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Abstract: We present the Forest of Stochastic Trees (FOST) method for pricing multiple exercise
options by simulation. The proposed method uses stochastic trees in place of binomial trees in the
Forest of Trees algorithm originally proposed to value swing options, hence extending that method
to allow for a multi-dimensional underlying process. The FOST can also be viewed as extending
the stochastic tree method for valuing (single exercise) American-style options to multiple exercise
options. The proposed valuation method results in positively- and negatively-biased estimators for
the true option value. We prove the sign of the estimator bias and show that these estimators are
consistent for the true option value. This method is of particular use in cases where there is potentially
a large number of assets underlying the contract and/or the underlying price process depends on
multiple risk factors. Numerical results are presented to illustrate the method.

Keywords: Monte Carlo; multiple exercise options; dynamic programming; stochastic optimal
control

1. Introduction

The broad class of stochastic optimal control problems includes many important applications
in management sciences and quantitative finance such as development of natural resources,
project initiation or abandonment, maintenance scheduling, land use decisions, and valuation and
hedging of complex contracts. Very few problems have closed form solutions. For example the
Black–Scholes–Merton formula for pricing European-style options does not have an American-style
option analog. Approaches such as binomial lattice methods, partial differential equation (PDE)
methods, variational inequalities and integral equations have been adopted for pricing these types
of derivatives. However, all of these methods mentioned are limited in the number of sources of
uncertainty and the dimensionality of the underlying asset that can be practically incorporated, leaving
Monte Carlo (MC) as a general method of solution.

Multiple exercise options (MEOs) are generalizations of American-style options as they provide
the holder more than one exercise right and sometimes control over one or more other variables, such
as the amount exercised. Similar to pricing American-style options, MEO valuation is a problem
in stochastic optimal control. For American-style options, the solution provides both a value and
optimal exercise rule—a stopping time. For MEOs the solution gives both a value and optimal exercise
policy. In cases in which the holder controls only the exercise times, the exercise policy is a sequence of
stopping times. For MEOs in which the holder controls the exercise times and amounts, the exercise
policy is a paired sequence of stopping times and exercise amounts. The policy generalizes to other
control variables. Multiple exercise option valuation algorithms are generalizations of those used for
pricing American-style options. Most of the work in the literature has focused on swing options in
which the holder controls the exercise times and amounts. Hence, we discuss MEO valuation in the
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context of swing options and note that the FOST method and the FOST price estimators’ properties
apply to general MEOs.

The Forest of (Binomial/Trinomial) Trees method of Lari et al. (2001) and Jaillet et al. (2004)
extends the binomial method of Cox et al. (1979) for pricing American style options to value swing
options. As with most tree-based methods, the Forest of Trees is not able to handle high-dimensional
underlying processes. Tangential to the Forest of Trees extension, the Stochastic Tree method
of Broadie and Glasserman (1997) extends the binomial method for pricing American style options to
allow for a high-dimensional underlying asset.

In this paper, we replace the binomial and trinomial trees of Lari et al. (2001) and Jaillet et al. (2004)
with the stochastic trees of Broadie and Glasserman (1997), hence creating the Forest of Stochastic Trees
(FOST) method for valuing multiple exercise options. The FOST can be thought of as generalizations
of two different methodologies; specifically, it extends

• The Forest of Trees method of Lari et al. (2001) and Jaillet et al. (2004) for valuing multiple exercise
options on a single asset to allow for high-dimensional underlying assets and processes; and

• The Stochastic Tree method of Broadie and Glasserman (1997) for valuing high-dimensional
American-style options (single exercise right) to options having multiple exercise rights and
additional controls (e.g., volume control).

Visually these generalizations complete the final entry in the two-by-two table shown in Table 1.

Table 1. Table showing that the Forest of Stochastic Trees extends (i) the Forest of Trees method to a
high-dimensional underlying; and (ii) the Stochastic Tree method to multiple exercise options.

1-Dimensional Asset High-Dimensional Asset

Single exercise American option Binomial Tree Stochastic Tree
Cox et al. (1979) Broadie and Glasserman (1997)

Multiple exercise option Forest of Trees Forest of Stochastic Trees
Lari et al. (2001), Jaillet et al. (2004) Marshall and Reesor

We construct high and low biased FOST estimators that are analogous to those from the
Stochastic Tree. The main theoretical results, presented in Sections 2.2 and 2.3 and proven Appendix B,
are listed below.

1. The high FOST estimator has positive bias.
2. The low FOST estimator has negative bias.
3. On any given realization the high FOST estimator is at least as big as the low FOST estimator.
4. The high and low FOST estimators are asymptotically unbiased.

The remainder of this section provides a literature review. Section 2 describes the Forest of
Stochastic Trees estimators in detail; specifies results giving estimator properties (e.g., biasedness and
convergence); provides numerical results showing the method is effective at pricing; and supplies
discussion on improving computational performance through parallel processing. Section 3
summarizes and concludes the paper. A list of the notation used is given in Appendix A and proofs of
the paper’s main theoretical contributions on estimator properties are given in Appendix B.

Literature Review

Multiple exercise options arise in many different areas and the structure of these contracts is
typically tailored to particular clients/needs, in contrast to standardized derivatives such as interest rate
swaps and exchange-traded commodity futures. A non-exhaustive list of examples of MEOs include (i)
tolling agreements used in the steel Kim et al. (2019) and electricity Deng and Oren (2006) sectors; (ii)
chooser flexible caps which are exotic interest rate derivatives Meinshausen and Hambly (2004); (iii)
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valuation and control of energy production and storage facilities Chen and Forsyth (2007); Ludkovski
and Carmona (2010); Thompson et al. (2009); and (iv) swing options Calvo-Garrido et al. (2017);
Jaillet et al. (2004); Lari et al. (2001); Wilhelm and Winter (2008).

Valuation methods for MEOs are extensions of those used for American-style options. There are
continuous-time solutions to both the American-style and multiple exercise option valuation
problems; these are computed by solving a system of Hamilton–Jacobi–Bellman quasi-variational
inequalities Korn et al. (2005). These methods give more accurate and stable price and sensitivity
estimates than those computed using simpler tools (e.g., trees). However, these methods are quite
complex mathematically and break down in higher dimensions.

In this article, we focus on the mathematically simpler time-discretized version of the valuation
problem. Discrete-time tree-based methods for valuing American-style options Cox et al. (1979)
have been extended to MEOs via the Forest of Trees Jaillet et al. (2004); Lari et al. (2001).
Techniques for pricing American-style options using solutions of PDEs have been modified to
MEOs Calvo-Garrido et al. (2017); Chen and Forsyth (2007); Thompson et al. (2009); Wilhelm and
Winter (2008). These methods for MEOs inherit properties similar to the corresponding methods for
single-exercise options. One crucial property is that these methods fail as the dimensionality of the
problem increases.

Monte Carlo is the obvious tool to overcome the curse of dimensionality, as the rate of
convergence of Monte Carlo estimators is independent of the dimension. Tilley (1993) was
the first to show that the forward-in-time Monte Carlo approach could be used to solve the
backward-in-time dynamic programming problem arising from valuation of an American-style option.
Since this seminal paper, numerous other methods for the Monte Carlo valuation of American
style options have appeared. These include methods that attempt to parameterize the exercise
region Barraquand and Martineau (1995) and those that discretize the state space Bally et al. (2005).
Methods that parameterize the early-exercise region have been extended to value multiple exercise
options by parameterizing the set of exercise level curves Ibán̈ez (1996). Similarly state space
aggregation methods have been used for multiple exercise option valuation Ben Latifa et al. (2016).
These approaches, however, also suffer from the curse of dimensionality and do not easily generalize
to arbitrary payoffs and underlying price processes.

