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Abstract: As the American early exercise results in a free boundary problem, in this article we
add a penalty term to obtain a partial differential equation, and we also focus on an improved
definition of the penalty term for American options. We replace the constant penalty parameter with
a time-dependent function. The novelty and advantage of our approach consists in introducing
a bounded, time-dependent penalty function, enabling us to construct an efficient, stable, and adaptive
numerical approximation scheme, while in contrast, the existing standard approach to the penalisation
of the American put option-free boundary problem involves a constant penalty parameter. To gain
insight into the accuracy of our proposed extension, we compare the solution of the extension to
standard reference solutions from the literature. This illustrates the improvement of using a penalty
function instead of a penalising constant.
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1. Introduction

As American options give the holder the right to exercise the option before and at maturity,
this leads to free boundary value problems which have to be solved numerically. Several schemes
for solving American option problems have been proposed, such as the projected SOR scheme
(Cryer 1971; Wilmott et al. 1993), the binomial method, front-fixing schemes (Nielsen et al. 2002),
the power penalty method (Wang et al. 2006), and Monte Carlo simulation techniques. These schemes
compute the free boundary value implicitly. Other researchers focused on an explicit representation of
the free boundary value (Lauko and Ševčovič 2010; Stamicar et al. 1999; Zhu 2006).

Another approach to solving American option problems is to add a penalty term to the
problem (Günther and Jüngel 2010; Nielsen et al. 2002; Wang et al. 2006). A penalty term forces
the problem to fulfill the free boundary constraint asymptotically. If the free boundary constraint
is fulfilled, the penalty term is zero, otherwise it penalizes the problem with a factor. Until now,
the penalty term included a penalisation constant being roughly estimated by an educated guess or
an optimization. The recent approach of the power penalty function (Wang et al. 2006) improves the
convergence and accuracy by introducing a non-constant penalization function of a given power form.
Here, we further improve the performance of the penalization by replacing the penalty constant with
a general penalty function, allowing for an adaptive penalization to be determined in a consistent way
while solving the partial differential equation (PDE). An explicit formulation for the derivation of the
parameters of the penalty function is part of our further research.

Once we add a penalty term to the American option problem, the problem reduces to a PDE
on a fixed domain and we can apply standard numerical methods, such as finite difference methods
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or finite element methods. In front-fixing schemes, a change of variables is used to obtain a PDE
on a fixed domain. Through the change of variables, the free boundary value is tracked implicitly
(Han and Wu 2003; Schwartz 1977). In our approach, the domain is fixed by the initial guess of the
free boundary value obtained by the intersection point of the payoff and the exact solution of the
Black–Scholes equation. The penalisation of a time-step depends on the solution itself in comparison
with the payoff (Günther and Jüngel 2010; Nielsen et al. 2002). Our presented penalty term is bounded
by an initial guess of the free boundary value, and is thus independent from the solution of the last
time-step. The usual approach to penalisation of the American put option-free boundary problem
involves a small parameter, making the numerical analysis harder. The novelty and advantage of our
approach consists in introducing a bounded penalty function, enabling us to construct an efficient and
stable numerical approximation scheme.

The outline of this article is as follows. Section 2 reviews the mathematical modeling for
an American option with and without a penalty term. As a benchmark, we chose the classical
Black–Scholes equation and use a variable transformation to simplify our computations and add
the penalty function. In Section 3 the model is discretized, and the numerical results of the different
test cases are presented in Section 4. In Section 5 we conclude this work with a brief outlook.

2. Mathematical Modeling

American options are more expensive than European options, as American options give the holder
the right to exercise the option before the maturity T. In the following, we will focus on American
put options for clearness of the idea, but as it can be seen in the numerical results, all assumptions
also hold analogously for the American call options. For pricing an American put option P with the
Black–Scholes model, we seek a pair of functions

(
P(S, t), S f (t)

)
such that

LBSM[P] ≡ ∂P
∂t

+
σ2

2
S2 ∂2P

∂S2 + (r− q)S
∂P
∂S
− rP≤0, 0 ≤ t ≤ T,

(K− S)+ = P(S, t) for S ≤ S f (t),

(K− S)+ < P(S, t) for S > S f (t),

(1)

where K denotes the predefined strike price, r is the risk-free interest rate, q is the dividend rate, σ is
the volatility, S is the price of an asset, and S f (t) is the free boundary value at time t with 0 ≤ t ≤ T.
In (1), we used the standard notation ( f )+ := max( f , 0). The differential operator appearing in the
Black–Scholes PDE (1) is abbreviated by LBSM.

