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Abstract: In this paper, we estimate the Shannon entropy S( f ) = −E [log( f (x))] of a one-sided linear
process with probability density function f (x). We employ the integral estimator Sn( f ), which utilizes
the standard kernel density estimator fn(x) of f (x). We show that Sn( f ) converges to S( f ) almost
surely and in Ł2 under reasonable conditions.

Keywords: linear process; kernel entropy estimation; Shannon entropy

1. Introduction

Let f (x) be the common probability density function of a sequence {Xn}∞
n=1 of identically

distributed observations. The associated Shannon entropy

S( f ) = E [− log f (X)] = −
∫

f (x) log f (x) dx (1)

of such an observation was first introduced by Shannon (1948). In his 1948 paper, Shannon utilized
this tool in his mathematical investigation of the theory of communication. Today, entropy is widely
applied in the fields of information theory, statistical classification, pattern recognition and so on,
since it is a measure of the amount of uncertainty present in a probability distribution.

In the literature, several estimators for the Shannon entropy have been introduced.
See Beirlant et al. (1997) for an overview. Many of these estimators have been studied in cases where
the data are independent. In 1976, Ahmad and Lin (1976) obtained results using the resubstitution
estimator Hn = − 1

n ∑n
i=1 ln fn(Xi) for independent data {Xi}n

i=1. In particular, he showed consistency
in the first and second mean under certain regularity conditions. Here, fn(x) is the kernel density
estimator. Dmitriev and Tarasenko (1973) reported results in 1973 for estimating functionals of the type∫

H
(

f (x), f ′(x), . . . , f k(x)
)
dx, where the common density f (x) of the independent Xi is assumed to

have at least k derivatives. Plugging in kernel density estimators (see their paper and references therein)
for the arguments of H and integrating only over the symmetric interval [−kn, kn], which is determined
by a sequence {kn}∞

n=1 of a certain order, they provided a result for the estimation of Shannon entropy
using the estimator that Beirlant et al. (1997) refer to as the integral estimator. Their results give
conditions for almost sure convergence.

Interestingly enough, Dmitriev and Tarasenko (1973) also provided (because their work is a
more general investigation of functionals) a result for the estimation of the quadratic Rényi entropy
Q( f ) =

∫
f 2(x)dx. Conditions are provided specifically for the almost sure convergence of their

estimator to the true value Q( f ). The estimation of Rényi entropy for the dependent case is challenging.
A dependent case is treated by Sang et al. (2018). They studied the estimation of the quadratic Entropy
for the one-sided linear process. Utilizing the Fourier transform along with the projection method,
they demonstrate that the kernel entropy estimator satisfies a central limit theorem for short memory
linear processes.
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To study the Shannon entropy for dependent data is also a challenging problem, and to the best
of our knowledge, general results for the Shannon entropy estimation of regular time series data are
still unknown. In this paper, we study the Shannon entropy S( f ) for the one-sided linear process

Xn =
∞

∑
i=0

aiεn−i, (2)

where the innovations εi are independent and identically distributed real valued random variables
on some probability space (Ω,F ,P) with mean zero and finite variance σ2

ε and where the collection

{ai : i ≥ 0} of real coefficients satisfies
∞
∑

i=0
a2

i < ∞. Additionally, we will require that the common

density fε(x) of the innovations be bounded. The estimator we utilize employs the kernel method,
which was first introduced by Rosenblatt (1956); Parzen (1962). The kernel estimator will be denoted by

fn(x) =
1

nhn

n

∑
i=1

K
(

x− Xi
hn

)
, (3)

where the sequence {hn}∞
n=1 provides the bandwidths, and K : R→ R is the kernel function which

satisfies
∫
R K(x)dx = 1. Typically, the kernel function is a probability density function.