Monte Carlo methods that do not break down with the dimensionality and that accommodate
general payoff and price processes include those that solve the optimal stopping-time problem
through estimation of the hold or continuation value. These include the stochastic tree and mesh
techniques of Broadie and Glasserman (1997 2004) and the regression-based approach first appearing
in Carriere (1996) and then subsequently generalized in Longstaff and Schwartz (2001). For each of
these valuation techniques, high- and low-biased estimators are easily generated, along with a hybrid
interleaving estimator that has properties of both. Duality-based methods solve the optimal control
problem in the dual space by approximating an optimal martingale, typically by regression Andersen
and Broadie (2004); Haugh and Kogan (2004).

Least-squares Monte Carlo has been modified for the pricing of swing options in
Barrera et al. (2006); Meinshausen and Hambly (2004), respectively. Although increased dimensionality
does not decrease the performance of these methods, they suffer from other drawbacks. In least-squares
Monte Carlo methods one must select a set of basis functions on which to run regressions to estimate
continuation values. In general only a complete (infinite) set of basis functions results in continuation
value estimators that are consistent for the true option value. In practice, of course, a finite set of basis
functions is used and introduces an approximation error. Continuation value estimators are consistent
for the true approximation value and not the true option value Clement et al. (2001); Stentoft (2004).

Duality methods have been extended to MEOs Bender (2011); Chandramouli and Haugh (2012);
Gyurko et al. (2015); Meinshausen and Hambly (2004). Duality methods rely on having a sub-optimal
exercise policy that produces a low-biased estimate from which the solution to the dual problem can be
approximated to yield a high-biased estimate. Typically regression-based methods are used to estimate
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the sub-optimal exercise policy Chandramouli and Haugh (2012); Gyurko et al. (2015); Meinshausen
and Hambly (2004) implying the above noted issues of least-squares Monte Carlo persist when pricing
MEOs. Policy iteration methods such as Bender (2011), yield approximations of the time-0 value at
each iteration of the dynamic program. As with the pricing of American-style options this method is
advantageous because it removes the requirement to calculate nested conditional expectations prior to
the time-0 value being approximated.

The stochastic mesh of Broadie and Glasserman (2004) has been extended to MEOs via the Forest
of Stochastic Meshes (FOSM) Marshall (2012); Marshall and Reesor (2011). High and low biased FOSM
estimators are derived Marshall and Reesor (2011) and their properties shown Marshall (2012), similar
to the work presented here for the Forest of Stochastic Trees estimators.

2. Results

We consider the valuation of multiple exercise options as a stochastic optimal control problem with
three relevant state variables—the underlying variable (S), number of exercise rights remaining (N ),
and usage level (U) assuming some volume control. At each exercise opportunity and given (S,N , U),
the current values of the state variables, the holder must choose between

• Exercising u units plus continuing with an option having N − 1 remaining exercise rights and
usage level U + u; and

• Continuing with an option having N exercise rights and usage level U (i.e., no exercise).

Note that with volume control the payoff from exercising u units changes with u (as does the
continuation value of the option). Thus, the holder chooses the value-maximizing u when deciding to
exercise. Also note that with N = 1 and u constrained to be 1, this is an American-style option.

We work with the time-discretized problem and use dynamic programming to solve for the
optimal exercise policy and the corresponding optimal value. In all variables, let the subscript i denote
time-ti and let Ui be the time-ti set of admissible volume choices which includes the zero volume
choice (i.e., hold). The recursive equations for the dynamic program are

Hi(Si,Ni+1, Ui+1) = E[Bi+1(Si+1,Ni+1, Ui+1)|Zi] and (1)

Bi(Si,Ni, Ui) = max
u∈Ui

[
hi(Si,Ni, Ui, u) + Hi(Si,Ni − I{u 6=0}, Ui + u)

]
, (2)

with the terminal conditions

Hm(Sm,Nm, Um) = φ̃ (Um) and (3)

Bm(Sm,Nm, Um) = max
u∈Um

[
hm(Sm,Nm, Um, u) + Hm(Sm,Nm − I{u 6=0}, Um + u)

]
, (4)

where Hi(S,N , U) and Bi(S,N , U) are the time-ti, state-Zi continuation and option values, respectively,
hi(S,N , U, u) is the payoff from exercising u units with hi(S,N , U, 0) = 0, Zi is the time-ti information
set generated by the paths of (S,N , U), I is an indicator function and φ̃ (·) is a cumulative usage penalty
term. Estimator properties and their proofs are given for this multiple exercise option setup. However,
the dynamic program and estimator properties can be stated and proven for alternative specifications
provided there is a finite number of exercise rights and usage levels. For example, a swing option
contract may specify a certain number of up and down swing rights, Nu and Nd. An up swing right
allows the holder to take more than the baseline amount of the underlying asset while a down swing
right allows the holder to take less. Another variation is to allow for multiple rights to be exercised at
each opportunity where each right corresponds to a fixed volume amount Bender and Schoenmakers
(2006); Meinshausen and Hambly (2004).
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2.1. Forest of Stochastic Trees

The FOST generalizes the stochastic tree method for valuing American-style options to
the valuation of multiple exercise options and extends the Forest of Trees method to handle
a high-dimensional underlying asset. This is done by replacing the binomial/trinomial trees with
stochastic trees in the framework of Lari et al. (2001) and Jaillet et al. (2004) hence giving the FOST.
The stochastic tree is constructed identically as described in Broadie and Glasserman (1997) and the tree
is replicated multiple times, with one replication corresponding to each possible (N , U) combination.
This is analogous to the Forest of Trees in which the same underlying binomial/trinomial tree is
replicated for each possible (N , U) combination.

The dynamic program is approximately solved by replacing the continuation values in
Equations (1) and (3) with stochastic tree-type estimators. As with the original stochastic tree technique,
high- and low-biased option value estimators are constructed by using the analogous high- and
low-biased estimators, respectively, on each stochastic tree in the forest. The recursive equations for
the high estimator are

Ĥi(S
j
i ,Ni+1, Ui+1) =

1
b

b

∑
k=1

V̂i+1(Sk
i+1,Nt+1, Ut+1), and (5)

V̂i(S
j
i ,Ni, Ui) = max

u∈Ui

[
hi(S

j
i ,Ni, Ui, u) + Ĥi(S

j
i ,Ni − I{u 6=0}, Ui + u)

]
, (6)

with the terminal conditions

V̂m(S
j
m,Nm, Um) = max

u∈Um

[
hm(S

j
m,Nm, Um, u) + φ̃ (Um + u)

]
, (7)

where Ĥi(S,N , U) and V̂i(S,N , U) are the time-ti, state-Zi continuation and option value estimators,
respectively, hi(S,N , U, u) (with hi(S,N , U, 0) = 0) is the time-ti, state-Zi payoff from exercising
u units, b is the branching factor, I is an indicator function and φ̃ (Um + u) is a global usage
penalty term. The superscript j = {j0, j1, . . . , ji} indicates the specific node within a given stochastic
tree and k = {j, k}.

Figure 1 is a diagram of a section of a Forest of Stochastic Trees with two volume choices, u1 and u2.
It illustrates the nodes in the forest which need to be considered when making an exercise decision
given state (N , U). The three choices are no exercise, exercise u1 units, and exercise u2 units.
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(N , U)

(N − 1, U + u1) (N − 1, U + u2)

Figure 1. Section of a Forest of Trees with N = # of exercise rights remaining, U = usage level, and
three exercise choices—no exercise, excerise u1 units, and exercise u2 units.