The terminal condition at maturity t = T reads

P(S, T) = (K− S)+, (2)

and the "spatial" boundary conditions at S = S f (t), S→ ∞, are given by

P
(
S f (t), t

)
=
(
K− S f (t)

)+,
∂P
∂S
(
S f (t), t

)
= −1, lim

S→∞
P(S, t) = 0, 0 ≤ t ≤ T.

The American Put option problem can be split into two regions: the exercise region 0 ≤ S ≤ S f (t),
and the holding region S > S f (t). In the holding region, the American Put option problem follows the
Black–Scholes equation for the European Put option

LBSM[P](S, t) = 0, S > S f (t).

For the exercise region, P(S, t) = (K− S)+ has to hold. By inserting this condition into LBSM[P](S, t),
we obtain

LBSM[(K− S)+] = −rS− r(K− S) = −rK < 0, (3)
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fulfilling the condition (1). We obtain a case system for the American put option problem

LBSM[P](S, t) = g(S, t)

{
−rK, 0 < S ≤ S f (t),

0, S > S f (t).
(4)

To simplify the computational effort, we transform the problem (4) into the result that we obtain on
the left-hand side of the heat equation. This transformation is well-known for the European options,
since the heat equation has an analytical solution and is analysed very often. Since the right-hand
side is in comparison to the European Put options unequal to zero, we sketch the transformation in
more detail.

2.1. Transformation

For the rewriting of the problem (4), we use the standard transformations

x = ln
( S

K

)
, τ =

σ2

2
(T − t), v(x, τ) =

P(S, t)
K

(5)

and use the chain rule

−σ2

2
Kvτ +

σ2

2
S2 K

S
(vxx − vx) + rS

K
S

vx − rKv =

{
−rK, x ≤ x f (τ),

0, x > x f (τ),

where x f (τ) = ln(S f (τ)/K) denotes the free boundary value for x. We simplify this equation and
divide by −σ/2

vτ − vxx + (1− k)vx + kv =

{
k, x ≤ x f (τ),

0, x > x f (τ),
(6)

with k = 2r
σ2 . In the last step, we use the transformation u(x, τ) = exp(αx + βτ)v(x, τ) =

e(x, τ)v(x, τ), where

α = −1
2
(k− 1) and β = −1

4
(k + 1)2. (7)

We obtain the transformed problem

uτ − uxx = g̃(x, τ) = exp(−αx− βτ)

{
k x ≤ x f (τ),

0, x > x f (τ).
(8)

with the transformed terminal condition (2)

f (x, τ) = exp
(
−αx− βτ

) (
1− exp(x)

)+, (9)

supplied with the initial and boundary conditions

u(x, 0) = f (x, 0), x ∈ R, lim
x→±∞

(
u(x, τ)− f (x, τ)

)
= 0, 0 ≤ τ ≤ T. (10)

2.2. The Penalty Term

For the penalty term, we chose an affine function,

δ(t) = at + b, (11)
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in a way that the penalisation function is given by p(S, t) = δ(t)g(S, t). This choice preserves the
novelty of this approach, as the known penalty terms are neither bounded nor independent from the
solution itself (Günther and Jüngel 2010; Nielsen et al. 2002). The penalised case system for (4) reads

LBSM[P](S, t) = δ(t) · g(S, t). (12)

At t = T, the terminal condition (2) and (3) has to hold, and we set p(t) = a(T − t) + 1. Similarly,
we chose an affine function δ̃(τ) = ãτ + b as a penalisation term for the penalisation function p̃ =

δ̃(τ)g̃(x, τ) for the transformed case system (8). Since the relation between u(x, τ) and P(S, t) is
given by

u(x, τ) =
1
K

exp
(
−αx− βτ

)
P(S, t),

the same relation has to hold for the penalised right-hand side. We focus only on the exercise region
since the right-hand side of the holding region is always zero. As with t, we step forward in time, and
with τ backward, 1

K exp(−αx− βτ)p(S, t) = − p̃(x, τ) can be assumed. We thus obtain

−rK
K

exp(−αx− βτ)(a(T − t) + 1) = −(ãτ + b̃) exp(−αx− βτ)
2r
σ2

a(T − t) + 1 = (ã
σ2

2
(T − t) + b)

2
σ2

σ2

2
= b.

