trades using forecasts of future quantities, only the first
set being executed. Multi-period trading lends itself to dynamic readjustment of the portfolio when
gaining new information. Second, we use the Black-Litterman model to combine investment views
specified in a simple linear combination based format with the market portfolio. A data-driven
method to adjust the confidence in the manager’s views by comparing them to dynamically updated
regime-switching forecasts is proposed. Our contribution is to incorporate both multi-period trading
and interpretable investment views into one framework and offer a novel method of using regime-
switching to determine each view’s confidence. This method replaces portfolio managers’ need to
provide estimated confidence levels for their views, substituting them with a dynamic quantitative
approach. The framework is reactive, tractable and tested on 15 years of daily historical data. In a
numerical example, this method’s benefits are found to deliver higher excess returns for the same
degree of risk in both the case when an investment view proves to be correct, but, more notably,
also the case when a view proves to be incorrect. To facilitate ease of use and future research, we also
developed an open-source software library that replicates our results.

Keywords: multi-period portfolio optimization; dynamic asset allocation; receding horizon; Black Lit-
terman; investment views; regime switching; hidden markov models

1. Introduction

Since Markowitz formulated portfolio selection as an optimization problem trading
off risk and return over sixty years ago, mean-variance optimization has occupied a central
role in constructing portfolios in both academic literature, and industry (Markowitz 1952).
The reasons for its success are diverse. The model was the first to quantify the benefits
of diversification towards reducing portfolio risk. Further, it simplified the portfolio
selection problem by introducing the concept of an efficient frontier. On this delimitating
line or frontier, we can find the portfolio with the highest return for a given level of
risk. Despite its vast success, the model has its drawbacks. To arrive at a mean-variance
portfolio, an optimization problem is solved for one fixed period: hours, days, months,
and years. However, an investor’s end goal is broader than what could be achieved by a
single mean-variance portfolio. The investor cares about maximizing their wealth over
their entire investment period, which could last until a significant event or purchase,
their lifetime or many generations (sovereign wealth funds). Superimposing one static
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set of returns and risk completely ignores the time-varying properties of asset prices over
a long period of time. To address this drawback, we propose a reactive multi-period
portfolio optimization framework that allows the direct incorporation of investor views
and quantitatively generated degrees of confidence in each view on behalf of the investor.

Multi-period optimization (MPO) is a promising research area that allows us to
optimize portfolio holdings for the immediately adjacent time period simultaneously and
multiple periods beyond it. Considering only one period at a time, single-period mean-
variance optimization is a sub-optimal nearsighted strategy. The objective for the current
period, unlike the real world, is oblivious to unavoidable future constraints and, at a
minimum, unaware of reasonable expectations for further future periods. Suppose our
long-term return forecast encourages us to build a large position in one asset; however,
our short term return forecast is negative. In this case, an optimal solution might be to buy
over periods of negative returns to prepare for the long term expectation, a solution not
easily incorporated in a single period setting.

Similarly, we can incorporate known macroeconomic events such as the US election
directly into upcoming future periods. Suppose a reduction in portfolio holdings is de-
sirable to prepare for the event. In that case, it can be expressed in MPO as a forecasted
increase or a hard constraint of the underlying securities’ risk in a future period. Reducing
the portfolio size over multiple periods would likely achieve this with lower market impact
as opposed to one period. Using MPO, the investor also gains the ability to incorporate
time-varying return predictions into one model, e.g., mean reversion or alpha decay (Boyd
et al. 2017). This subset of examples serves to showcase the vast potential that MPO has to
improve on the existing single period models.

Starting with Samuelson (1969) and Merton (1969)’s work, the literature on multi-
period optimization (MPO) has focused on dynamic programming, which appropriately
incorporates updated information for each period in the sequence of trades (Garleanu and
Pedersen 2013). Unfortunately, applying dynamic programming to the problem of trade
selection is impractical for non-trivial cases due to the ‘curse of dimensionality’ (Powell
2007). Most studies focusing on dynamic programming only include simple objectives
and constraints and a minimal number of assets. Various approximations to the dynamic
programming problem are employed to achieve tractability, such as approximate dynamic
programming or simpler formulations that generalize SPO into MPO (Boyd et al. 2014).

The method we will be leveraging in this article was recently introduced by Boyd
et al. (2017) and consists of a relaxation from dynamic programming’s consideration of the
entire time horizon. Successfully used in many industrial applications, model predictive
control (MPC) incorporates new information into the optimization problem. At each time
step, a multi-period optimization problem using information known at time T is solved for
H periods ahead. Despite obtaining optimal actions for multiple time periods, only the
first period’s actions are implemented, and the optimization problem is solved anew with
updated information gained at time T + 1. We apply this receding horizon procedure
to the MPO setting and simplify the full horizon dynamic programming problem while
maintaining fast reaction times to changing financial markets. Applications to finance
include portfolio optimization (see Herzog et al. 2007; Nystrup et al. 2019), optimal trade
execution (Anis and Kwon 2020) and index tracking (Primbs and Sung 2008). Using the
same MPO framework as (Boyd et al. 2017), Nystrup et al. (2019) leverage multi-period
forecasts in order to minimize the chances of the portfolio falling below a certain level
relative to its previous peak, i.e., achieve a lower maximum drawdown.

Boyd et al. (2017) demonstrate that this MPO method remains computationally
tractable since it leverages convex programming throughout, can incorporate many costs
and constraints and improves the risk-return frontier over SPO for daily equity trading in
an ex-post example. From an optimality perspective, it is possible to produce a bound on
the optimal performance for the dynamic trading of a portfolio of assets over a finite time
horizon (Boyd et al. 2014). This performance bound can be used to judge the performance
of any sub-optimal policy. While there is no theoretical guarantee of the performance
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of the method we are using, Boyd et al. show through Monte Carlo simulations that its
results are typically close to the optimal performance bound. Although this optimiza-
tion method is designed to look into the future, there is no set optimal horizon H to use.
This article analyzes the results of portfolio allocation performance across one, two and
five-period horizons.

We leverage the Black-Litterman (BL) model to generate more stable risk and return
estimates for the optimization problem while avoiding common pitfalls found in direct and
risk factor model-based estimation. Even in MPO, the mean-variance portfolio remains the
core of portfolio optimization. However, when attempting to use the original Markowitz
mean-variance optimization model for portfolio allocation decisions, the resulting port-
folios are often uninvestable. Green and Hollifield (1992) documents the tendency of
mean-variance portfolios to be skewed by having large positions in only a small subset of
assets, thus going against the very concept behind their inception, diversification. Similarly,
the model would almost always result in large short positions in many assets when allow-
ing short positions. These troublesome results stem from two well-documented problems.
First, portfolio managers tend to be extremely knowledgeable only on a specific set of
assets, while a standard optimization model requires them to produce both return and
risk estimates across all assets. We know that estimation errors can cause mean-variance
optimized portfolios to perform poorly (see Michaud 1989; DeMiguel et al. 2009). Second,
as a compounding effect, mean-variance portfolios are extremely sensitive to the return
assumptions used. When any constraints are introduced to the optimization problem, a
surprisingly small change to the return estimate of even one asset shifts half the portfolio’s
allocation of assets while leaving the portfolio’s return and variance unchanged (Best and
Grauer 1991).

Since estimation error is a leading cause of unexpected results from mean-variance
optimization, significantly reducing the parameters to estimate also improves the mean-
variance results. As mitigation, Fama and French (1992) introduced size and book-to-market
equity factors that, when combined, capture the cross-sectional variation in stock returns.
Leveraging explainable factors as drivers of returns enables financial practitioners to
reduce the need to estimate n(n — 1) /2 parameters for a full risk covariance matrix to only
m(m —1)/2, where n is the number of assets and m is the number of explanatory factors.
Although extremely popular in academia and industry, implementing factor models in
practice is not trivial. The presence of correlated factors can cause unit factor portfolios that
are unintuitive to even experienced practitioners. Further, using trailing averages of factor
returns implies a follower momentum strategy at the factor level without strong empirical
justifications (Carvalho 2016).

Different mathematical techniques can also be employed in order to reframe the
problem of portfolio selection. Credibility theory has been used to expand from traditional
MVO to a fuzzy multiobjective model that also includes liquidity constraints beyond risk
and return measures (Garcia et al. 2020). Similarly, uncertainty theory can be used to
introduce new sources of background risk (income shortages, health-related expenses) that
affect individual investors’ risk preferences into the portfolio selection problem (Huang
and Yang 2020). Models using different choices of risk measures (semi-variance) and
objectives (entropy, price-to-earnings ratio, satisfaction functions and environmental, social
and governance (ESG) scores) have also been shown to be good alternatives to traditional
MVO (see Chen and Xu 2019; Garcia et al. 2019; Mansour et al. 2019; Garcia et al. 2019).