The low estimator is similarly defined using the low estimator on each stochastic tree via the
dynamic program,

ĝil(S
j
i ,Ni, Ui, u) = hi

(
Sj

i ,Ni, Ui, u
)
+

1
b− 1

b

∑
k=1
k 6=l

v̂i+1(Sk
i+1,Ni − I{u 6=0}, Ui + u), (8)

Ĥil(S
j
i ,Ni, Ui) = max

u∈Ui

[
ĝil(S

j
i ,Ni − I{u 6=0}, Ui + u)

]
, (9)

v̂il(S
j
i ,Ni, Ui) = hi(S

j
i ,Ni, Ui, û∗) + v̂i+1(Sl

i+1,Ni − I{u∗ 6=0}, Ui + û∗), and (10)

v̂i(S
j
i ,Ni, Ui) =

1
b

b

∑
l=1

v̂il(S
j
i , Ni, Ui) (11)

where Ĥil(X
j
i ,Ni, Ui) is the l−th leave-one-out hold value estimator and û∗ is the estimated optimal

exercise amount which depends on i and l. The terminal conditions associated with this dynamic
programming scheme are,

v̂m(S
j
m,Nm, Um) = max

u∈Um

[
hm(S

j
m,Nm, Um, u) + φ̃ (Um + u)

]
, (12)

where φ̃ (Um + u) is a cumulative usage penalty term.

2.2. Estimator Bias

In order to justify using the high- and low-biased estimators to construct upper and lower option
price bounds, respectively, we prove that the high estimator is always positively biased and that the
low estimator is always negatively biased. In addition we include a comparison of the estimators
which orders their values on any realization of the simulated forest.

The theorems that follow are direct extensions of those in Broadie and Glasserman (1997).
Below, the branching factor, b, appears as an argument in the estimators. For example, V̂0(b, S0,N0, U0)

refers to the time-0, state-Z0 high-biased estimator with a stochastic tree branching factor of b.
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This argument has been suppressed to this point for convenience. We begin with the theorem regarding
the bias of the high estimator.

Theorem 1. (High estimator bias) The high estimator is biased high, i.e.,

E
[
V̂0 (b, S0,N0, U0)

]
≥ B0 (S0,N0, U0) (13)

for all b.

Similarly, the result stating the bias of the low estimator follows.

Theorem 2. (Low estimator bias) The low estimator is biased low, i.e.,

E [v̂0 (b, S0,N0, U0)] ≤ B0 (S0,N0, U0) (14)

for all b.

Finally, an ordering result for the high and low estimators is stated in Theorem 3.

Theorem 3. (Comparison of Estimators) On every realization of the forest the low estimator is less than or
equal to the high estimator. That is,

v̂i

(
b, Sj

i ,Ni, Ui

)
≤ V̂i

(
b, Sj

i ,Ni, Ui

)
(15)

with probability one for all j, i.

Theorems 1–3 are proven in Appendix B.

2.3. Estimator Convergence

An advantage of the stochastic tree method over some other MC valuation methods is that its
estimators are consistent to the true option value. This property also holds for the FOST estimators.
In this section we state two theorems—one for the consistency of the high estimator, and the other for
the consistency of the low estimator. Here convergence is in probability to the true option value and as
above the argument b that appears with the estimators refers to an arbitrary branching factor size of
b with convergence being shown as b → ∞. Before stating the result, define V̄0 (b, S0,N0, U0) as the
average of R independent replications of V̂0 (b, S0,N0, U0).

Theorem 4. (High estimator convergence) Suppose E
[
|hi (Si,Ni, Ui)|p

′]
< ∞, for all ti, and some p′ > 1.

Then V̄0 (b, S0,N0, U0) converges to B0 (S0,N0, U0) in p-norm for any 0 < p < p′ as b → ∞. This holds
for an arbitrary number of repeated valuations of the forest, R. In particular V̄0 (b, S0,N0, U0) converges to
B0 (S0,N0, U0) in probability and is thus a consistent estimator of the option value.

This results implies that

E
[
V̂0 (b, S0,N0, U0)

]
→ B0 (S0,N0, U0) (16)

as b→ ∞. Hence the estimator is asymptotically unbiased.
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Theorem 5. (Low estimator convergence) Suppose that,

P
[

hi

(
Si,Ni, Ui, u1

)
+ Hi

(
Si,Ni − I{u1 6=0}, Ui + u1

)
6= hi

(
Si,Ni, Ui, u2

)
+ Hi

(
Si,Ni − I{u2 6=0}, Ui = u2

)]
= 1,

for u1, u2 ∈ Ui, u1 6= u2 and all i. Then Theorem 4 also holds for the low estimator.

The additional condition imposed in Theorem 5 is analogous to that used in Theorem 3 of Broadie
and Glasserman (1997). This condition says that, with probability one, the optimal exercise policy is
never indifferent between the choices of volumes to exercise (including u = 0). As in Broadie and
Glasserman (1997) imposing this condition simplifies the analysis of the estimator. Theorems 4 and 5
are proven in Appendix B.

2.4. Numerical Results

Pricing swing contracts involves a large number of parameters and in this section we provide
some results which illustrate the validity of our method across a variety of specifications. We assume
that the underlying assets follow a risk neutral stochastic process, there are no transaction costs and
other than penalties, there are no other constraints considered. We also assume a constant risk free rate
of interest and the volatilities of all assets are known constant functions of time.

The option swing rights may be exercised at discrete times up to and including expiry and the
volume choices given are in discrete amounts. That is, anytime the holder chooses to exercise a right,
they must choose from a finite list of possible volume amounts. The rationale behind allowing all time
steps to be exercise opportunities is the exponential growth in computational time caused by adding
intermediate non-exercise times. However, the method can easily be modified to incorporate these
extra time steps. As previously mentioned penalties can be implemented globally and are based on
the net volume exercised during the contract.

2.4.1. Single Dimension

Beginning with the one dimensional case, we have based our simulations on an underlying asset
with a risk neutralized price process that satisfies the following stochastic differential equation,

dSi = Si [(r− δ) dt + σdZi] . (17)

In this equation, r is the riskless interest rate, Zi is a standard Brownian motion process,
σ is a constant volatility parameter and the underlying asset itself pays a continuous dividend yield δ.
The parameter values for the underlying asset are specified as r = 0.05, δ = 0.1, and σ = 0.2.

The swing options considered have both up and down swing rights and the payoff upon exercise is

u×max [max (S− Ku, 0) , max (Kd − S, 0) , 0] , (18)

where u is the volume exercised, S is the price of the underlying asset at the exercise time, and Ku

and Kd are the up and down swing strike prices, respectively. For the examples considered here,
we set Ku = Kd = K which simplifies the payoff function to

u×max (S− K, K− S) . (19)

For all examples in Section 2.4.1 the option expiry is 3.0 years and the options have both up and
down swing rights with strike prices Ku = Kd = 40.0, respectively. In examples where the holder
controls the amount exercised, a list of volume choices is given. The volume choices are consecutive
integer multiples of a base amount and the up swing and down swing volumes have the same
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magnitude. For comparison purposes the results in this subsection include a binomial value which is
calculated using the Forest of Trees Lari et al. (2001).

All simulations in this subsection were completed on the SHARCNet cluster Whale. Whale is
located at the University of Waterloo and consists of Opteron 2.2 GHz processors (four per node) with
a Gigabit Ethernet interconnect. Timing results listed below are given in total cpu time accumulated
which is approximately equal to (program runtime) × (number of processors used).