The transformed case system with the bounded penalisation function is given by

uτ − uxx = p̃(x, τ) = (ã +
σ2

2
)

{
k exp(−αx− βτ), x ≤ x f (τ)

0, x > x f (τ)
, (13)

supplied with the initial and boundary conditions

u(x, 0) = f (x, 0), x ∈ R, lim
x→±∞

(
u(x, τ)− f (x, τ)

)
= 0, 0 ≤ τ ≤ T. (14)

Our approach requires an initial guess for the free boundary value. Since the price of an American
option is larger than or equal to the price of the corresponding European option, we can use the
intersection point x̄ f (τ) between the payoff and the solution of the European Put option as the initial
guess for the free boundary value x f (τ), with the result that the bounded penalty term forces the
PDE (12) to fulfill the conditions (1) asymptotically. As the approximation of the free boundary and
the analysis for the approximation is one of the main research areas in the field of American options,
well-known approximation formulas can be found in the literature, such as the approximations from
Zhu (2006), Stamicar et al. (1999), and Evans et al. (2002). Each of those formulations can be considered
to gain the initial values for the free boundary. Since the penalisation is based on the initial choice of
the free boundary, the choice of the formula for the computation of the initial free boundary has a large
effect on the accuracy of the method. A detailed analysis of the choice of the initial free boundary
computed by different approximation formulas from the literature is part of our future research.
After computing the penalty term with the initial free boundary value, we solve the penalised heat
Equation (13). The obtained solution is the solution of the American option problem.
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3. Discretization

Let us introduce a temporal discretization τj = T− j∆τ, ∆τ = T/M, j = 0, . . . , M, and a spatial
grid between the points xmin and xmax

xi = xmin + i∆x, ∆x =
xmax − xmin

N
, i = 0, . . . , N.

We use the finite difference θ-scheme for discretization and simplify the notation by

α1 = θ
∆τ

(∆x)2 and α2 = (1− θ)
∆τ

(∆x)2 with 0 ≤ θ ≤ 1.

We obtain wj = (wj
1, . . . , wj

N−1)
> with wj

i as the approximation for u(xi, τj), f j = ( f j
1, . . . , f j

N−1)
>

with f j
i ∼ f (xi, τj) and the diagonal matrices A and B

A = diag(−α1, 2α1 + 1,−α1), B = diag(α2,−2α2 + 1, α2),

as well as the vector dj containing the boundary values

(dj)> =
(
α1wj+1

0 + α2wj
0, 0, . . . , 0, α1wj+1

N+1 + α2wj
N+1

)
.

The discretized penalty term (13) is given by

pj = δj · gj with δj =
(

aτj +
σ2

2

)
and with

gj
i =

 k exp
(
−αxi − βτj

)
, xi < x̄j

f ,

0, otherwise,

where x̄j
f is the unique solution to the European put option problem

ū
(
x̄ f (τ), τ

)
= f

(
x̄ f (τ), τ

)
, (15)

where ū is a solution to the Cauchy problem: ūτ − ūxx = 0, ū(x, 0) = f (x, 0), which is given in a closed
explicit form. Including all the components, we obtain the θ-scheme discretized formulation for the
penalised heat Equation (12)

Awj+1 − Bwj − dj = ∆τ · pj,

where the multiplication of ∆τ results from the discretization.