This method has proven to be successful in estimating probability density functions and their
derivatives, regression functions, etc., in both the independent and dependent setting. For the
independent setting, see the books (Devroye and Györfi (1985); Silverman (1986); Nadaraya (1989);
Wand and Jones (1995); Schimek (2000); Scott (2015)) and the references therein. For the dependent
setting, we refer the reader to (Tran (1992); Honda (2000); Wu and Mielniczuk (2002); Wu et al. (2010)).
Bandwidth selection is an important issue in kernel density estimation, and there is a lot of research in
this direction. See, e.g., Duin (1976); Rudemo (1982); Slaoui (2014 2018).

A few remarks about notation and terms used in the paper follow. Let {an}∞
n=1 and {bn}∞

n=1 be
real-valued sequences. By an = o(bn) we understand that an/bn → 0 and an = O(bn) means that
lim sup |an/bn| < C for some positive number C. Essentially, this is the standard Landau little oh and
big oh notation. When we write, an � bn, we mean an = o(bn), and as one might guess, bn � an means
an � bn. We also employ the notation an � bn to indicate that 0 < lim infn→∞

an
bn
≤ lim supn→∞

an
bn

<

∞. A function l : [0, ∞)→ R is referred to as slowly varying (at ∞) if it is positive and measurable on
[A, ∞) for some A ∈ R+ such that lim

x→∞
l(λx)/l(x) = 1 holds for each λ ∈ R+. The set of all functions

g : R → R which are Hölder continuous of some order r will be denoted as Cr(R). That is, for each
g ∈ Cr(R) there exists Cg ∈ R+, such that for all x, x′ ∈ R, we have |g(x) − g(x′)| ≤ Cg|x − x′|r,
and when r = 1, we recognize this as the well-known Lipschitz condition. The notation Łp(E) with
0 < p < ∞ represents the set of all real-valued functions f defined on some measure space (E,A, µ)

having the property that
∫

E | f (x)|p dµ < ∞. In the case that E = R and unless otherwise specified,
the measure µ is tacitly understood to be Lebesgue measure and A is assumed to contain the Borel sets.
Ł∞(E) refers to the set of real-valued functions defined on E which are bounded almost everywhere.
Whenever the domain space of the function is understood, we may simply write Łp.

The following are bandwidth, kernel, and density conditions that we shall refer to throughout
this paper:

B.1 hn � (n−1 log n)
1
5 ;

K.1 K ∈ C ι(R) for some ι ∈ (0, 1] is bounded with bounded support;
K.2

∫
uK(u) du = 0;

D.1 fε, f ′ε , f ′′ε ∈ Ł∞(R);
D.2 fε, f ′ε , f ′′ε ∈ Ł2(R);
D.3 f ′′ ∈ Ł∞(R).

Notice that the bandwidth, kernel, and density conditions are prefixed using B, K,
and D, respectively.
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In this first section, we have provided an introduction to the problem, a survey of past research
in this area, and the notation to be used throughout. The main results are reported in Section Two.
In Section Three, we present the proofs of the main results. Finally, the Appendix A introduces the
reader to foundational results, which will be required in the proof of our main results.

2. Main Results

If {εi : i ∈ Z} is a sequence of independent and identically distributed random variables over
a common probability space (Ω,F ,P) in Łq(Ω) for some q > 0, E εi = 0 when q ≥ 1, and {ai}∞

i=0 is

a sequence of real coefficients such that
∞
∑

i=0
|ai|2∧q < ∞, then the linear process Xn given in (2) exists

and is well-defined. For the case q ≥ 2 where the innovations have finite variance, we say that the

process has short memory (short-range dependence) if
∞
∑

i=0
|ai| < ∞ and

∞
∑

i=0
ai 6= 0 and long memory

(long-range dependence) otherwise. Throughout, we assume that each εi ∈ Łq with q ≥ 2.