Example 1. (Illustration of Bias and Convergence) The swing option in this example has one up and one
down swing right, three exercise opportunities, exercise volume of 60 units of the underlying and there is no
penalty. The initial price is USD 40. Here we illustrate the effect of the branching factor b on the value estimates.
Specifically, we perform R repeated valuations of the FOST with a branching factor of b and hold the total sample
size fixed using the relation R = 32,000

(
10
b

)
. Figure 2 plots the FOST estimates versus branching factor

(the estimates are the averages of the R repeated valuations). Taking the Binomial estimate as the true option
value, it is clear that the high estimator overestimates the true price while the low estimator underestimates the
true price. Furthermore, as the branching factor increases, the high estimator decreases and the low estimator
increases to the true option price, clearly illustrating estimator convergence. Estimator standard errors are
approximately 0.07% of estimator value.
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O
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ti
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$

Single Assets

High
Low

Binomial

Figure 2. Option value estimates (USD) vs. log branching factor (b) with a single underlying asset.
The option has one up and one down swing right, 3 exercise opportunities, exercise volume of 60 units
of the underlying and there is no usage penalty. The initial price is USD 40. The number of repeated

valuations R = 32000
(

10
b

)
results in standard errors ≈ 0.07% of option value.

Example 2. (Effect of Usage Penalty and Initial Asset Price) In this example, the option has two up and two
down swing rights and, upon exercise there are three volume choices—20, 40 and 60 units of the asset. Should the
final net volume exercised exceed 90 units or be below −90 units a penalty is imposed. The penalty is calculated
by multiplying the terminal asset price by ten times the excess usage above 90 units or below −90 units. To see
the effect of the penalty on option value, we also turn the penalty term off and value the corresponding option
with no penalty. The initial asset value ranges from USD 20 to USD 60 in steps of USD 10. There are m = 5
exercise opportunities and we use a branching factor of b = 20 with R = 4000 repeated valuations.

The pricing results are presented in Table 2. In each row of the table, we see that the high and low estimators
bound the true price. Unsurprisingly, imposing a penalty on the cumulative volume reduces the option value.
Furthermore, as the initial stock price increases, the increase in an up swing right’s value is more than the
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decrease in a down swing right’s value. The opposite is true as the initial stock price decreases. The end result is
that as the initial stock price moves away from being at-the-money, the option value increases.

The average computing time per row (not including the binomial forest valuation) was 5.6 h for the cases
with usage penalty and was 1.1 h without usage penalty. The reduction in runtime for the case with no penalty
can be described as follows. If there are no constraints (e.g., penalty, storage) on the option holder then upon
exercise it is always optimal to choose the maximum amount. Therefore with no penalty this option is equivalent
to that of an otherwise identical swing option with no volume choices and an exercise volume of 60 units.
The latter has fewer trees in its forest and is therefore quicker to evaluate. In Table 2 we have chosen to exploit
this as a convenient way to save computational time. For the binomial method run times were on the order of
a few seconds.

Table 2. Swing option values as a function of initial asset price and usage penalty with a single
underlying asset. Parameter values used are Nu = Nd = 2, Ui = {20, 40, 60}, b = 20, R = 4000, m = 5,
Umin = −90, and Umax = 90.

S0 Penalty High Error Low Error Binomial

60 ON 2271.153 1.418 2240.319 1.378 2259.845
OFF 2422.781 1.576 2392.872 1.523 2411.844

50 ON 1445.468 0.844 1408.843 0.904 1429.645
OFF 1542.053 0.978 1503.963 0.980 1526.055

40 ON 1018.104 0.859 968.793 1.044 989.651
OFF 1156.591 0.911 1134.093 0.903 1145.801

30 ON 1345.556 1.205 1309.214 1.280 1326.266
OFF 1562.347 1.316 1532.854 1.343 1546.055

20 ON 2189.531 0.905 2147.623 1.018 2157.976
OFF 2443.877 0.924 2402.192 1.034 2412.354

Example 3. (Effect of Number of Exercise Rights) In this example we illustrate that the option value increases
with the number of exercise rights and compare the swing option value with that of a corresponding basket of
American options. The option has m = 5 exercise opportunities, an exercise volume of 60 units, and there is
no usage penalty. Additionally, we set the initial price to S0 = 40 and use a branching factor of b = 20 with
R = 4000 repeated valuations. We consider options having an equal number of up and down swing rights.
Table 3 gives the option price estimates for Nu = Nd = 1, 3, 5 along with prices computed using the Forest of
Trees. First notice that the high and low estimates bound the true option from the binomial model. Next note that
with Nu = Nd = 5 exercise rights, the high and low estimates are exactly the same. In this case the number of
exercise opportunities is equal to the numbers of up and down swing rights and since the up and down swing
strikes are equal, exactly one of these rights will be exercised at each opportunity (see Equation (19)). This makes
both the exercise payoff and the continuation value estimates exactly the same at all times and along all branches
for both the low and high estimators, yielding identical prices.

Second, the option value increases with the number of swing rights. However, the price increases by a factor
that is less than the increase in the number of swing rights. For example, when the number rights increases by
a factor of 3 (e.g., going from Nu = Nd = 1 to Nu = Nd = 3) the option value increases by a factor of 2.5
and when the number of rights increases by a factor of 5

3 (e.g., going from Nu = Nd = 3 to Nu = Nd = 5),
the option value increases by a factor of 1.2. This result matches with the intuition that a swing option with a
given number of rights is less valuable than a basket of American put and call options with otherwise identical
parameters and Kd ≤ Ku.
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Table 3. Swing option values as a function of the number of exercise rights with a single underlying
asset. Parameter values used are exercise volume of 60 units, S0 = 40, b = 20, R = 4000, m = 5, and no
usage penalty.

Nu = Nd High Error Low Error Binomial

1 630.054 0.449 605.394 0.453 617.832

3 1573.237 1.449 1559.517 1.437 1567.344

5 1852.788 2.128 1852.788 2.128 1852.627

For the case of one up and one down swing right the basket of American options would contain a single
call corresponding to the up swing right and a single put corresponding to the down swing right, with equal
strike prices for the call and put. Changing the number of up and down swing rights invokes a change in the
corresponding number of call and put options in the basket. Figure 3 shows a comparison between the values
of a basket of American options and a swing option with a comparable number of exercise rights. The value
of the basket is linear in the number of exercise rights and the swing option value is below the value of the
corresponding basket when the number of rights is greater than one. This follows from the restriction that only
one swing right may be exercised at any exercise opportunity whereas all American options of a particular type
could be exercised at a given time. In the case of one up and one down right the two are equal since it would
never be optimal to exercise both the put and call style rights at the same time. As the number of rights increases,
the difference in values increases due to the swing option restriction allowing only a single right to be exercises
at each opportunity. The low-biased estimator is used for both the basket and swing option values in Figure 3.
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Figure 3. Basket of American calls and puts and swing option values versus the number of exercise
rights using a single underlying asset. Parameter values used are exercise volume of 60 units, S0 = 40,
b = 20, R = 4000, m = 5, and no usage penalty.

2.4.2. Calibrated Forward Curve

In this example, we use the trinomial-tree model described in Section 4 of Jaillet et al. (2004)
from which price movements are simulated. This model is a 1-factor model with mean reversion that
is seasonally adjusted and calibrated to the forward curve. The option we value is Example (a) of
Section 4.2 in Jaillet et al. (2004). This option a two up right swing option with each right allowing
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the holder to take delivery of either 1 or 2 MMBTus of natural gas. We simplify to have four exercise
opportunities and 4 months until expiry. Upon exercise the holder gets

max (Ui (AiSi − K) , 0) (20)

where Ui is the volume chosen, Ai is the seasonality factor and Si is the deseasonalized spot price.
Figure 4 plots the option price estimates, including 95% confidence intervals, against branching

factor. The number of repeated valuations used to generate prices with a branching factor of b is
R = 160,000

b . We see that, with a branching factor of only 8, the confidence intervals for the high-
and low-biased estimators begin to overlap and quickly become almost indistinguishable for higher
branching factors, numerical illustration of both estimators’ consistency. Additionally, the high and
low estimators converge to the true price computed using the trinomial model. We note that the serial
computational times (for a single FOST valuation) for branching factors of 8 and 32 were approximately
4.5 and 110 s, respectively using a 2.1 Ghz Core 2 Duo processor. The pricing results shown in Figure 4
are consistent with the results in Jaillet et al. (2004) but we note that the valuation method in that
publication breaks down in higher dimensions and in cases where the inclusion of more risk factors
is desirable.
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Figure 4. Option-value estimates versus (log) branching factor. Approximate pointwise 95% confidence
intervals for each estimate are given by the vertical bars. The option and underlying model in
this example is from Jaillet et al. (2004) with the Trinomial price given by their Forest of Trinomial
Trees method.