As a widely-known approach to solving the Markowitz model’s problems, Black
and Litterman (1992) developed their namesake model that combined the mean-variance
optimization framework with Sharpe’s capital asset pricing model (CAPM) and applied it
to global assets. The model starts with a baseline of global equilibrium returns defined as
the asset returns that would stabilize the global supply-demand of risk assets. In practice,
these returns are equivalent to portfolio holdings that are market capitalization-weighted,
proportionally more allocated to better-capitalized countries (Sharpe 1964). Layered on top
of the baseline equilibrium returns, the model allows an investor to incorporate their own



J. Risk Financial Manag. 2021, 14, 3

40f 31

return views for the areas where they have expertise while leaving the remaining assets to
be allocated according to equilibrium returns. This approach addresses both inadequacies
that exist in the standard mean-variance optimization. Managers are empowered to focus
only on their subset of views while the layered approach anchors the final result to the
well-diversified market capitalization-weighted portfolio. The enrichment of baseline
returns with dynamic investor views is the reasoning behind using the BL model at our
framework’s core.

Although conceptually simple, the Black Litterman (BL) model is imperfect. BL is static
and effectively single-period. Once the target weights are obtained, portfolio managers
are expected to actively track the results of their view and reoptimize upon any changes in
their view or confidence levels. Using data-driven methods to infer dynamic confidence
levels in an investment view eliminates the need to choose an entry/exit point and enables
its expansion to multiple periods without further investor input. Further, BL is relatively
complex to understand even for a quantitative researcher, as evidenced by the number of
papers dedicated to presenting it in more straightforward ways (see He and Litterman
2002; Idzorek 2004; Walters 2007). We introduce a regime-switching component that makes
the model reactive to market regime changes and, in turn, reduces the work needed to
interact with the model.

A growing set of literature shows that we can exploit shorter-term trends in both
returns and volatility, similar to what we propose in this article. Hidden Markov models
(HMM) have been successfully used in speech recognition (Jelinek 1997), natural language
modelling (Manning and Schutze 1999) and the analysis of biological sequences such
as proteins and DNA (Krogh et al. 1994). Ang and Timmermann (2012) explored their
predictive power on financial variables and discovered that they could be used across
various financial markets and macro variables. HMMs can describe the financial market’s
tendency to abruptly change its behaviour and the propensity for financial variables
to maintain their behaviour over more extended periods. Within the field of finance,
their application is referred to as regime-switching. Incorporating their predictions within
mean-variance optimization has been found to improve portfolio performance in multiple
ways. Nystrup et al. (2017) found that regime based asset allocation improves portfolio
return and risk metrics over rebalancing using static weights. Costa and Kwon (2019) used
regime-switching to build factor models to assist with the difficult problem of estimating
covariances and demonstrated higher ex-post return for the same level of risk compared to
a nominal factor model.

Despite numerous examples of using regime-switching in finance, there is a dearth of
literature on the benefits of tactically improving the BL returns and risk through regime-
switching predictions. The only directly connected article uses a two-state regime-switching
model as the return estimates provided to the Black-Litterman model. It finds that regime-
switching returns outperform directly estimated returns (Fischer and Seidl 2013). Our ap-
proach is different; the BL equilibrium returns are kept intact as a base while our goal
is to improve the investor views. This article extracts predicted returns from the most
straightforward HMM consisting of only two states and uses them to compute dynamic
confidence values in investment views. The reason for choosing a two-state model as
opposed to more is two-fold. First, Nystrup et al. (2019) find no benefit from increasing
the number of states above two out of sample when using long-term daily data. Second,
a simpler model is less likely to overfit the training data and is more likely to be embraced
in practice due to its increased interpretability. The lack of interpretability is a significant
barrier to model adoption by investors. By leveraging regime-switching, we propose that
it is possible to compute a practical dynamic confidence level by comparing the investor
view to the regime-switching predicted view return. This dynamic comparison serves to
remove the BL model’s dependency from correctly chosen confidence levels or entry and
exit points.

Our essential assumptions regarding the trading frequency should be noted, given
our use of both market equilibrium returns and regime-switching models based on daily



J. Risk Financial Manag. 2021, 14, 3

50f31

return data. Market equilibrium returns are based on supply and demand reaching a stable
balance. At higher frequencies (tick, second, minute), we expect this stable balance to be
more fleeting, making market microstructure and short term effects much more critical.
Conversely, it is more likely to observe stable supply-demand equilibria to base trading
decisions on at a lower frequency. Further, our regime-switching training was performed
over multiple years, with only two states (bull and bear), making the predictive power at a
higher frequency (intraday or daily) lower. That said, reacting to a regime change faster is
better than reacting to a regime change slower. Therefore, the interval we chose to strike
a balance between these two factors was a weekly trading frequency and was applied in
most simulations performed.

Introducing a more dynamic allocation as proposed (based on direct market data)
can lead to potential problems that we mitigate against, namely, return instability and
overtrading. Since regime-switching models using higher frequency data are faster to
update their confidence in each regime, this can lead to fleeting regimes and unnecessarily
high portfolio reallocation. To prevent this, similar to Nystrup et al. (2015), we incorporate
a minimum probability threshold to overcome before allowing the regime to change.
The threshold reduces regime jitter at the expense of a slightly slower reaction to regime
changes. We know that transaction costs can be high when trades are made frequently
(Kolm et al. 2014) and that SPO can be augmented to efficiently include many types of
costs and constraints in the portfolio selection (Lobo et al. 2007). Therefore, we incorporate
transaction costs into the portfolio optimization. These two changes, regime-switching
thresholds and transaction cost optimization, serve to mitigate the potential adverse effects
we mentioned above. Market microstructure issues such as liquidating large positions or
information leakage to other participants are only partially addressed by using a temporary
impact cost component. The first to introduce the concept of optimal intraday execution of
portfolio transactions, Almgren and Chriss (2001) developed a simple linear temporary
impact cost model and introduced efficient frontiers trading off the minimum expected cost
versus a given level of uncertainty. However, since its introduction, the field of optimal
execution has advanced significantly through the introduction of permanent impact costs,
dynamically adaptive strategies and stochastic volatility, among others (see Lorenz and
Almgren 2011; Almgren 2012). Given our lower frequency of trading (daily or longer) and
liquid developed country based ETFs, we do not focus further on this topic but note that it
would be an exciting area of future research.

Overall, the proposed model improves traditional single-period mean-variance port-
folios by incorporating multi-period trading and interpretable investment views into one
easy-to-use framework. We leverage a multi-period portfolio optimization model intro-
duced by Boyd et al. (2017) that approximates the entire trading range optimization by
repeatedly optimizing smaller, more tractable consecutive sub-ranges. Although trading
decisions are made for multiple periods in advance, only the next period trading decisions
are executed. The model requires accurate risk and return estimates for the portfolio opti-
mization, which we obtain from the BL model as the combination of the market portfolio
and investment views. To mitigate against BL's static nature and provide dynamism to
the estimates, we propose a novel method of using regime-switching to determine each
investment view’s confidence. We do not address the actual generation of investment
views; instead, we focus on trading them effectively once provided.

1.1. Outline

The article is structured as follows: Section 2 introduces the multi-period optimization
model based on receding horizon MPC. Section 3 presents the computation of risk and
returns estimates needed to instantiate the portfolio optimization model. It starts by
showing how the Black Litterman model is used to incorporate investor views in Section 3.1,
then introduces the dynamic investor view confidence levels obtained through regime-
switching in Section 3.3. It concludes with pseudo-code that details all the parts needed for
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the complete algorithm and simulation. Section 4 showcases our empirical results using
this framework. Finally, Section 5 concludes.

1.2. Contribution

The main contributions to the existing literature are two-fold. First, we are the first
to develop a multi-period optimization model to solve a portfolio allocation problem
based on return and risk estimates from the Black Litterman (BL) model. As opposed to
traditional dynamic programming, this method enables the optimization to be dynamic
across time and, as such, allows new information to be incorporated as soon as it’s realized.
This multi-period relaxation method aptly named receding horizon, is borrowed from
model predictive control and was first introduced by Boyd et al. (2017). Given the increase
in trading frequency over static models, convex transaction costs are also considered in
the optimization objective. Second, we introduce a novel data-driven method to infer
dynamically updated confidence levels for investment views. The confidence is obtained
by computing the view’s regime expected return (based on each underlying asset’s current
regime) and comparing it to the investor inputted expected return. The more the two
forecasts are in agreement, the higher the confidence obtained and vice versa. Overall, the
result is a framework that is reactive, numerically tractable and easy to use by a portfolio
manager looking to trade researched investment views optimally. We have also developed
an open-source software library that implements all of the methods in the paper and can
be used to replicate our results easily: https://github.com/roprisor/alphamodel.

2. Multi-Period Optimization

Multi-period optimization (MPO) has shown great promise as a flexible solution
for constructing optimal portfolios over multiple separate but connected time periods.
The traditional mean-variance is designed for only one time period and, therefore, more fit
for stationary risk and return assumptions. In practice, financial asset prices exhibit non-
stationary behaviour, which is better incorporated in a multi-period optimization model.
Academic literature has focused on dynamic programming, a method that has proven
impractical for non-trivial cases due to the ‘curse of dimensionality” (Powell 2007). Recently,
Boyd et al. (2017) developed a model that generalizes from single-period optimization
(SPO) to MPO. Its advantages include tractability and flexibility while still achieving near-
optimal results. Through convex optimization for all objectives and constraints, the model
can remain tractable despite introducing multiple periods and many constraints for each
period. While there is no theoretical guarantee of the performance of the method we are
using, Boyd et al. (2014) show through Monte Carlo simulations that its results are typically
close to the optimal performance bound. This model, presented below, will be leveraged as
a base for the framework presented in this paper.