Let f (x) be the probability density function of the linear process Xn =
∞
∑

i=0
aiεn−i, n ∈ N defined in

(2). In this paper, we estimate the Shannon Entropy −
∫

f (x) log f (x) dx of the linear process. To do
this, we employ the integral estimator

Sn( f ) = −
∫

An
fn(x) log fn(x) dx, (4)

where fn(x) is the standard kernel density estimator defined in (3). The (random) sets An are given by

An = {x ∈ R : 0 < γn ≤ fn(x)}, (5)

where {γn}∞
n=1 is an appropriately defined sequence in R+ that converges to zero.

Our estimator utilizes the kernel method of density estimation, and we will accordingly require
adherence of the kernel to certain conditions. In addition, we impose some conditions on the
bandwidths and on some of the densities of the problem. These conditions were listed in the previous
section. Based on these conditions, let us consider the properties of the estimator (4). We proceed in a
manner similar to the analysis done by Bouzebda and Elhattab (2011) for the independent case.

Theorem 1. Let {Xn : n ∈ N} be the linear process given in (2), and assume that it has short memory.
Furthermore, assume that S( f ) is finite. If the bandwidth, kernel, and density conditions listed earlier are
satisfied, then

lim sup
n→∞

(
n γ5

n
log n

) 2
5
∣∣∣∣ Sn( f )−

∫
An

(
− log f (x)

)
f (x) dx

∣∣∣∣
is bounded almost surely whenever the condition γn � hn is imposed on the sequence {γn}∞

n=1.

Corollary 1. If the conditions of Theorem 1 hold, then we have

lim
n→∞

|Sn( f )− S( f )| = 0

almost surely.
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Theorem 2. Let {Xn : n ∈ N} be the linear process given in (2), and assume that it has short memory.
Furthermore, assume that S( f ) is finite. If the bandwidth, kernel, and density conditions listed earlier are
satisfied, then

lim sup
n→∞

(
n γ5

n
log n

) 2
5
∥∥∥∥ Sn( f )−

∫
An

(
− log f (x)

)
f (x) dx

∥∥∥∥
2

(6)

is bounded whenever the condition γn � hn is imposed on the sequence {γn}∞
n=1.

Corollary 2. If the conditions of Theorem 2 hold, then the mean squared error (MSE) satisfies

lim
n→∞

MSE(Sn( f )) = 0.

Remark 1. In this paper, we work on the entropy estimation for short memory linear processes by applying the
integral method. It is interesting to know whether the similar results hold for long memory linear processes. It is
also interesting to know whether the resubstitution method works for dependent data such as linear processes.
However, the research in these directions are beyond the scope of this paper. We leave research in these directions
for future work.

Remark 2. In a wide range of disciplines, including finance, geology, and engineering, many time series may be
modeled using a linear process. In such instances, our result provides a method for estimating the associated
Shannon Entropy. One example is the discriminatory data on the arrival phases of earthquakes and explosions,
which were captured at a seismic recording station. Another example is the data about returns on the New York
Stock Exchange. See these and many other time series data in the book by Shumway and Stoffer (2011) and other
books on time series.

3. Proofs

Lemma 1. If the conditions of Theorem 1 (or Theorem 2) hold, then

sup
x∈R

∣∣ fn(x) − f (x)
∣∣ = O

((
log n

n

) 2
5
)

(7)

almost surely.

Proof. This lemma follows from Theorem 2 of Wu et al. (2010) (see their discussion immediately after
the statement of Theorem 2 and in the penultimate paragraph of section 4.1). See also the discussion in
the Appendix A on fundamental results.

Lemma 2. If the conditions of Theorem 1 (or Theorem 2) hold, then

γ5
n �

log n
n

. (8)

Proof. Because hn � (n−1 log n)
1
5 , there exists C ∈ R+ such that

h5
n

n−1 log n
> C
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for sufficiently large n. Therefore,

lim
n→∞

γ5
n

n−1 log n
= lim

n→∞

γ5
n

h5
n
· h5

n
n−1 log n

≥ C lim
n→∞

(
γn

hn

)5

→ ∞

as n→ ∞, from which (8) follows.