2.4.3. Five Dimensions

Due to the computationally intensive nature of this method it only becomes truly useful in cases
where PDE or tree based methods fail. In this subsection we present high-dimensional versions of
the examples presented in Section 2.4.1. The asset prices are assumed to follow a risk neutralized
correlated geometric Brownian motion described by the stochastic differential equations,

dSk
i = Sk

i

[(
r− δk

)
dt + σkdZk

i

]
, k = 1, . . . , d, (21)

where Zk
i is a standard Brownian motion process and the instantaneous correlation between Zk and Zs

is ρks. Here the parameter values are specified as r = 0.05, δk = δ = 0.1, σk = σ = 0.2 for all k and that
ρks = 0 for all k 6= s. In addition all assets have the same initial value, S0, and we take the number of
assets to be d = 5.
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The swing options considered have both up and down swing rights and the payoff upon exercise is

u×max
[(

max
k=1,...,d

Sk − Ku, Kd − max
k=1,...,d

Sk
)

, 0
]

, (22)

where Sk is the price of the kth underlying asset at the exercise time. This payoff is an extension of the
example given in Broadie and Glasserman (1997) and Broadie and Glasserman (2004) for single-exercise
American-style options. For the examples considered here, we set Ku = Kd = K which simplifies the
payoff function to

u×max
(

max
k=1,...,d

Sk − K, K− max
k=1,...,d

Sk
)

. (23)

As in Section 2.4.1, the option expiry is 3.0 years and the options have both up and down swing
rights with strike prices Ku = Kd = 40.0, respectively. In examples where the holder controls the
amount exercised, a list of volume choices is given. Note that we present results from our FOST
methodology without comparisons to other methods as there is no generally accepted benchmark for
the examples considered here.

Example 4. (Illustration of Bias and Convergence) This 5-dimensional example corresponds with Example 1.
The swing option has one up and one down swing right, three exercise opportunities, exercise volume of 60 units
of the underlying and there is no penalty. The initial price is USD 40. We perform R repeated valuations of
the FOST with a branching factor of b and hold the total sample size fixed using the relation R = 32000

(
10
b

)
.

This results in standard errors ≈ 0.09% of option value. Figure 5 plots the FOST estimates versus branching,
showing that the high estimator overestimates the option price while the low estimator underestimates the price.
Furthermore, as the branching factor increases, the high estimator decreases and the low estimator increases and
they appear to be converging to the same value, illustrating estimator convergence. These findings are consistent
with those in Example 1.
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Figure 5. Option value estimates (USD) vs. log branching factor (b) with a five-dimensional underlying.
The option has one up and one down swing right, three exercise opportunities, exercise volume of

60 units and there is no usage penalty. The number of repeated valuations R = 32000
(

10
b

)
results in

standard errors ≈ 0.09% of option value.

Example 5. (Effect of Usage Penalty and Initial Asset Price) This 5-dimensional example corresponds with
Example 2, with the option specifications the same as presented there, modulo the adjustment to the payoff
function to five dimensions. The pricing results are in Table 4. The effects of a usage penalty and initial stock
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price are qualitatively the same compared with the 1-dimensional results. We note that the option value estimates
in this example are higher than those in Example 2 due to the payoffs depending on the maximum of the five
asset prices. The computing times for the 5-dimensional case are similar to those for the 1-dimensional asset.

Example 6. (Effect of Number of Exercise Rights) This 5-dimensional example corresponds with Example 3,
with the option specifications the same as presented there, modulo the adjustment to the payoff function to
five dimensions. The results are given in Table 5 and Figure 6. The results, intuition, and interpretation are
qualitatively the same as the 1-dimensional results.

Table 4. Swing option values as a function of moneyness and penalties with a five-dimensional
underlying asset. Parameter values used are Nu = Nd = 2, Ui = {20, 40, 60}, b = 20, R = 4000, m = 5,
Umin = −90, and Umax = 90.

S0 Penalty High Error Low Error

60 ON 3577.280 2.864 3517.297 2.845
OFF 3832.050 2.286 3772.123 2.856

50 ON 2246.657 2.280 2197.957 2.259
OFF 2479.081 2.341 2431.065 2.318

40 ON 1221.847 1.595 1189.610 1.564
OFF 1257.171 1.499 1226.370 1.467

30 ON 1105.831 0.453 1087.851 0.447
OFF 1209.179 0.393 1196.255 0.391

20 ON 1937.615 0.445 1930.860 0.472
OFF 2177.194 0.489 2177.031 0.513

Table 5. Swing option values as a function of the number of exercise rights with a five-dimensional
underlying asset. Parameter values used are base volume = 60 units, S0 = 40, b = 20, R = 4000, m = 5,
and no usage penalty.

Nu = Nd High Error Low Error

1 683.144 0.741 652.481 0.721

3 1728.947 2.279 1709.497 2.248

5 2087.495 3.114 2087.495 3.114
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Figure 6. Basket of American calls and puts and swing option values versus the number of exercise
rights using a 5-dimensional underlying asset. Parameter values used are exercise volume of 60 units,
S0 = 40, b = 20, R = 4000, m = 5, and no usage penalty.

2.5. Algorithmic Enhancement via Parallel Processing

One method for enhancing the computational efficiency of this algorithm is by taking advantage
of multi-processor computing techniques. The simplest and most obvious implementation would
be to parallelize across repeated valuations of the forest resulting in serial farming of the repeated
valuations. Since each repeated valuation results in an iid random value for the option estimate,
the generation of all the results may be completed independently of one another, removing the need
for communication between processors. This method is simple and effective. However we state here
without numerical evidence that it results in a near perfect speed up without the need for expensive
interconnections. With this method the minimum run time that can be produced is determined by the
number of processors available, the number of repeated valuations necessary for the desired accuracy
and the run time of a single forest.

A variation on the aforementioned parallel implementation is to parallelize the FOST
computations internally within the forest. In the results shown in Figure 7 the FOST algorithm
has been modified so that the computation of the individual trees within the forest is done using
multiple processors. Here we have begun the parallelization after the first time step by dividing up the
computation of the remaining subtrees across different processors. Upon completion, the results are
gathered and the option value at the initial time step is determined. In Figure 7 we see that this method
results in a near perfect speed up due to the small ratio of communication time versus computational
time. This implementation may be combined with serial farming resulting in further computational
time efficiency. This is discussed more fully in Marshall et al. (2011).

In Figure 7 the swing option is identical one in Example 4 and pricing is done with a branching
factor b = 160. The computational times were generated using the SHARCNET cluster Hound which
comprises 2.2 GHz Opteron processors with 4 GB per core and Infini-Band interconnections. Run times
are normalized to the run time of a single processor.
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Figure 7. Normalized runtime using MPI versus number of CPUs (np). The option is identical to
the no volume choice swing option with a five-dimensional underlying considered in Section 2.4.3.
The branching factor used is b = 160.

3. Discussion and Conclusion

The FOST can be thought of as generalizations of two existing pricing methodologies.
First, it generalizes the Forest of Trees method to a high-dimensional underlying. Second, it generalizes
the Stochastic Tree pricing method for single-exercise right options to multiple exercise rights.
We construct high and low FOST estimators analogous to those defined for the Stochastic Tree.
We prove properties regarding FOST estimator bias, ordering, and convergence and present numerical
results as illustrations.