At each time period T, a multi-period optimization problem using information (risk,
return, and transaction cost estimates) known at time T is solved for H periods ahead,
where H << T. Despite obtaining optimal actions for multiple future time periods, only the
first period’s actions are implemented, and the optimization problem is solved anew
with updated information gained at time T + 1 (see Figure 1a,b). This receding horizon
procedure simplifies the full horizon dynamic programming problem while maintaining
fast reaction times to changing financial markets.

A natural question that arises when considering the horizon for each multi-period
optimization problem is how exactly we decide how many periods ahead the optimization
should consider, i.e., what should H be? Let us consider the limiting values for H. As a
minimum value, when H = 1, we are performing sequential single-period optimization.
As a theoretical maximum, when H = T, we are effectively considering the entire trading
range all at once. Although possible, optimization across the entire trading range is
impractical unless we have accurate return and risk forecasts that far into the future.
Therefore, a practical value for H will depend heavily on the forecast horizon of our return
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and risk estimates. We will compare multiple values for H to validate its impact in the
empirical results section.

2.1. Multi-Period Optimization Model

Consider a portfolio of 1 assets, plus a cash account, over a finite time horizon split
into discrete time periods labeled t = 1,...,T. The time period in the model can be of
arbitrary length however we will consider each period to be a trading day throughout this
paper. Let i; € R"*! denote the portfolio (or vector of holdings) at the beginning of time
period t, where (h;); is the dollar value of asset i. (h); < 0 implies a short position in asset
i. As a corollary, when (h;); > 0 fori =1,...,n, we call the portfolio long-only. Since asset
n + 1 represents the cash account, (h;),,1 = 0 implies that at time f the portfolio is fully
invested, i.e., we hold zero cash, all holdings are invested in non-cash assets. The total
value of the portfolio, in dollars, at time ¢ is expressed by v; = 17h;.

Another way to describe the portfolio is through fractions of the entire dollar value or
weights. Given a portfolio with holdings ;, the weights (or weight vector) w; € R"*! are
defined as w; = hy/v;. The portfolio weights always sum to one, by definition, 17w =1,
and are unitless (dollar holdings divided by portfolio total dollar value). Equivalent to the
holdings scenario, the last weight (w;), 41 is the fraction of the total portfolio value being
held in cash.

Let u; € R” be the dollar value of our trades in period t. We will assume that all
trading happens at the beginning of each time period. (u¢); > 0 implies that we bought
(ut); dollars of asset i and (u;); < 0 implies the opposite, fori =1,...,n. Normalizing the
dollar value trades u; relative to the total portfolio value we obtain the normalized trades
Zr = Ut / ht.

SPO only considers the most recent trade decision z; while ignoring any future periods
in the current optimization. Effectively, SPO is the specific case of MPO where the forward
horizon only includes one period. In MPO, we obtain the current trade vector z; by solving
an optimization problem over a planning horizon that extends H periods into the future as
illustrated in Figure 1a for times:

t,t+1, ..., t+H-1

w1 w2 w3
Data up to #, @2 w3 wy
Data up to +; @3 Wy ws

WH-1 wy

I ] Data up to ¢
+ZH—1 p 2

5]

1)

(a) Optimization Problem Variables

t3

tg-1 tg t 5] t3 ty ts
(b) Receding Horizon Method (H = 3)

Figure 1. Multi-Period Optimization Structure.

We develop the multi-period optimization problem from the core mean-variance
objective: maximizing returns while minimizing risk and transaction costs. Let

2ty Zt41s ++-s Zt4H-1

denote our sequence of planned trades over the horizon. Given estimated returns 7, risk
i and transaction cost $*29¢, a natural multi-period objective is to maximize the sum of
risk-adjusted return over the horizon:
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maximize Y1 (ﬂ (wr + z¢) — Y (we +2¢) — 'ytradegt??ade(zlr))
subject to 172, =0, z: € 2, wi+zc €Wy, )
W1 = Wr + 27

where z¢, 2411, ...,Zt+H—1 and Wy q, ..., w1 are variables, 'y{iSk and 'yfrade are positive
parameters used to scale the respective costs and the”denotes an estimate rather than a
known or realized quantity. These parameters are sometimes called hyper-parameters,
analogous to the identically named parameters we obtain when fitting statistical models to
data. The hyper-parameters can significantly affect the performance of the MPO method
and should be chosen carefully through backtesting.

As noted earlier, although only the trades for period t are executed for each optimiza-
tion looking H periods into the future, the model has both the ability to incorporate newly
discovered information and to consider the optimal allocation of trading across all the H
periods into the future. When H = 1, we are solving an SPO problem.

2.2. Degrees of Freedom

The optimization model purposefully leaves open multiple degrees of freedom re-
quired for it to be instantiated (Boyd et al. 2017). The performance analysis associated with
the originally proposed model is done ex-post (using realized future data that could not be
known when optimizing) with no future projections provided. To build a complete trading
model, we fill in the missing components as follows:

e return and risk estimates: returns # and risk ¢ are replaced by rBL and 1/173L generated
from the Black Litterman model
e transaction cost estimates: $"d¢ remains the 3/2 transaction cost model

Since returns are represented as a vector 7 € R("*1), replacing the vector with Black
Litterman estimates rPL is straighforward.

2.2.1. Risk

Assuming the returns r; are randomly distributed, with covariance matrix ; €
R(+1)x(n+1) the variance of the portfolio return tho is given by

var(Rf) = (ws + zt)TZt(wt + z).

We obtain the traditional quadratic risk measure from the Black Litterman model
covariance for period f,
pEL(x) = xTEBLx.

We note that 25! is an estimate of the return covariance based on sample data and
model assumptions. The exact distribution of the process generating real asset price returns
can never be known.

2.2.2. Transaction Cost

Trading in financial markets generally incurs a transaction cost, denoted as ¢4 (u;),
where ¢fr2d¢ : R"*1 — R is the (dollar) transaction cost function. The model assumes that
the transaction cost function ¢ is separable, i.e., the transaction cost breaks down into
a sum of transaction costs for each individual asset. This assumption ignores the cointe-
gration effect of asset prices at the high-frequency level which is a reasonable assumption
given the period considered in our paper is one day. (¢{*4¢);, a function from R into R,
is the transaction cost function for asset i, period ¢.

Similar to Boyd et al. (2017), the model chosen for the transaction cost function

( Irade )i is
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|x|3/2
V1/2

x — a|x| + bo +cx, )

where a, b, 0, V, and ¢ are numbers and x is a dollar trade amount (Grinold and Kahn

2000). a represents the asset’s half-spread (half the bid-ask spread) at the beginning of the
time period when trading occurs. This term is represented relative to the asset price and
is therefore unitless. If desired, a can be increased by an amount representing broker fees
expressed as a function of the dollar value traded. The second term represents the temporary
impact cost of our trading. b is a positive constant of unit 1/dollars. V represents the total
dollar value of the asset traded in the market in the current time period. The number ¢
reflects the asset price’s standard deviation over the most recent periods, expressed in
dollar units. As mentioned by Boyd et al. (2017), a common rule of thumb is that trading
one day’s volume is expected to move the price roughly by one day’s volatility. This
would lead to a value of b around one. Given that c is linear in dollars traded x, we can
use the third term to express differences between buying and selling an asset. If the cx
term is ignored (¢ = 0), the cost is the same regardless of the trade direction. However,
when ¢ < 0, selling is more expensive than buying, which could reflect a market with
difficulty borrowing stock to short sell or otherwise increased selling pressure (more sellers
than buyers).

3. Return and Risk Estimates with Investor Views

Successful multi-period portfolio optimization relies on having a set of accurate risk
and return estimates to produce trading decisions that perform well out of sample (see
Green and Hollifield 1992; Michaud 1989; DeMiguel et al. 2009). In this paper, we leverage
the Black Litterman (BL) model for risk and return estimates. BL aims to reduce estimation
error by combining the market portfolio with a set of investor views. The market portfolio
is a portfolio based on a condition that must be satisfied (all assets change hands; each seller
finds a buyer). The investor views are expressed as portfolios that the investor provides a
target return and confidence level for.

One of the most considerable drawbacks of the BL model is its static nature. It perfectly
fits the category of single-period models that are not designed to adapt to changing market
conditions optimally. Incorporating static by nature BL model risk and returns into multi-
period optimization where they will be used repeatedly, as proposed in Section 2, requires at
least one component to be dynamic. Since the market portfolio is fixed (only changes with
market capitalization) and equilibrium returns mostly reflect parameter changes, the key
to making the risk and returns estimates dynamic is the investment views. Our proposal
replaces the static confidence levels in each investor view with dynamic values generated
by a regime-switching model.