4. Numerical Results

In this section, we consider the example for pricing American put options from Nielsen et al. (2002).
All results were computed on an Intel R© CoreTM i7-5557U CPU with 3.10 GHz. We chose xmin = −4,
xmax = 4, M = 5000, and used the parameter sets from Table 1. To facilitate the optimization, we
summarised ∆τpj as

∆τpj =
(

āτj + ∆τ · r
)
·

 exp
(
−αxi − βτj

)
, xi < x̄j

f ,

0, otherwise,
(16)

where ā = ∆τ · k · a. Through the initial guess, the only unknown parameter is ã. Since
a deterministic expression for ã is a goal of our future research, the penalty parameter ã was obtained
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by an optimization. The optimization was done by minimizing the mean square error (MSE) of the
solution corresponding to ã. The MSE is given by

MSE =
1
N

N

∑
i=1

(PPSOR(Si, 0)− PPen(Si, 0))2, Si = K exp(xi),

where PPSOR is the solution obtained by the projected SOR algorithm and PPen is the maximum
of the solution of the penalised system and the payoff function. The maximum was used to gain
comparable results to the PSOR algorithm. Since the parameter set 2 is widely used in research, we
compared the free boundary value of the parameter set 2 with the free boundary solution of Nielsen
et al. (2002), Fazio et al. (2019), and Company et al. (2014). The value for the free boundary solution
obtained by Nielson is 0.8622, Fazio obtained 0.86274, and the free boundary value of Company et al.
(2014) is 0.8628, where our approach gives 0.86269 with a finer optimization and ã = 10.11× 10−4.
This comparison illustrates the high accuracy of this method in comparison with related research.

Table 1. Numerical results of the corresponding parameter sets.

Example T K r σ N ā(×10−4) S f MSE

1 3 100 0.08 0.2 1000 7.5 81.87 9.6× 10−3

2500 7.4 82.00 6.2× 10−3

2 1 1 0.1 0.2 1000 10.2 0.862 5.2× 10−5

2500 10.0 0.863 3.3× 10−5

3 0.05 10 0.1 0.25 1000 8.0 9.158 3.5× 10−5

2500 8.5 9.142 3.5× 10−5

4 0.1 100 0.1 0.3 1000 5.5 86.59 1.2× 10−3

2500 5.4 86.87 7.6× 10−4

5 1 100 0.1 0.4 1000 2.6 66.49 1.4× 10−2

2500 2.63 66.60 9.2× 10−3

6 0.05 50 0.1 0.4 1000 3.0 42.61 3.8× 10−4

2500 3.1 42.61 2.5× 10−4

Since the PSOR method does not consider a penalty term, we also computed the MSE of the
solution of the penalised PDE

uτ − uxx =
1
δ̂
( f − u), (17)

using a well-known penalty term (Günther and Jüngel 2010) with δ̂ = 1 × 10−4 and N = 1000.
The results are presented in Table 2, and the comparison of the numerical results illustrate the accuracy
of the method. As we included ∆τ in ā, the obtained values for ā are small, and the corresponding
values for ã are larger than 1. The best results were obtained by the sample sets with little volatility
and short time maturity. The observation of the short time maturity is based on the fact that the number
of points were different. The dependence on the volatility was caused by the simplification of the term
p, since we cancelled out σ2/2 and included 2/σ2 in ã. We observed that the differences were in the
range between an estimated free boundary value and the final free boundary value. They were caused
by the time-dependent movement of the free boundary position. There are several ways to analyse
this approach in detail. Since a sensitive point of the presented method is the choice of the initial free
boundary value, an interesting approach for future research is a detailed analysis of the effect of the
choice of the approximation formulas to the solution. As approximation formulas for the initial guess,
one can choose the formulas in (Evans et al. 2002; Stamicar et al. 1999; Zhu 2006). Another idea is the
consideration of an iterative scheme. In this idea, the free boundary value of the obtained solution is
used as an initial guess for a second iteration of solving the penalised American Put problem.
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Table 2. MSE for the parameter sets from the Table 1 computed with the penalty term (17).

1 2 3 4 5 6

3.3× 10−1 1.8× 10−3 1.1× 10−3 2.2× 10−2 1.8× 10−1 5.5× 10−4

5. Conclusions

The numerical results give clear evidence that using a non-constant penalty parameter δ is both
feasible and beneficial. Future work will focus on the inclusion of the free boundary movement,
a deterministic penalty function, and on the extension to multi-asset American options.
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