In related work, we have replaced the binomial/trinomial trees in the Forest of Trees method with
Stochastic Meshes Broadie and Glasserman (2004), creating the Forest of Stochastic Meshes Marshall
and Reesor (2011). This avoids the exponential growth in computing time with the number of
exercise opportunities experienced by the FOST. Another avenue of future work involves algorithmic
enhancement. In Section 2.5 we discussed the use of parallel processing to reduce computing time.
Two alternatives to this are variance reduction and bias reduction. There are some standard variance
reduction methods (e.g., antithetic variates, control variates) that could be used to produce more
efficient estimators. The bias reduction technique given in Whitehead et al. (2012) for Stochastic
Tree estimators successfully reduces the branching factor required to obtain a desired accuracy for
an American option value. This technique can be extended to correct the bias in FOST estimators
and we have preliminary evidence of its effectiveness Marshall (2012). Combinations of variance
reduction, bias reduction, and parallel processing can be investigated to further improve the
algorithm’s performance.
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Abbreviations

The following abbreviations are used in this manuscript:

MEO Multiple Exercise Option
PDE Partial Differential Equation
FOST Forest of Stochastic Trees
FOSM Forest of Stochastic Meshes
MC Monte Carlo

Appendix A. Nomenclature

In this appendix we describe the notation used in this paper.
If X is a random variable, we write ||X|| for the p-norm (E|X|p)1/p of X. The conditional p-norm

of X on Zi, (E|X|p|Zi)
1/p, is denoted ||X||Zi . Here we include a summary of notation used for the

proofs contained in this appendix as well as all subsequent appendices.

• Time is indexed by i for ti, i = 0, 1, . . . , m.
• R is the number of repeated valuations of the forest.
• b is the branching factor.

• Sj
i is the spot price vector at time ti for branch j = {j0, j1, . . . , ji}. For convenience we may suppress

the bold superscript if there is no ambiguity in doing so, in these cases Sj
i+1 refers to the time-ti+1

price along the branch path j = {j0, j1, . . . , ji, j}.
• Zi represents the time-ti history of the set of state variables (Sj

i ,Ni, Ui), where we suppress the
branching history index.

• V̂i

(
b, Sj

i ,Ni, Ui

)
is the time-ti, state-Zi high estimator.

• v̂il(b, Sj
i ,Ni, Ui) is the time-ti, state-Zi leave one out low biased estimator which does not include

node l at time-ti+1.
• Ĥil(b, Sj

i ,Ni, Ui, u) is the time-ti, state-Zi leave one out hold value estimator for exercising u units
which does not include node l at time-ti+1,

Ĥil

(
b, Sj

i ,Ni, Ui, u
)
=

1
b− 1

b

∑
k=1
k 6=l

Di+1v̂k
i+1

(
b, Sk

i+1,Ni − I{u 6=0}, Ui + u
)

k = {j, k}

• ĝil(b, Sj
i ,Ni, Ui, u) = hi(S

j
i ,Ni, Ui, u) + Ĥil(b, Sj

i ,Ni, Ui, u)

• v̂i(b, Sj
i ,Ni, Ui) is the time-ti, state-Zi low estimator

v̂i =
1
b

b

∑
l=1

v̂il

(
b, Sj

i ,Ni, Ui

)
• Ni is the time-ti number of exercise rights remaining.
• Ui is the time-ti cumulative volume.
• Ui is the time-ti discretized set of available volume choices,

Ui = {u0, u1, u2, . . . , uz : z ∈ N} ,

where u0 = 0.
• u is the time-ti volume exercised. Here u ∈ Ui.
• Di+1 is the discount factor from ti+1 to ti.

• hi

(
Sj

i ,Ni, Ui, u
)

is the time-ti, state-Zi payoff from exercising u units with hi

(
Sj

i ,Ni, Ui, 0
)
= 0.
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• Hi

(
Sj

i ,Ni, Ui

)
is the time-ti, state-Zi true hold value,

Hi

(
Sj

i ,Ni, Ui

)
= E

[
Di+1Bi+1(Sk

i+1,Ni+1, Ui+1)|Zi

]
• Bi(S

j
i ,Ni, Ui) is the time-ti, state-Zi true option value,

Bi(S
j
i ,Ni, Ui) = max

u∈U

[
hi

(
Sj

i ,Ni, Ui, u
)
+ Hi

(
Sj

i ,Ni − I{u 6=0}, Ui + u
)]

where I{A} is the indicator function for set A.

Appendix B. Proofs of Main Results and Lemmas

Appendix B.1. Proofs of Main Results

In this section we prove the main results of the paper, Theorems 1–5, presented in Section 2.

Proof of Theorem 1. Here we prove the more general statement that E[V̂i(b, Sj
i ,Ni, Ui)|Zi] ≥

Bi(S
j
i ,Ni, Ui) for i = 0, 1, . . . , m. The proof proceeds by backward induction. At expiry the inequality

holds trivially since V̂m(b, Sj
m,Nm, Um) = Bm(S

j
m,Nm, Um) so that E[V̂m(b, Sj

m,Nm, Um)|Zm] ≥
Bm(S

j
m,Nm, Um). We now assume the inductive hypothesis, E[V̂i+1(b, Sj

i+1,Ni+1, Ui+1)|Zi+1] ≥
Bi+1(S

j
i+1,Ni+1, Ui+1), and proceed to the time-ti case. We have,

E
[
V̂i

(
b, Sj

i ,Ni, Ui

)
|Zi

]
= E

[
max
u∈Ui

[
hi

(
Sj

i ,Ni, Ui, u
)
+ Di+1V̂i+1

(
b, Sk

i+1,Ni − I{u 6=0}, Ui + u
)]
|Zi

]
≥ max

u∈Ui

[
hi

(
Sj

i ,Ni, Ui, u
)
+ E

[
Di+1V̂i+1

(
b, Sk

i+1,Ni − I{u 6=0}, Ui + u
)
|Zi

]]
= max

u∈Ui

[
hi

(
Sj

i ,Ni, Ui, u
)
+ E

[
Di+1E

[
V̂i+1

(
b, Sk

i+1,Ni − I{u 6=0}, Ui + u
)
|Zi+1

]
|Zi

]]
≥ max

u∈Ui

[
hi

(
Sj

i ,Ni, Ui, u
)
+ E

[
Di+1Bi+1

(
Sk

i+1,Ni+1, Ui+1

)
|Zi

]]
= max

u∈Ui

[
hi

(
Sj

i ,Ni, Ui, u
)
+ Hi

(
Sj

i ,Ni, Ui

)]
= Bi

(
Sj

i ,Ni, Ui

)
,

where the first equality comes from the definition of the high estimator, the first inequality comes from
the conditional Jensen’s inequality and note that Ni+1 = Ni − I{u∗ 6=0} and Ui+1 = ui + u∗ where u∗ is
the value-maximizing volume choice, the second equality uses the tower law and the fact that Di+1 is
Zi-measurable, and the second inequality invokes the inductive hypothesis.

Proof of Theorem 2. As with the proof of the bias of the high estimator we prove the more general
statement that E[v̂i(b, Sj

i ,Ni, Ui)|Zi] ≤ Bi(S
j
i ,Ni, Ui) for i = 0, 1, . . . , m by backward induction.