Regime switching has shown great value when applied to the financial markets (see
Ang and Timmermann 2012; Fischer and Seidl 2013; Nystrup et al. 2017; Costa and Kwon
2019). The model’s underlying idea leverages the observation that asset prices exhibit time-
varying behaviour, such as their tendency to exhibit trends in their statistical properties
(means, standard deviations). Multiple return distributions called states fit to financial
data are used as both explanatory variables of their past properties and predictors of their
future properties. This model fits perfectly with the concept of investment views, which,
once researched, are investors’” expectations of financial trends that will persist for some
time in the future.

To sum up, multi-period portfolio optimization requires a set of risk and return
estimates that we obtain from the Black Litterman model. This model incorporates in-
vestment views that are expected by the investor to exhibit trends. As such, in order to
capture the confidence level (likelihood) that the expected trend is already underway or
has ended, we use a regime-switching model. This combination allows us to construct our
set of risk/return estimates, a needed building block for dynamic multi-period portfolio
optimization, that quantitatively follow the trend of the expected investor views.
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3.1. Black Litterman Model

The original Markowitz optimization model has at least two significant drawbacks.
First, it tends to skew towards building large position weights in only a small subset
of assets, effectively negating its original goal of diversifying across multiple assets
(Green and Hollifield 1992). Second, it is notoriously sensitive to minute changes in the
return assumptions used. A small change to the return estimate of only one asset can
shift half of the portfolio allocation (Best and Grauer 1991). To counteract these well-
documented problems, Black and Litterman (1992) developed a new model that combines
the Markowitz mean-variance optimization with Sharpe’s CAPM through a Bayesian
approach. Their model starts with a completely neutral view of the asset means (prior).
The only reasonable definition of which—they argue—is the set of expected returns that
would ensure the market is cleared if all investors had identical views (cleared implying
that all assets are traded, each buyer finds a seller). Given this equilibrium state, their model
allows investors to specify linear combinations of investment views that are overlayed on
top (posterior). This overlay causes a subtle allocation shift from equilibrium depending
on the strength of the investor’s conviction. Since each view’s confidence can be specified
together with the overall willingness to diverge from equilibrium, the Black-Litterman
model can counteract both problems with Markowitz optimization. The resulting weights
are well diversified, and small changes in investor views of the asset means only exhibit
localized effects, leaving most of the portfolio intact.

From a mathematical modelling perspective, let us assume there are n investable
assets in our universe. Their returns r are driven by normal distributions with mean u
and a covariance matrix X: r ~ N(y, X). At equilibrium, all investors as a whole will hold
the market portfolio w,q. Therefore the equilibrium risk premiums are set such that, if all
investors hold the same view, the demand for the assets equals the available supply (Black
1989). Assuming an average world risk tolerance which is represented by the risk aversion
parameter &, the equilibrium risk premiums are given by:

From a Bayesian perspective, the prior consists of the expected returns y being nor-
mally distributed and centered at the equilibrium values (mean of I1):

p=TI+e),

where €(®) is also a normally distributed random vector with zero mean and covariance
matrix 7%, T being a scalar which represents the uncertainty of the CAPM prior.

To overlay investment theses on top of the CAPM prior, the investor also needs to
define a set of views. The views are expressed such that the expected return of a portfolio p
has a normal distribution with mean equal to g4 and a standard deviation given by w. If we
let K be the number of total views, P a K x N matrix whose rows are the view portfolio
weights and Q a K-vector of the expected returns of these portfolios.

PT - (Pl; P2, ., PK) QT - (‘71/ q2, s ‘7[()

Given the above, we can express the investor views as:
Pu=Q+e 3)

where €(?) is an unobservable normally distributed random vector with zero mean and a
diagonal covariance matrix ().

We now have all the pieces required to combine the CAPM equilibrium returns
together with the investor views in a Bayesian framework. The result is a set of posterior
expected returns that are distributed as N(ji, £), where the mean fi is given by:

i =1+ t2PT(rPZPT + Q)" (Q — PII) (4)
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and the covariance £ by:
¥ =(1+7)Z - 2P (rPzPT + Q) 'Px (5)

For a detailed derivation of Equations (4) and (5), the reader is encouraged to refer
to Meucci (2008)’s working paper that provides a detailed analysis of the original formu-
lation and its re-casting into the more computationally stable posterior representations
listed above.

Raised by Idzorek (2004), a problem with the original Black-Litterman model was that
its formulation was meant to allow the incorporation of investor views, yet the process for
doing so was complicated by the need to define uncertainty covariance values for each.
This requirement was an unnecessary barrier preventing non-quantitative investors from
adopting the framework more widely. To resolve this, Idzorek proposed specifying the
investor’s confidence in the views expressed as a percentage, 0-100%, where the confidence
measures the change in weight of the posterior from the prior estimate (0% confidence) to
the conditional estimate (100% confidence). According to this methodology, a coefficient of
uncertainty « in the interval [0, o) is used to construct the () uncertainty covariance from
the view portfolio covariance as such:

Q = aPxpP? (6)

Walters (2007) obtains a closed-form solution for Idzorek’s confidence interval formu-
lation, which greatly simplifies the process of obtaining (). This combined method allows
investors without a quantitative model driving their investment theses to adapt their views
to the Black-Litterman framework easily. Thus, the requirement is shifted from providing
exact uncertainty covariance values to only providing a confidence value in the interval
(0, 1]. In turn, Equations (6) and (7) transform these confidence values into model-driven
uncertainty values.

1 — confidence
confidence

@)

3.2. Regime Switching Model

Our goal is to generate risk and return estimates that can be used to optimize repeat-
edly as time advances each period across the entire trading horizon. However, the Black
Litterman (BL) model itself is static and, as such, does not lend itself to the dynamic incor-
poration of new information. To mitigate this problem, we leverage a regime-switching
model that is well suited to predicting asset return trends and use it to generate dynamic
confidence levels in each investor view. Once provided to the BL model, a view is con-
sidered both established and static until removed or manually edited by the investor.
Considering the non-stationary nature of financial markets, the exact time a view is dis-
covered might not be the best entry point. The investment thesis might either be too
early or too late, which the model will not protect against. Further, any single view is not
guaranteed to achieve consistent results over time, resulting in potential over-allocation to
poorly performing views and hence under-allocation to strongly performing views over
their lifetimes.

Financial market trends can change abruptly. Consequently, their return means,
volatilities, and correlations also shift according to economic, political or behavioural trends
that underlie asset valuation. Once established, changes tend to persist over extended
periods, thus leading to observations such as the clustering of volatility first noted by
Mandelbrot (1963).

Looking at the time series of returns for SPY, the most popular ETF tracking the
S&P 500 Index (Figure 2a'), we can visually observe these shifts. Following periods of

1 Returns data only up to 31 August 2020.
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more subdued volatility, abrupt spikes materialize and cluster together. The U.S. market
underwent a very long stretch of a calm bull market from 2009 to 2020. However, this period
sharply contrasts to the global financial crisis in 2008 and the onset of the severe COVID-19
pandemic in 2020. Looking closer at the return densities for 2018-2020 (Figure 2b?), the
difference between their shapes is apparent. None of the three years seem to be close to
what Markowitz’s original theory assumes, a Bell curve. 2018 and 2019 have pronounced
left tails, while 2020 is an outlier with wide left and right tails. Similar regime shifts, some
periodic (expansions followed by recessions) and some unique (global events such as the
recent COVID-19 pandemic), are found across a wide array of financial markets and macro
variables (Ang and Timmermann 2012).

0154 —

60 2018
2019
2020

2008 2010 2012 2014 2016 2018 2020 -0.100 ~0.075 ~0.050 -0.025 0000 0025 0050 0075 0100
Date Return

(a) Time Series: 2007-2020 (b) Densities: 2018-2020

Figure 2. SPY ETF Returns.

Regime switching attempts to exploit these clustering effects of financial time series to
generate alpha and improve portfolio risk-reward metrics. Regime based asset allocation
has been shown to improve portfolio metrics over rebalancing using static weights (Nystrup
et al. 2015). In machine learning, the area focused on inferring a set of labels out of data
(e.g., hidden regimes) is referred to as unsupervised learning. Due to the sequential nature
of financial data, a natural choice to model regime transitions is a first-order Markov chain.

3.2.1. Markov Chains

A first-order Markov chain is a stochastic process describing a sequence of possible
states s1, ..., sy in which the probability of the next state s, depends entirely on the previous
state s,,_1. More formally:

p(snls1,82, - Sn—1) = p(sulsp-1),Vn=2,..,N (8)

This memorylessness property allows us to loosen the i.i.d. assumption of more
traditional non-sequential models. The model remains computationally tractable while
incorporating past information into future probabilities of sequential data (Bishop 2006).