Note. Our use of Lemma 2 in the proofs of Theorems 1 and 2 will be tacit.

Lemma 3. If ν is a finite signed measure that is absolutely continuous with respect to a measure µ,
then corresponding to every positive number ε there is a positive number δ such that |ν|(E) < ε whenever E is a
measurable set for which µ(E) < δ.

Proof. This is a basic result from measure theory. See, for example, Theorem B of Halmos (1974) in
section 30.

Proof of Theorem 1. We begin with the decomposition

Sn( f )−
∫

An

(
− log f (x)

)
f (x) dx

= −
∫

An
fn(x) log fn(x) dx +

∫
An

f (x) log f (x) dx

= −
∫

An
fn(x) log fn(x) dx +

∫
An

f (x) log fn(x) dx

−
∫

An
f (x) log fn(x) dx +

∫
An

f (x) log f (x) dx

= In,1 + In,2,

(9)

where

In,1 := −
∫

An

[
fn(x) − f (x)

]
log fn(x) dx,

and

In,2 := −
∫

An
f (x)

[
log fn(x) − log f (x)

]
dx.

First, we consider In,1. Using the inequality

| log z| ≤ z +
1
z

for z ∈ R+, we notice that for all x ∈ An, we have

∣∣ log fn(x)
∣∣ ≤ fn(x) +

1
fn(x)

=

(
1 +

1
( fn(x))2

)
fn(x)

≤
(

1 +
1

γ2
n

)
fn(x).
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It follows that ∣∣In,1
∣∣ ≤ sup

x∈R

∣∣ fn(x) − f (x)
∣∣ ∫

An

∣∣ log fn(x)
∣∣ dx

≤
(

1 +
1

γ2
n

)
sup
x∈R

∣∣ fn(x) − f (x)
∣∣, (10)

since fn(x) integrates to unity over the real line.
Next, we consider In,2. Since the set over which we are integrating may be changed to

An ∩ {x : f (x) > 0} without affecting the value of In,2, we may assume that f is positive on An.
Using the inequality

log z ≤ |z− 1|+ |z−1 − 1|

for z ∈ R+, we notice that for all x ∈ An, we have

∣∣ log fn(x) − log f (x)
∣∣ = ∣∣∣∣ ln

(
fn(x)
f (x)

)∣∣∣∣
≤
∣∣∣∣ fn(x)

f (x)
− 1
∣∣∣∣+ ∣∣∣∣ f (x)

fn(x)
− 1
∣∣∣∣

=

∣∣∣∣ fn(x)− f (x)
f (x)

∣∣∣∣+ ∣∣∣∣ f (x)− fn(x)
fn(x)

∣∣∣∣
=

(
1 +

fn(x)
f (x)

)∣∣∣∣ fn(x)− f (x)
fn(x)

∣∣∣∣
≤ C

γn

∣∣ fn(x)− f (x)
∣∣,

(11)

if we can justify the existence of C ∈ R+. To that end, define

εn = sup
x∈An

∣∣ fn(x) − f (x)
∣∣,

and note that for all x ∈ An, we have∣∣∣∣1− f (x)
fn(x)

∣∣∣∣ ≤ εn

fn(x)
≤ εn

γn
.

Taking the supremem over An yields

sup
x∈An

∣∣∣∣1− f (x)
fn(x)

∣∣∣∣ ≤ εn

γn
= γ−1

n εn

≤ Cγ−1
n

/(
n

log n

) 2
5

,

by Lemma 1. Note that

γ−1
n = o

((
n

log n

) 2
5
)

,
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since

lim
n→∞

γ−1
n( n

log n
) 2

5
= lim

n→∞

( log n
n
) 2

5

γn

= lim
n→∞

( log n
n

γ5
n

log n
n
1

) 1
5

= 0.