Again at expiry the inequality holds trivially since v̂m(b, Sj
m,Nm, Um)= Bm(S

j
m,Nm, Um). We now

assume the inductive hypothesis, E[v̂i+1(b, Sj
i+1,Ni+1, Ui+1)|Zi+1] ≤ Bi+1(S

j
i+1,Ni+1, Ui+1). We also

note that since the v̂il’s are iid we have that, E[v̂i|Zi] = E[v̂il |Zi]. In what follows we define û∗l ∈ Ui to
be the volume choice which maximizes a particular v̂il . That is,

û∗l = arg max
u∈Ui

[
ĝil(b, Sj

i ,Ni, Ui, u)
]

. (A1)
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Note that ĝil(b, Sj
i ,Ni, Ui, u) is conditionally independent of v̂i+1,l(b, Sl

i+1,Ni+1, Ui+1, u) given Zi
and subsequently û∗l is also independent of v̂i+1,l given Zi since it is a function of ĝil .

Now,

E
[
v̂il

(
b, Sj

i ,Ni, Ui

)
|Zi

]
= E

[
Di+1v̂i+1,l

(
b, Sk

i+1,Ni, Ui

)
I{û∗l =0}|Zi

]
+ E

[(
hi

(
Sj

i ,Ni, Ui, u1

)
+ Di+1v̂i+1,l

(
b, Sk

i+1,Ni − 1, Ui + u1

))
I{û∗l =u1}|Zi

]
+ . . . + E

[(
hi

(
Sj

i ,Ni, Ui, uz

)
+ Di+1v̂i+1,l

(
i + 1, Sk

i+1,Ni − 1, Ui + uz

))
I{û∗l =uz}|Zi

]
= E

[
Di+1v̂i+1,l

(
b, Sk

i+1,Ni, Ui

)
|Zi

]
P (û∗l = 0|Zi) + hi

(
Sj

i ,Ni, Ui, u1

)
P (û∗l = u1|Zi)

+ E
[

Di+1v̂i+1,l

(
b, Sk

i+1,Ni − 1, Ui + u1

)
|Zi

]
P (û∗l = u1|Zi)

+ . . . + hi

(
Sj

i ,Ni, Ui, uz

)
P (û∗l = uz|Zi)

+ E
[

Di+1v̂i+1,l

(
b, Sk

i+1,Ni − 1, Ui + uz

)
|Zi

]
P (û∗l = uz|Zi)

= E
[

Di+1v̂i+1,l

(
b, Sk

i+1,Ni, Ui

)
|Zi

]
p0

+ hi

(
Sj

i ,Ni, Ui, u1

)
p1 + E

[
Di+1v̂i+1,l

(
b, Sk

i+1,Ni − 1, Ui + u1

)
|Zi

]
p1

+ . . . + hi

(
Sj

i ,Ni, Ui, uz

)
pz + E

[
Di+1v̂i+1,l

(
b, Sk

i+1,Ni − 1, Ui + uz

)
|Zi

]
pz

where in the second equality we have used the conditional independence of ĝil and v̂i+1,l .
Here p0 = P(û∗l = 0|Zi) and pj = P(û∗l = uj|Zi) for 1 ≤ j ≤ z and p0 + . . . + pz = 1. Thus, using the
tower law, we have,

E
[
v̂i

(
b, Sj

i ,Ni, Ui

)
|Zi

]
= E

[
v̂il

(
b, Sj

i ,Ni, Ui

)
|Zi

]
= E

[
Di+1E

[
v̂i+1,l

(
b, Sk

i+1,Ni, Ui

)
|Zi+1

]
|Zi

]
p0

+ hi

(
Sj

i ,Ni, Ui, u1

)
p1 + E

[
Di+1E

[
v̂i+1,l

(
b, Sk

i+1,Ni − 1, Ui + u1

)
|Zi+1

]
|Zi

]
p1

+ . . . + hi

(
Sj

i ,Ni, Ui, uz

)
pz + E

[
Di+1E

[
v̂i+1,l

(
b, Sk

i+1,Ni − 1, Ui + uz

)
|Zi+1

]
|Zi

]
pz

≤ E
[

Di+1Bi+1

(
Sk

i+1,Ni, Ui

)
|Zi

]
p0

+ hi

(
Sj

i ,Ni, Ui, u1

)
p1 + E

[
Di+1Bi+1

(
Sk

i+1,Ni − 1, Ui + u1

)
|Zi

]
p1

+ . . . + hi

(
Sj

i ,Ni, Ui, uz

)
pz + E

[
Di+1Bi+1

(
Sk

i+1,Ni − 1, Ui + uz

)
|Zi

]
pz

= Hi

(
Sj

i ,Ni, Ui

)
p0 +

(
hi

(
Sj

i ,Ni, Ui, u1

)
+ Hi

(
Sj

i ,Ni − 1, Ui + u1

))
p1

+ . . . +
(

hi

(
Sj

i ,Ni, Ui, uz

)
+ Hi

(
Sj

i ,Ni − 1, Ui + uz

))
pz

≤ max
u∈Ui

[
hi

(
Sj

i ,Ni, Ui, u
)
+ Hi

(
Sj

i ,Ni − I{u 6=0}, Ui + u
)]

= Bi(S
j
i ,Ni, Ui)

where the first inequality follows from the inductive hypothesis and the remaining steps follow from
the definitions for Bi and Hi.

Proof of Theorem 3. At expiry we have that v̂m(b, Sj
m,Nm, Um) = V̂m(b, Sj

m,Nm, Um) =

Bm(S
j
m,Nm, Um) so the relation holds trivially. We now take the inductive hypothesis to be
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v̂i+1(b, Sj
i+1,Ni+1, Ui+1) ≤ V̂i+1(b, Sj

i+1,Ni+1, Ui+1) for ji+1 = 1, . . . , b. Using the ĝil as defined above
we first consider the case where for a given tree,

û∗l = arg max
u∈Ui

[
ĝil(b, Sj

i ,Ni, Ui, u)
]

, (A2)

is the same for all l (i.e., û∗l = û∗, for all l).
Then,

v̂i

(
b, Sj

i ,Ni, Ui

)
=

1
b

b

∑
l=1

v̂il

(
b, Sj

i ,Ni, Ui

)
=

1
b

b

∑
l=1

[
hi

(
Sj

i ,Ni, Ui, û∗
)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û∗ 6=0}, Ui + û∗
)]

≤ 1
b

b

∑
l=1

[
hi

(
Sj

i ,Ni, Ui, û∗
)
+ Di+1V̂i+1

(
b, Sl

i+1,Ni − I{û∗ 6=0}, Ui + û∗
)]

= hi

(
Sj

i ,Ni, Ui, û∗
)
+

1
b

b

∑
l=1

[
Di+1V̂i+1

(
b, Sl

i+1,Ni − I{û∗ 6=0}, Ui + û∗
)]

≤ max
u∈Ui

[
hi

(
Sj

i ,Ni, Ui, u
)
+

1
b

b

∑
l=1

[
Di+1V̂i+1

(
b, Sl

i+1,Ni − I{u 6=0}, Ui + u
)]]

= V̂i

(
b, Sj

i ,Ni, Ui

)
where the first inequality comes from the inductive hypothesis and the remaining relations come from
the parameter definitions.