3.2.2. Hidden Markov Models

Hidden Markov models have been applied to speech recognition (Jelinek 1997), natural
language modelling (Manning and Schutze 1999) and the analysis of biological sequences
such as proteins and DNA (Krogh et al. 1994). The reason Markov chains are useful to
model the shifting conditions of financial markets is that for each underlying state, we
can attach a different probability distribution for the returns. For example, for a two-state
chain, we can consider one state to represent an upwards trending (bull) market and the
other state a downwards trending (bear) market. Similarly, for a three-state chain, the third
state could represent a sideways (calm) market. We would expect each state’s probability
distribution to reflect the financial market-relevant at the time. A bull market would be
represented by a Gaussian distribution with positive mean and low variance, while a bear
market would have a negative mean and high variance:



J. Risk Financial Manag. 2021, 14, 3

13 of 31

Bull regime ~ N (ppui, Obun)
Bear regime ~ N (tpears Opear)

where Houll > 0 > Upear and Oy < Obear-

Such a combination of multiple unobservable (latent) states connected through a
Markov chain is called a hidden Markov model. To build a hidden Markov model from our
notation for a Markov chain, assuming we have observations x1, xy, ..., xn, we introduce
corresponding latent variables z1, 2z, ..., zy for each observation. We further assume that
the latent variables are the ones forming a Markov chain such that z,;; and z,_; are
independent given z, (memorylessness property, Equation (8)). The latent variables z;
which we just introduced are designated to represent which state the observation pertains
to. Each state has its emission probability distribution, the most basic case being a Gaussian
distribution. Mathematically they are represented as discrete multinomial variables in
a 1-of-K coding scheme. Because the underlying states depend on each other through a
Markov chain and each variable is K dimensional, the transition probabilities between
states p(zy|z,—1) correspond to a table of numbers we denote as A, the transition matrix.
They are given by Aj = p(z,x = 1|z,—1,; = 1). In our case, since we utilized a two-state
model, the conditional distribution of the current latent variable z, is given by:

2 2
p(Zn|Zn71/A) = HHA;?*L]an
k=1j=1

Since the initial latent variable z; does not have a previous latent variable to form
conditional distribution respective to, it has a marginal distribution p(z) represented by a
vector of probabilities 7. Each element of the vector 71y denoting the initial probability that
the underlying state for the first observation was state k.

2
p(z|) =[] m"
k=1

Specifying the probabilistic model is completed by defining the conditional distri-
butions of the observed variables on the latent variables and ¢, the set of parameters
governing the distribution, p(x,|z,, ¢). Thus, the joint probability distribution over both
observed and latent variables is given by:

N N
p(X,Z16) = p(zllﬁ)[l—lz p(zn|zu-1, A)] T T p(xmlzm ¢) ©)
n= m=1

where X is the set of all observations x,,, same for Z, and 6 = {7, A, ¢} denotes the set of
parameters governing the model.

3.2.3. Estimation

The parameters of hidden Markov models are typically estimated by attempting to
maximize the joint probability distribution in Equation (9) with respect to 6, also known
as the maximum-likelihood method. The most popular methods to maximize the joint
probability distribution are direct numerical maximization and the Baum-Welch algorithm,
a special case of the expectation maximization (EM) algorithm (see Baum et al. 1970;
Dempster et al. 1977). In this article, we utilized the Baum-Welch algorithm to extract the
model parameters and latent variable probabilities.

The EM algorithm starts with an initial estimate of the model’s parameters, 77 and A,
which we can denote as °/. The core proposition decouples the numerical maximization
into two steps: expectation (E step) and maximization (M step). In the E step, we use the
old parameter values 8°' find the expected probability of the latent variables given the
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observations X and 6°/7 (the posterior distribution of the latent variables). We can then use
this to evaluate the expectation of the logarithm of the likelihood as a function of 6.

Q(6,6"") = Y_p(Z|X,0°")Inp(X, Z|9)
Z

In the M step we maximize Q(6, 8°/%) with respect to the parameters 8 = 7, A, § while
holding constant the posterior distribution of the latent variables that we computed in the E
step. The Baum-Welch algorithm has several variants, of which one of the more popular is
the alpha-beta algorithm. Bishop (2006) has an excellent exposition of both the algorithms
employed, EM and alpha-beta, which we will not reproduce here.

3.3. Dynamic View Confidence through Regime Switching

We can now focus our attention on using the newly obtained asset return regime-
switching forecasts. As discussed at the beginning of Sections 3 and 3.2, one of the draw-
backs of the BL model remains the static inputs of view confidence. Since our multi-period
optimization method requires frequent re-solving, the risk and return estimates need to be
updated according to the newly available information. Therefore, we propose converting
our regime-switching based forecasts into dynamic confidence levels for investor views.

The impact of an incorrect confidence forecast can be a significant drag on performance
in the very competitive world of asset management. For example, in Figure 3, we track two
opposite views considered ex-post: (long EWG, short SPY) versus (short EWG, long SPY).
The delta between these two views peaks at over 125% at the end of 2007. This implies
that there would have been a 1.25% performance gap between views for every 1% of
portfolio allocation. To make matters more interesting, the winning view is counter to the
generally accepted market equilibrium returns. Germany outperformed the United States
by a surprising 50% over the 2005-2008 period. As always, when dealing with predictions,
the problem is that not all investors would be able to correctly choose the right view all the
time, never mind the right degree of confidence, without some kind of systematic process.
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Figure 3. Example View Returns (2005-2009).

Regime switching can be used to completely remove the need to define a subjective
degree of confidence in the investor views provided to the BL model. From Equation (3),
we know that the expected return for an the investor’s view portfolio p; is expressed as
qi + el.(v). However, given that we have already estimated the underlying regimes driving
each asset’s return, we can also compute it directly from these estimates:

pi ~ N(Pu", P,ZP])
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where "® represents that the quantity was obtained from the most likely underlying regimes
for the current sample of returns.

Since the investor has already specified their expectation for the view return to have
mean g;, there are multiple methods we can employ to compute the confidence that should
be assigned to it systematically. As a first method, we could focus on what quantity we
are interested in for g; relative to the p/ prediction. Specifically, a possible perspective on
confidence could be to consider it to be the likelihood that the view return will be g; or
better (Figure 4a):

Cview — 1- Cdfirs(qi) qi >0 (10)
cdfi*(q:) i <0

Similarly, in a more simplistic fashion, we also consider the confidence in a given view
to be akin to a neural network node that is activated when our estimated P;u'* is greater
than the investor’s g; input (Figure 4b). One of the most popular activation functions is
the sigmoid function, largely owing to its step-like behaviour and ease of differentiation at
all points (Bishop 2006). To adapt it to our current purpose, we need to incorporate two
adjustments to the base sigmoid function. First, we add a slope parameter 7, which we
could consider similar to the BL model confidence in the investor views. The steeper the
activation slope, the faster the change in confidence level. As a result, a view that becomes
in play will be reflected in estimated returns faster. Secondly, a scaling parameter ¢ is
introduced defined as 10~°"(4i), where om (x) is the order of magnitude of x. Its purpose is
to counteract the unwanted effects resulting from comparing tiny magnitude returns and
expand the range of confidence values. The slope parameter value could be set through
backtesting to match the shifts in realized view closely returns with the shifts in view
confidence; however, great care needs to be placed on avoiding over-fitting. For this
paper’s purposes, we used a higher base value of 4 for the slope parameter (7 = 4) to both
avoid using views that might not be active and switch fast to active views once identified.
The value of 10~* was computed for the scaling parameter since daily returns are on the
order of magnitude of basis points. No further fitting was performed that could introduce
bias in the results.
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Figure 4. Quantitative Confidence Methods for Investor Views.

3.4. Multi-Period Portfolio Optimization with Investor Views

To instantiate the multi-period optimization model we described in Equation (1),
we outlined the need for accurate and reactive risk and return estimates. Our proposal
depends on three key components to achieving this. First, regime-switching forecasts for the
underlying asset returns; second, a method to construct confidence levels for investment
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views from the forecasts; and third, risk and return estimates obtained from the Black
Litterman (BL) model that integrates the investment views with the newly constructed
confidence levels.

The Algorithm 1 pseudo-code illustrates in detail the entire simulation we propose in
order to perform multi-period portfolio optimization while incorporating dynamic risk and
return estimates from the BL model. For live trading, given a specific set of optimization
hyper-parameters chosen carefully through backtesting, only the iteration of the loop for
the most recent period T should be performed and, as such, only the zt trades applied.
A natural question that arises while considering the structure of the algorithm is: what is
the value of optimizing multiple periods ahead when rBL is constant? We expect that the answer
lies in the interplay between shifting weights to follow the return forecasts trend and the
regime-switching component’s dynamicity. More specifically, when considering only one
period at a time, each optimization will effectively try to adjust the portfolio weights as
much as possible in the current period. This could be an optimal strategy if we know that
there is no new information to incorporate shortly after. However, this is exactly what we
are trying to achieve through the regime-switching and dynamic confidence component.
Every time we reoptimize, we incorporate all the newly available asset return information
and refit the regime-switching model, which, in turn, generates a more up to date set of
returns to use. Increasing the number of trading periods beyond one gives the portfolio
optimization the chance to trade off fast portfolio shifts against transaction costs that can
be spread out across time. Every time some part of trading is best left for a period further
than the current one, we would have new information to use that would be incorporated in
new return and risk forecasts. The performance loss or benefit from incorporating multiple
trading periods is addressed empirically in Section 4.3.