This guarantees the existence we sought to establish. We continue with

∣∣In,2
∣∣ ≤ C

γn
sup
x∈R

∣∣ fn(x) − f (x)
∣∣ ∫

An
f (x) dx

≤ C
γn

sup
x∈R

∣∣ fn(x) − f (x)
∣∣, (12)

since fn(x) integrates to unity over the real line.
In view of (9), (10) and (12), we have shown that∣∣∣∣Sn( f )−

∫
An

(
− log f (x)

)
f (x) dx

∣∣∣∣ (13)

≤
(

1
γ2

n
+

C
γn

+ 1
)

sup
x∈R

∣∣ fn(x) − f (x)
∣∣. (14)

Therefore,

lim sup
n→∞

(
n γ5

n
log n

) 2
5
∣∣∣∣Sn( f )−

∫
An

(
− log f (x)

)
f (x) dx

∣∣∣∣
≤ lim sup

n→∞

(
n

log n

) 2
5

γ2
n

(
1

γ2
n
+

C
γn

+ 1
)

sup
x∈R

∣∣ fn(x) − f (x)
∣∣

= lim sup
n→∞

(
γ2

n + Cγn + 1
)( n

log n

) 2
5

sup
x∈R

∣∣ fn(x) − f (x)
∣∣,

where the last expression is constant almost surely by Lemma 1 and since γn → 0.

Proof of Corollary 1. By the triangle inequality

|Sn( f )− S( f )| ≤ Jn,1 + Jn,2,

where

Jn,1 =

∣∣∣∣Sn( f )−
∫

An

(
− log f (x)

)
f (x) dx

∣∣∣∣
and

Jn,2 =

∣∣∣∣ ∫An

(
− log f (x)

)
f (x) dx− S( f )

∣∣∣∣.
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Since Jn,1 → 0 almost surely by Theorem 1, we only need to contend with Jn,2. That is, we need to
show that ∫

Ac
n

f (x) log f (x) dx → 0 (15)

almost surely as n→ ∞.
For any Borel measurable set E, consider

P(E) =
∫

E
f (x) dx,

and define the signed measure

ν(E) = −
∫

E
log f (x) dP.

Since |S( f )| < ∞, both ν+ and ν− are finite measures, and thus, ν is a finite signed measure that
is absolutely continuous with respect to P. Because of Lemma 3, it suffices for us to demonstrate that

P(Ac
n)→ 0

almost surely. For any x ∈ Ac
n, we have fn(x) < γn. By Lemma 1, there exists C ∈ R+ such

that f (x) ≤ fn(x) + | fn(x)− f (x)| < γn + C
( log n

n
) 2

5 almost surely, and hence, we have shown that
Ac

n ⊆ Bn almost surely, where

Bn :=
{

x : f (x) < γn + C
(

log n
n

) 2
5
}

.

It is easy to see that

0 ≤ P(Ac
n) ≤ P(Bn)→ 0

almost surely, since γn + C
( log n

n
) 2

5 → 0 as n→ ∞.

Proof of Theorem 2. We start with∥∥∥∥Sn( f )−
∫

An

(
− log f (x)

)
f (x) dx

∥∥∥∥
2

≤
∥∥∥∥Sn( f ) +

∫
An

fn(x) log f (x) dx
∥∥∥∥

2

+

∥∥∥∥ ∫An
fn(x) log f (x) dx−

∫
An

f (x) log f (x) dx
∥∥∥∥

2

=: Kn,1 + Kn,2.
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Recall inequality (11) in the proof of Theorem 1. Arguing in a similar manner as before, we can
demonstrate the existence of C1 ∈ R+ so that

Kn,1 =

∥∥∥∥ ∫An
fn(x)

[
log f (x)− log fn(x)

]
dx
∥∥∥∥

2

=

∥∥∥∥ ∫An
fn(x) log

f (x)
fn(x)

dx
∥∥∥∥

2

≤
∥∥∥∥ ∫An

fn(x)
∣∣∣∣ log

f (x)
fn(x)

∣∣∣∣ dx
∥∥∥∥

2

≤
∥∥∥∥ ∫An

C1

γn
| fn(x)− f (x)| fn(x) dx

∥∥∥∥
2

≤ C1

γn

(
log n

n

) 2
5
∥∥∥∥ ∫x∈An

fn(x) dx
∥∥∥∥

2

≤ C1

γn

(
log n

n

) 2
5

.