Algorithm 1: Multi-Period Portfolio Optimization Simulation Pseudo-Code.
fortinl,..., T do

// Extract view confidence from regime switching model
Run Baum-Welch algorithm to fit HMM model on time periods: (t, t — training periods]
if p(bull regime|z;_1, A) > threshold then

| W b
else if p(bear regime|z;_1, A) > threshold then

‘ ‘urs <_ Hbear
Update cV'eV ("?) (10), (11)

// Update Black Litterman return and risk estimates
QVS < cview PZPT (6)1 (7)

i = 11+ tZPT(tPZPT + Q*)~1(Q — PII) (4)

L= (1+1)X - 22PT(7PZPT + Q)" 1PL (5)

17CView

// Update transaction cost estimates
$trade < recent o and V (2)

// Solve optimization problem
2t t+H-1 =

maximize YL ()T (wr + 20) — 4 SRgBL (we + 20) — oG (20)) (1)
subjectto 17z: =0, z; € Z;, wr+2z; €Wy,
Wiyl = Wr + 21

| Apply trades z; only
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4. Empirical Results

The proposed multi-period portfolio optimization framework can be applied across a
wide range of asset universes with an infinite number of combinations of investor views
overlayed on the market portfolio. From a practical perspective, to show the promise of the
framework, we focus on a numerical example comprising two opposing views. Especially
in finance, forecasting is a challenging endeavour, as shown by the increasing number of
assets shifting to passive investment vehicles (index tracking). It is impossible to know
with certainty ahead of time if an investor’s view will realize. Therefore, a tricky trading
scenario to test our framework is to provide it with both a ‘correct’ and an ‘incorrect” view
and observe how it updates its confidence in each view with each new price of information
itis provided. While an investor would equally participate in both the upside of the ‘correct’
view and the downside of the ‘incorrect’ view, a successful quantitative model should
be able to discover when the ‘incorrect’ view underperforms and, as such, reduce the
downside exposure while leaving the upside in the ‘correct’ view case.

In this section, we first present our computational setup used for the simulations.
Second, we present the regime-switching and dynamic confidence results leading to the
risk and return estimates. Finally, we instantiate the multi-period portfolio optimization
model and validate its performance relative to its static counterpart, the Black Litterman
model, and repeated single-period optimization. To achieve robust results out of sample,
it is critical to validate each component separately before combining them into one cohesive
model. Therefore, each component is tested separately and on disjoint time ranges to avoid
look-ahead bias and over-fitting. All dynamic confidence simulations are performed on a
weekly rebalance schedule as discussed in Section 3.

4.1. Computational Setup

All simulations were performed with daily adjusted close price, and volume data
retrieved from the Quotemedia (2020) data source hosted on Quandl. An ideal analysis
should encompass both a large enough test set and apply the model to a very recent
period. Therefore, the entire range for the data set was chosen to be from 1 January 1997 to
31 August 2020. To minimize the chance of overfitting to the data, the regime-switching
training and testing were performed from 1 January 1997 to 31 December 2005. The time
range from 1 January 2005 to 31 August 2020 was dedicated to the Black Litterman and the
multi-period portfolio optimization. Historical country level market capitalization data
was obtained from the ‘Stock Market Capitalization to GDP’ and ‘Gross Domestic Product’
tables published by the St. Louis Fed (Fed 2020).

The code was written in Python 3.7 and hosted online on “github.com” under the
project alphamodel. The regime switching’s underlying HMM model was trained using
the hmmlearn open-source package. Simultaneously, the multi-period optimization was
performed with the coxportfolio open-source package built by Boyd et al. (2017) where we
implemented a new multi-period optimization policy that can handle forward horizons in
a way that matched our code.

In terms of simulation hardware, the experiments were run on different hardware
depending on how many simulations were required. One-off simulations were run on a
MacBook Pro 2016 laptop while regime-switching training period testing and efficient fron-
tier experiments were run on Amazon Web Services (AWS) compute-intensive optimized
hardware, specifically ‘c4.8xlarge’. The MacBook Pro specifications include a quad-core
2.6 GHz Intel i7 CPU with 16 G of RAM running MacOS, while ‘c4.8xlarge” AWS servers
include an 18-core 2.9 GHz Intel Xeon E5-2666 v3 Processor with 60 GB of RAM running
Unix OS.

4.2. Return and Risk Estimates

Successful multi-period portfolio optimization relies on accurate risk and return
estimates to produce trading decisions. The Black Litterman (BL) model was chosen for
this purpose in our framework as elaborated in Section 3.1. The universe selected lends
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itself to global equity allocation, similar to the original BL experimental setup (Black
1989). We construct portfolios using the nine oldest country ETFs listed in the US, all
denominated in US dollars, as listed in Table 1. In this global context, we follow the results
of the representative ETFs for Germany (EWG) and the United States (SPY) relative to each
other (Figure 5).

Ticker
154 — SPY
EWA
EWC
—— EWG
1.0 EWH
EWJ
EWS
EWU
051 EWW
USDOLLAR

Return

001 gt gt

2005 2006 2007 2008
Date

Figure 5. Equity Returns (2005-2009).

As mentioned in Section 3.3 and illustrated in Figure 3, the opposing view portfo-
lios are: (long Germany, short US) and (short Germany, long US). By definition, if one
of the two view portfolios outperforms, the other will underperform. Focusing on two
opposing views is both a realistic and difficult scenario since no investor would be able to
know with certainty which is correct ex-ante. Suppose our framework is able to discover
correct confidence values in each view. In that case, that will serve as a definite improve-
ment to portfolio managers since they would be able to use the model to objectively and
automatically reduce exposure to their underperforming views.

Table 1. Equity Universe.

Country/Territory  ETF Ticker Market Capitalization ($bn) Equilibrium Weight

United States SPY 3179 57.6%
Japan EW]J 830 15.0%
United Kingdom EWU 528 9.6%
Germany EWG 384 7.0%
Canada EWC 239 5.4%
Australia EWA 150 2.7%
Hong Kong EWH 79 1.4%
Mexico EWW 49 0.9%
Singapore EWS 20 0.3%

4.2.1. Black Litterman

For the Black Litterman model to be instantiated, we require the prior weights and
return assumptions used in its Bayesian approach. To find the equilibrium weights (pri-
ors), we require historical country level market capitalization data. The sources used for
this were the ‘Stock Market Capitalization to GDP* and ‘Gross Domestic Product’ tables
published by the St. Louis Fed (Fed 2020). The market capitalization values seen in Table 1
resulted from multiplying the above 3.The equivalent equilibrium weights defined as the

3

Market capitalization values as of 1997. The respective weights change constantly based on returns and new corporate listing growth.
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weight of a portfolio holding all securities proportional to their market capitalization are
also shown.

The first question we ask ourselves before embarking on the journey to improve the
Black Litterman returns is: does it make sense to use Black Litterman equilibrium returns as base
returns instead of using a factor model? Therefore, we computed the efficient frontiers for factor
model approaches (implemented through the eponymous 5 factor model for developed
markets proposed by Fama and French 2014) and BL model equilibrium returns (no views).
Simulations were performed from 2005 to 2020 with a weekly rebalance. 1'% ranged
between 0.001 and 100 while ¢ ranged between 1 and 5. The asset returns used to
compute return expectations and covariance values were applied an exponential decay
with a half-life of 20 trading days (1 calendar month) to improve the result’s dynamicity.

Figure 6 shows that we should be agnostic between the two approaches since no clear
winner consistently outperforms across all risk and trading hyper-parameters. While the
Fama-French model outperforms at the high end of the risk levels, the BL equilibrium
returns outperform at the low end, showing that they are neither detrimental nor better
overall. Thus, using BL equilibrium returns as base returns for our model appears to be
a very reasonable choice, all the more since we can easily incorporate views which are
expected to generate further outperformance. This result validates both the vast literature
on the BL model and their choice for return and risk estimates.
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Figure 6. Single-period optimization (SPO) Efficient Frontiers.

The BL model is meant to combine this set of prior allocations consisting of equilibrium
views for the entire market (supply equals demand effectively clearing the market) with
a set of conditional views that are provided by investors. A required calculation when
combining any two quantities is the weighting used for each quantity in order to achieve the
end result. The BL model uses the confidence parameter for this exact purpose. The more
confident the investor is in a given view (effectively, the lower the uncertainty in the view),
the more the combined portfolio should be skewed towards it.

In financial markets, as in most fields of human endeavour, confidence is a double-
edged sword. If the investor is confident in a view that ends up exhibiting the expected
results, then portfolio performance is improved. The flip side also needs to be consid-
ered, however. If the investor is confident in a view that does not perform as expected,
then portfolio performance suffers. In Figure 7 we plot the effect on the portfolio weights
from incorporating with 70% confidence both the ‘correct’ view (Germany outperforms
the US by 4% annualized) and the ‘incorrect’ view (the US outperforms Germany by 4%
annualized). As expected, in the ‘correct’ pro-Germany case, all of the capital allocated
to the US gets reallocated to Germany. In the ‘incorrect’ case, the opposite happens. It is
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important to note that the BL model tends to maintain the weights of the securities that
are not part of the investor’s views. This is not true of the original Markowitz framework,
which would have suffered large swings in most assets due to a view (return) change, a
downside initially brought up in Section 3.1.

As expected, the effect of the confidence in each view follows the path mentioned
above. For Figure 8 we performed portfolio optimization only once at the beginning
(1 January 2005), and the weights of the portfolio were entirely left to drift according to the
return realized through price movement for the remainder of the period. As introduced
by Sharpe (1994), the Sharpe ratio measures the excess return per unit of risk, commonly
referred to as the risk-adjusted return. All things equal, a higher Sharpe ratio makes a
portfolio or strategy more desirable. We can observe that introducing the ‘correct’ pro-
Germany view has an increasingly positive effect on Sharpe’s portfolio as confidence
increases. This view’s effect peaks at a 0.23 Sharpe ratio when the confidence increases past
60%. The opposite effect can be seen as confidence in the ‘incorrect’ pro-US view increases.
In this scenario, the Sharpe ratio starts decreasing abruptly between 20-30% confidence
from 0.10 to 0.08 and continues to decrease all the way until 100% confidence. These results
suggest that investigating further how to both set and update the confidence in a given
view is a ripe area of improvement for the Black Litterman model. For this purpose, we
look towards regime-switching models as a natural aid.
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4.2.2. Regime Switching

Since regime-switching is a model designed to track trends, we expect it can be
used successfully to track the outperformance and underperformance of investor views.
The model itself has two key parameters that we would need to arrive at, however. First,
we need to determine how many days we should use to train the model and, second,
what regime probability value we should use as a threshold to allow a regime change to
occur. A regime change would shift our expectations of asset return and standard deviation
from bull regime values to bear regime values and vice versa.

To avoid over-fitting and look-ahead bias, the regime-switching training was per-
formed from 1 January 1997 to 31 December 2005 (separate from Section 4.2.1). We define
for each ETF a training window of a set size, fit a two-state HMM model on the observations
within it and use the model parameters (mean, covariance) together with the last state’s
probabilities to predict properties of the forward return. The package used for HMM fitting
is the hmmlearn open-source package.

To quantify successful predictions, we use the information coefficient. Frequently used
in financial literature on portfolio management, it is a handy metric that tries to quantify a
signal’s predictive power. Equation (13) shows how to compute the coefficient by compar-
ing the direction of the ex-ante predicted signal jpredicteq With the ex-post realized values
as per Grinold and Kahn (2000). This direction comparison is called a win rate and is the
key metric used to compute the information coefficient. In our case, we compare the mean
predicted for the current regime the stock is likely to be in with the realized mean of the
next five trading days. Comparing to a shorter time frame or a different metric such as a
compound return does not make sense since the HMM model is tailored to identify the
stock’s regime rather than the next day’s return. Conversely, comparing the regime mean
with the average return over too long of a period would also not make sense as regimes,
although clustered, change abruptly and can not be expected to remain static too long into
the future. We empirically observed the predicted return forecast’s expected performance
decay at periods longer than a few weeks, further justifying our choice.

Hpredicted = E(.u) = Hbull P(Zn—l = bull) + Mbear * p(zn—l = bear) (12)

IC =2 -winrate — 1 (13)

In order to determine the appropriate length of training data, backtesting was per-
formed on each ETF where the training window was increased from 50 trading days to
1750 trading days, in increments of 50. The information coefficient shows a stable increase
only once incorporating more than 1000 days (4 trading years) of training data for the
HMM model. It reached a peak of 0.195, corresponding to a win rate of 59.75%, at 1700
days (6.75 trading years) as shown in Figure 9. One standard deviation bars were also
plotted to show the variability in the result within the universe cross-section. This heuristic
search was limited to a maximum of 1750 days in our analysis. Although the information
coefficient showed a sign of peaking at 1700 days, it is still possible that an extended
training set could lead to better results. We will be using a training period of 1700 days for
the remainder of the article.

One potential area of improvement is the reduction of variability in the prediction.
When considering the return mean in expectation, any change in the probability of a latent
variable indicating regime one versus regime two will change the expected return mean
over the next period. The probability linearly skews the expectation of return between
the two regimes. This behaviour can introduce unwanted turnover in the portfolio since
changes in returns lead to increased or reduced positions, thus increasing trading costs.
One method that can mitigate this effect for slight changes to probabilities is to increase
the latent variable’s required threshold to be allowed to jump to a new regime. This is
shown in Figure 10a on a 1700 trading days training set to significantly reduce the rate at
which we observe changes in predicted mean return. However, going beyond a threshold
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of 0.985 also sharply reduces the model’s accuracy by forcing it to remain static, although
it had been able to predict a genuine regime change. Interestingly, actual regime changes
(from low mean to high mean and vice versa, regardless of the actual return mean value
itself) are much less frequent (see Figure 10b). For the same training set, the number of
regime changes starts at only 1.99% (regime change days/trading days total) when using a
threshold of 0.7 and remains relatively stable up to a threshold of 0.95. From a threshold of
0.95 to 0.985, the number of regime changes drops by half while the information coefficient
remains relatively unchanged. This implies that a number around 0.975 is a reasonable
choice; this is the threshold we will use throughout the article’s remainder.
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Figure 10. Regime Jump Threshold Effect on IC.

4.2.3. Dynamic View Confidence through Regime Switching

Having shown the regime-switching model’s predictive power, all that remains to
obtain dynamic return and risk estimates is to use its predictions to construct confidence
values as defined in Section 3.3. Given the view performance shown in Figure 3, our ideal
expectations for the confidence prediction for the long EWG and short SPY (EWG > SPY)
from both methods would roughly be low confidence in 2005, increasing confidence from
2006 to mid-2008 and back to low confidence for the remaining period. The short EWG
and long SPY (EWG < SPY) view would intuitively be assigned a similar but opposite
confidence level.

In practice, we observe two unexpected phenomena (Figure 11). First, the confidence
levels provided by the cumulative distribution function (CDF) method exhibit too little
volatility, thus having a minimal potential of affecting the actual allocation one way or
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another. It is worth noting that the direction changes are correct and match our expectations
based on ex-post information. Upon further investigation, this phenomenon is due to the
high degree of daily volatility relative to the view’s low daily mean. Using the CDF of a
distribution with a low mean and high standard deviation would imply that a high absolute
value view return would be needed. A small view return would inevitably result in a CDF
value close to 0.5 (50/50), which is indeed what we observed. Second, the sigmoid method
produces confidence levels that match the expected results very closely, surprisingly also
including short periods of volatility when the confidence in the view craters, presumably
due to fundamental regime shifts in the market.
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Figure 11. Dynamic View Confidence (2005-2009).

Using the sigmoid confidence construction method, we can produce a regime based
confidence level in an investor view that appears to have reasonable predictive value.
However, just having a predictive confidence level for the investor views is not enough to
guarantee outperformance relative to the equilibrium portfolio. We will need to consider
the difficult problem of deciding how closely we should aim for the portfolio to follow
the resulting BL posterior returns. Following them too closely could lead to significant
transaction costs, thus invalidating all of the potential benefits that we might achieve.
Since we are leveraging these return and risk estimates in our multi-period portfolio
optimization model that considers transactions costs, we can adjust the 74 hyper-
parameter with appropriate backtesting.

4.3. Multi-Period Portfolio Optimization

Armed with a set of risk and return estimates that are dynamically adjusted for
regime shifts in the investor views, the open question that remains to be answered is: does
regime-switching based dynamic confidence outperform static confidence? In order to perform
a reasonable comparison, we will be tracking the set of two opposing views analyzed in
Section 3.3: long EWG and short SPY (EWG > SPY) paired with short EWG and long SPY
(EWG < SPY)), both with static confidence of 70% assigned. Given the static confidence
value, there is only a need for one trading period at the view’s initiation and subsequently
at the portfolio manager’s termination of the view.

The period used for the optimization test was chosen to include the analysis from
Section 4.2.1 but also continue until the present day in order to analyze the long term effects
to portfolio performance due to leaving an older view as an input to the BL model with
dynamic confidence. Specifically, the test period ranges from 1 January 2005 to 31 August
2020. Precisely as in Section 4.2.3, the regime-switching training was also performed
with a training window of a set size of 1700 trading days. The J parameter for the Black
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Litterman model was set the same as He and Litterman (2002), a value of 2.5 representing
the world average risk aversion, while for T a value of 4 was selected. Given the use of
dynamic confidence levels, we expect the provided views to be active only when being
realized, thus providing confidence that the investment views should be weighed much
more in computing the return estimates than equilibrium returns. This translates to a
high value for 7. Providing a low value for T implies high confidence in the equilibrium
returns. This leans the model more towards them, which would defeat our empirical tests’
purpose. We want to test using different types of confidence levels for investment views,
not equilibrium returns. As Meucci (2008) mentions, in practice, calibration would be
performed to select an appropriate T value that satisfies the manager’s mandate as to how
closely the equilibrium return benchmark should be followed, as T — 0 the estimated
returns approach the equilibrium returns.