Notice also that

Kn,2 =

∥∥∥∥ ∫An
[ fn(x)− f (x)] log f (x) dx

∥∥∥∥
2

≤
∥∥∥∥ ∫An

∣∣ fn(x)− f (x)
∣∣ log f (x) dx

∥∥∥∥
2

≤ C2

(
log n

n

) 2
5
∥∥∥∥ ∫An

(
f (x) +

1
f (x)

)
dx
∥∥∥∥

2

≤ C2

(
log n

n

) 2
5
[

1 +
∥∥∥∥ ∫An

fn(x)
f (x)

1
f 2
n(x)

fn(x) dx
∥∥∥∥

2

]

≤ C2

(
log n

n

) 2
5
(

1 +
C3

γ2
n

)
.

Therefore,

(
n γ5

n
log n

) 2
5
∥∥∥∥Sn( f )−

∫
An

(
− log f (x)

)
f (x) dx

∥∥∥∥
2

≤
(

n
log n

) 2
5

γ2
n

[
C1

γn

(
log n

n

) 2
5

+ C2

(
log n

n

) 2
5
(

1 +
C3

γ2
n

)]
= C1γn + C2γ2

n + C2C3,

from which the result follows.

Proof of Corollary 2. Note the decomposition√
MSE(Sn( f )) =

∥∥Sn( f )− S( f )
∥∥

2

≤
∥∥∥∥Sn( f )−

∫
An

(
− log f (x)

)
f (x) dx

∥∥∥∥
2

+

∥∥∥∥ ∫An

(
− log f (x)

)
f (x) dx− S( f )

∥∥∥∥
2

=: Mn,1 + Mn,2.
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By Theorem 2, Mn,1 → 0. Now, let

Wn =
∫

x∈R

∫
y∈R

f (x) f (y) log f (x) log f (y) I
(
(x, y) ∈ Ac

n × Ac
n
)

dx dy

and
W =

∫
x∈R

∫
y∈R

f (x) f (y)
∣∣ log f (x) log f (y)

∣∣ dx dy.

Recall from (15) in the proof of Corollary 1 that Wn → 0 almost surely. Because |S( f )| < ∞,
it follows that W < ∞, and moreover, |Wn| ≤W. Hence,

M2
n,2 =

∥∥∥∥ ∫Ac
n

f (x) log f (x) dx
∥∥∥∥2

2

=

∥∥∥∥ ∫R f (x) log f (x) I(x ∈ Ac
n) dx

∥∥∥∥2

2

= E [Wn],

(16)

and the Lebesgue Dominated Convergence Theorem guarantees that

lim
n→∞

M2
n,2 = lim

n→∞
E [Wn] = E

[
lim

n→∞
Wn

]
= E [0] = 0,

thereby proving the corollary.
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Appendix A

In the paper Wu et al. (2010), Wu et al. establish results that are very useful in the proof section.
Here, we briefly survey their definitions and results which show that the kernel density estimator
for one-sided linear processes enjoys properties similar to the independent case—see Stute (1982).
Their work identifies conditions under which the kernel density estimator enjoys strong uniform
consistency for a wide class of time series. Included is the linear process in (2).