One of the critical problems with the static BL approach is immediately apparent in
Figure 12* where we can observe that an investor view needs not only to be correct but
both the entry and exits points need to be timed right as well. Specifically, the (long EWG,
short SPY) view was indeed a correct view from 2005 to 2008; however, its performance
was choppy and generally trending negative for the next 12 years of data. The opposite
is true for the (short EWG, long SPY) view where performance was initially lagging until
2009; however, it picked up significantly over the remaining period.
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Figure 12. View Returns and Confidence (2005-2020).

4 Returns data only up to 31 August 2020.
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The performance metrics of each view are tracked in Table 2° with the best perfor-
mance belonging to the equilibrium portfolio (containing a large allocation to SPY) closely
followed by the (short EWG, long SPY) view. The initially correct but long term incorrect
(long EWG, short SPY) view underperforms the other two views in all categories by a
significant amount.

Table 2. Performance of Static Confidence (2005-2020).

Ex-Post View Excess Return Excess Risk Maximum Drawdown
Equilibrium 7.98% 20.09% 57.10%
EWG > SPY 6.43% 23.31% 61.64%
EWG < SPY 7.91% 20.32% 57.61%

Figure 12 shows that using the dynamic confidence model proposed can correctly
assign appropriate values for view confidence depending on the underlying asset regimes.
When the underlying regimes corroborate a view’s prediction, the confidence in the view
will increase, while in the opposite case, the confidence will decrease. However, we also
observe sudden shifts in the view confidence likely driven by shorter-term shifts in the
asset regimes. The reduction in unnecessary regime changes would be a ripe area of further
research. For example, Nystrup et al. (2020) find that incorporating higher frequency
data such as intraday rolling means and volatility can improve regime-switching models’
predictive abilities while also providing a parameter that directly penalizes frequent jumps.

Although useful to review the view confidence results relative to view returns for the
entire 15 year period, it is worthwhile to investigate what exact shifts in asset weights the
changes in confidence cause in our portfolio. To achieve this, in Figure 13 we can observe
the asset weight changes over a shorter period (2005-2009) as a result of confidence changes
in the (long EWG, short SPY) view. Starting in 2006, the view shows excellent performance,
gaining almost 40% from the start to January 2007. Given our high activation slope,
the confidence in the view only triggers at the beginning of 2007 but quickly reaches 100%.
Over this period, the portfolio weights remain close to the equilibrium weights, with the
largest allocation being in SPY. Once the view is activated, the portfolio quickly rebalances
to reduce US exposure to zero while building up to 85% exposure to Germany (EWG)
from January 2007 to late 2008. We observe two short periods of view underperformance
that get correctly detected by the regime-switching model during this period and hence
result in an allocation back to SPY from EWG. In 2008, EWG experienced a correction
much sharper than SPY, which the regime-switching model appears to have been slow
to pick up, the turning point in confidence appearing after more than half the correction.
As mentioned earlier, a more reactive regime-switching model using intraday features
similar to Nystrup et al. (2020) could be the answer to improving the regime detection
further and avoid slow regime changes such as the one in 2008.
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Figure 13. Portfolio Weights versus Confidence in the Long EWG, Short SPY View (2005-2009).

Incorporating the dynamic confidence levels introduced in Section 3.3 through the
posterior returns #; and the posterior covariance inside the risk function ¢, we simu-
late the performance of repeatedly solving the multi-period optimization problem from
Equation (1). The hyper-parameters 4% and /4¢ are each sampled from a designated list
ranging from 0.0001 to 100. One, two and five periods in the future are considered in each
multi period optimization, i.e., H € {1,2,5}.

In Figure 14° we observe the efficient frontiers generated by running multiple sim-
ulations of the multi-period optimization model (1) on out-of-sample data as elaborated
in Algorithm 1. We use the sigmoid method to generate dynamic confidence across three
forward horizons. Although the underlying data used to generate the regime predictions
and hence view confidence is of daily granularity, the regime predictions are expecta-
tions of realized asset mean return until its regime shifts, not predictions for the next day.
As elaborated in Section 4.2.2, our focus for performance validation was for the prediction
realization five days ahead. As such, the portfolios were rebalanced at a weekly frequency.
Across the tested horizon values, increasing the horizon shows no significant performance
improvements for the ‘incorrect’ view.

6

Returns data only up to 31 August 2020.
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Figure 157 is the analog of the previous figure, but this time we consider the ‘correct’
view (the opposite). This figure highlights an interesting result that shows the performance
difference that we were expecting when considering multiple future periods. Namely,
when returns are more heavily weighted and thus risk weighted relatively less, a longer
horizon is found to improve the efficient frontier with a lookahead of five periods outper-
forming both one and two periods. Given that we are projecting forward the same constant
returns and risk estimates, the outperformance can only be caused by better trading off the
speed of portfolio shifts with the costs of doing so. More specifically, considering multiple
periods ahead tends to prevent sudden portfolio shifts when the return forecast does not
justify the costs associated with doing so. Figure 14 shows that, across 15 years of trading,
the downsides of this approach (slower positions shifting) are negligible while Figure 15
shows that the upside is tangible. These results show promise that incorporating better
forward return forecasts and trading costs could lead to even better performance.
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Figure 14. Long EWG and Short SPY View Performance (2005-2020).
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Figure 15. Short EWG and Long SPY View Performance (2005-2020).

7 Returns data only up to 31 August 2020.
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Overall, we found that using return and risk estimates that incorporate dynamic
confidence values outperforms the static confidence portfolio for both the ‘correct’” and the
‘incorrect’ view. We find that our model’s efficient frontier during out-of-sample simulation
is higher. Thus, our framework provides higher excess returns for the same excess risk,
regardless of the view it is provided.

5. Conclusions

This paper developed a novel multi-period trading model that allows portfolio man-
agers to perform optimal dynamic asset allocation while easily incorporating their invest-
ment views in the market portfolio. This framework’s significant advantage is its intuitive
design that provides a new quantitative tool for portfolio managers. It incorporates the
latest asset return regimes obtained from Hidden Markov Models (HMMs) to quantitatively
solve the question: how certain should one be that a given investment view is being realized in the
current market?

The main contributions to the existing literature are two-fold. First, we are the first
to develop an optimization model based on return and risk estimates from the Black
Litterman (BL) model in order to solve a portfolio allocation problem across a multi-period
horizon. The BL model combines simple investment views with the market portfolio to
arrive at its risk and return estimates (Black and Litterman 1992). As a result, placing
the BL return and risk estimates in a multi-period framework allows for the introduction
of dynamicity to the problem of optimally trading already provided investment views.
The chosen multi-period horizon does not encompass the entire trading range, instead
spanning a shorter period. This enables the optimization to remain tractable and dynamic
across time since new information about the investment views is incorporated as soon as
it’s realized. The multi-period relaxation method employed, aptly named receding horizon,
is borrowed from model predictive control and was first introduced by Boyd et al. (2017).
Given the increase in trading frequency over static models, convex transaction costs are
also considered in the optimization objective.

Second, we introduce a novel data-driven method to infer dynamically updated
confidence levels for an investor’s views through the use of regime-switching. Using a
sigmoid activation function to obtain the confidence levels from the underlying regimes
was shown to perform better in a numerical example. This method replaces portfolio
managers’ need to provide estimated confidence levels for their views, instead replacing
them with a dynamic quantitative approach generated directly from the latest available
asset returns. The confidence in each view is obtained by computing the view’s expected
regime return (based on each underlying asset’s current regime) and comparing it to the
investor inputted expected return. The more the two forecasts are in agreement, the higher
the confidence obtained and vice versa. The confidence effect size can be configured since
the model has toggles that can increase or decrease the confidence’s reaction to the regime
predicted returns (activate faster or slower). It is worth noting that we do not address the
actual generation of investment views since the optimization problem is focused on trading
provided views effectively.

To empirically test the dynamic advantage of our framework, we isolated two tricky
exactly opposite views, the results of which we obtained through the benefit of hindsight.
The model needs to identify when views are being realized (and allocate capital to them)
and, more importantly, when views are not being realized in the market (and divest capital
from them) to prove useful. We showed that its confidence in the ‘correct’ view increased
as the view was realized, and its confidence in the ‘incorrect’ view decreased when the
returns expected failed to materialize. Our proposed dynamic confidence level-based asset
allocation model, despite its increased trading costs, outperformed realistic BL scenarios
with static confidence levels from a trading perspective. Our framework produced higher
expected returns for the same portfolio risk level in the tested tricky numerical examples.
Further, optimizing for multiple periods ahead (two or five) showed increased performance
over a single period model when returns are emphasized more than risk.
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In conclusion, we have shown our framework to be intuitive, tractable and improve
performance (risk-adjusted return) over static Black-Litterman allocations through its abil-
ity to adjust to market conditions and asset regimes dynamically. This dynamicity allows it
to allocate a risk budget away from underperforming investment views and into outper-
forming ones shortly after the latest price information is realized. Further investigation
into the implications of trying to satisfy multiple investment views simultaneously, us-
ing higher frequency data for regime predictions, sensitivity analysis to trading frequency,
incorporating multiple return forecasts and optimal execution sequences into the portfolio
optimization problem is left for further research. The framework has been made available
as an open-source library to facilitate future investigations and its use as an investment tool.
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