As is common in analysis of time series, we allude to an independent and identically distributed
collection {εi : i ∈ Z} of random variables, typically referred to as the innovations. Note that many
time series models fit the form

Xn = J(· · · , εn−1, εn), (A1)

which regards the Xn as a system dependent on the innovations. Note here that J is some measurable
function which is referred to as the filter. In this context, we also need to define the sigma algebras

Fn = σ{εn, εn−1, · · · },
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where n ∈ Z. In addition, let ε′0 be an independent and identical copy of ε0 which is, of course,
independent of all the εi. For n ≥ 0, define

F ∗n = σ{εn, εn−1, · · · , ε1, ε′0, ε−1, · · · },

and for n < 0, put F ∗n = Fn.
Define the l-step ahead conditional distribution by

Fl(x|Fk) = P(Xl+k ≤ x|Fk),

where l ∈ N and k ∈ Z. When it exists, the l-step ahead conditional density is

fl(x|Fk) =
d

dx
Fl(x|Fk).

As Wu et al. (2010) note, a sufficient condition for the existence of a marginal density of (A1) is
that f1(x|F0) exists and is uniformly bounded almost surely by some M ∈ R+. We shall refer to this as
the marginal condition. Similarly, Fl(x|F ∗k ) = P(X∗l+k ≤ x|F ∗k ), where X∗l+k = Xl+k − al+kε0 + al+kε′0
if l + k ≥ 0 and X∗l+k = Xl+k if l + k < 0. Also, fl(x|F ∗) = d

dx Fl(x|F ∗k ).
With this setup, the authors introduce the following measures of the dependence present in the

system (A1). Now, for k ≥ 0, define a pointwise measure of difference by

θk(x) = ‖ f1+k(x|F0)− f1+k(x|F ∗0 )‖2

and an Ł2-integral measure of difference over R by

θ(k) =
[ ∫

R
θ2

k (x) dx
] 1

2

.

Finally, define an overall measure of difference by

Θ(n) = ∑
j∈Z

( n−j

∑
k=1−j

∣∣θ(k)∣∣)2

.

The distances on the derivatives are defined similarly, as given below.

ψk(x) = ‖ f ′1+k(x|F0)− f ′1+k(x|F ∗0 )‖2,

ψ(k) =
[ ∫

R
ψ2

k(x) dx
] 1

2

, and

Ψ(n) = ∑
j∈Z

( n−j

∑
k=1−j

∣∣ψ(k)∣∣)2

.

With this setup, we can now report the following result of (Wu et al. 2010, Theorem 2).

Theorem A1. Assume that, for some positive r and s, we have that K ∈ Cr is a bounded function with
bounded support and that Xn ∈ Łs. Further, assume the marginal condition, and assume that Θ(n) + Ψ(n) =
O(nα l̃(n)), where α ≥ 1 and where l̃ is a slowly varying function. If log n = o(nhn), then

sup
x∈R

∣∣ fn(x)−E fn(x)
∣∣ = O

(√
log n
nhn

+ n−
1
2 l(n)

)
,

where l(n) is another slowly varying function.
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Now consider our particular case when the filter is the linear process of (2). In view of our
assumption that the innovations have finite variance and because we assume the coefficients are
square-summable, Xn ∈ Ł2. Moreover, we assume all of the bandwidth, kernel, and density conditions
listed earlier, from which it easily follows that the marginal condition is satisfied. For the short
memory linear process (under the aforementioned assumptions), Wu et al. (2010) demonstrated
that Θ(n) + Ψ(n) = O(n). Also, notice that condition B.1 implies that log n = o(nhn). Therefore,
the theorem of Wu et al. (2010) applies to (2).

In addition, the well-known Taylor series argument under the conditions K.2 and K.3, as well as
D.3, yields

sup
x∈R

∣∣E [ fn(x)]− f (x)
∣∣ = O(h2

n),

so, collectively, we see that

sup
x∈R

∣∣ fn(x)− f (x)
∣∣ = O

(√
log n
nhn

+ n−
1
2 l(n) + h2

n

)
.

Basic methods of differential calculus show that
√

log n
nhn

+ h2
n is minimized when hn satisfies B.1.

Indeed, the optimum value of hn has the exact order of
(

log n
n

) 1
5

.
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