Next consider the case where the low estimator gives two different estimated optimal exercise
amounts, û1, û2, across all l branches where û1 6= û2. That is û∗l = û1 or û∗l = û2 for all l = 1, . . . , b.
As above we take û∗l to be the optimal exercise amount determined by the l-th leave one out
estimator, then,

v̂i

(
b, Sj

i ,Ni, Ui

)
= 1

b ∑b
l=1 v̂il

(
b, Sj

i ,Ni, Ui

)
= 1

b ∑b
l=1

[
hi

(
Sj

i ,Ni, Ui, û∗l
)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û∗l 6=0}, Ui + û∗l
)]

= 1
b ∑b

l=1

{[
hi

(
Sj

i ,Ni, Ui, û1
)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û1 6=0}, Ui + û1
)]

I{û∗l =û1}

+
[

hi

(
Sj

i ,Ni, Ui, û2
)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û2 6=0}, Ui + û2
)]

I{û∗l =û2}

}
=

(
1
b ∑b

l=1 I{û∗l =û1}

)
×
(

1
b ∑b

l=1

[
hi

(
Sj

i ,Ni ,Ui ,û1
)
+Di+1 v̂i+1

(
b,Sl

i+1,Ni−I{û1 6=0} ,Ui+û1
)]

I{û∗l =û1}

)
1
b ∑b

l=1 I{û∗l =û1}

+

(
1
b ∑b

l=1 I{û∗l =û2}

)
×
(

1
b ∑b

l=1

[
hi

(
Sj

i ,Ni ,Ui ,û2
)
+Di+1 v̂i+1

(
b,Sl

i+1,Ni−I{û2 6=0} ,Ui+û2
)]

I{û∗l =û2}

)
1
b ∑b

l=1 I{û∗l =û2}

= p×
1
b ∑b

l=1

[
hi

(
Sj

i ,Ni ,Ui ,û1
)
+Di+1 v̂i+1

(
b,Sl

i+1,Ni−I{û1 6=0} ,Ui+û1
)]

I{û∗l =û1}
1
b ∑b

l=1 I{û∗l =û1}

+ (1− p)×
1
b ∑b

l=1

[
hi

(
Sj

i ,Ni ,Ui ,û2
)
+Di+1 v̂i+1

(
b,Sl

i+1,Ni−I{û2 6=0} ,Ui+û2
)]

I{û∗l =û2}
1
b ∑b

l=1 I{û∗l =û2}
,

where p = 1
b ∑b

l=1 I{û∗l =û1}.

Without loss of generality, suppose that û∗l = û1 for l = 1, . . . , k and û∗l = û2 for l = k + 1, . . . , b.
Then the above ratios become

∑k
l=1

[
hi

(
Sj

i ,Ni, Ui, û1
)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û1 6=0}, Ui + û1
)]

k
(A3)
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and
∑b

l=k+1

[
hi

(
Sj

i ,Ni, Ui, û2
)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û2 6=0}, Ui + û2
)]

b− k
, (A4)

respectively. Now for any i∗ ≤ k < j∗ ≤ b we have

ĝii∗
(

b, Sj
i ,Ni, Ui, û1

)
> ĝij∗

(
b, Sj

i ,Ni, Ui, û1
)

which from the definition of ĝil , implies that

Di+1v̂i+1

(
b, Si∗

i+1,Ni, Ui + û1
)
≤ Di+1v̂i+1

(
b, Sj∗

i+1,Ni, Ui + û1
)

.

Therefore,

max
1≤a≤k

[
Di+1v̂i+1

(
b, Sa

i+1,Ni, Ui + û1
)]
≤ min

k+1≤a≤b

[
Di+1v̂i+1

(
b, Sa

i+1,Ni, Ui + û1
)]

.

This implies that Equation (A3)

1
k

k

∑
l=1

[
hi

(
Sj

i ,Ni, Ui, û1
)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û1 6=0}, Ui + û1
)]

≤ 1
b

b

∑
l=1

[
hi

(
Sj

i ,Ni, Ui, û1
)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û1 6=0}, Ui + û1
)]

,

and similarly for Equation (A4)

1
b− k

b

∑
l=k+1

[
hi

(
Sj

i ,Ni, Ui, û2
)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û2 6=0}, Ui + û2
)]

≤ 1
b

b

∑
l=1

[
hi

(
Sj

i ,Ni, Ui, û2
)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û2 6=0}, Ui + û2
)]

.

Therefore

v̂i

(
b, Sj

i ,Ni, Ui

)
≤ p× 1

b

b

∑
l=1

[
hi

(
Sj

i ,Ni, Ui, û1
)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û1 6=0}, Ui + û1
)]

+ (1− p)× 1
b

b

∑
l=1

[
hi

(
Sj

i ,Ni, Ui, û2
)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û2 6=0}, Ui + û2
)]

≤ p× 1
b

b

∑
l=1

[
hi

(
Sj

i ,Ni, Ui, û1
)
+ Di+1V̂i+1

(
b, Sl

i+1,Ni − I{û1 6=0}, Ui + û1
)]

+ (1− p)× 1
b

b

∑
l=1

[
hi

(
Sj

i ,Ni, Ui, û2
)
+ Di+1V̂i+1

(
b, Sl

i+1,Ni − I{û2 6=0}, Ui + û2
)]

≤ max

[
1
b

b

∑
l=1

[
hi

(
Sj

i ,Ni, Ui, û1
)
+ Di+1V̂i+1

(
b, Sl

i+1,Ni − I{û1 6=0}, Ui + û1
)]

,

1
b

b

∑
l=1

[
hi

(
Sj

i ,Ni, Ui, û2
)
+ Di+1V̂i+1

(
b, Sl

i+1,Ni − I{û2 6=0}, Ui + û2
)]]

≤ max
u∈Ui

[
1
b

b

∑
l=1

[
hi

(
Sj

i ,Ni, Ui, u
)
+ Di+1V̂i+1

(
b, Sl

i+1,Ni − I{u 6=0}, Ui + u
)]]

= V̂i(S
j
i ,Ni, Ui),
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where the second inequality comes from the inductive hypothesis, the third inequality is an application
of Jensen’s inequality, the fourth inequality comes from maximizing over a larger set, and the final
equality is the definition of the high-biased estimator.

For the cases where the low estimator gives z∗ distinct estimated optimal exercise amounts,
û1, . . . , ûz∗ , across all z branches, z∗ = 3, . . . , z, arguments similar to those given above (for 2 distinct
estimated optimal exercise amounts) show that,

v̂i(S
j
i ,Ni, Ui) ≤ V̂i(S

j
i ,Ni, Ui).

Since we restrict the number of volume choices to be finite, the theorem is proven.

Prior to proving Theorems 4 and 5 we first state the following preliminary result.

Lemma A1. If ||hi(Si,Ni, Ui, u)|| < ∞ for all ti, for some p ≥ 1, then the following are true for all
0 ≤ ti ≤ tk ≤ tm:

‖Bk(Sk,Nk, Uk)‖Zi
< ∞ (A5)

sup
b

∥∥V̂k(b, Sk,Nk, Uk)
∥∥
Zi

< ∞ (A6)

sup
b
‖v̂k(b, Sk,Nk, Uk)‖Zi

< ∞ (A7)

The proof of this lemma can be found in the appendix. A second preliminary result is

Lemma A2. Let a1, . . . , an, b1, . . . , bn, c1, . . . , cn be real numbers. Then,

An ≡ |max (a1 + b1, . . . , an + bn)−max (a1 + c1, . . . , an + cn)| ≤ 2
n+1

∑
i=1
|bi − ci| ≡ Bn. (A8)

Its proof can also be found in the appendix. We now prove Theorems 4 and 5.

Proof of Theorem 4. Here we take R = 1 and state that if the convergence holds for a single
realization of the forest then it will hold for the mean of any number of realizations due to
the independence of each repeated valuation. Here we prove by backward induction the more
general statement ‖V̂i(b, Si,Ni, Ui) − Bi(Si,Ni, Ui)‖Zi → 0 for any generic node in a given
tree and for all i = 0, . . . , m. At expiry the relation holds trivially since at ti = tm

we have that V̂m(b, Sm,Nm, Um) = Bm(Sm,Nm, Um). The inductive hypothesis is taken to be
‖V̂i+1(b, Si+1,Ni+1, Ui+1)− Bi+1(Si+1,Ni+1, Ui+1)‖Zi+1 → 0.
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Now,∥∥V̂i(b, Si,Ni, Ui)− Bi(Si,Ni, Ui)
∥∥
Zi

=

∥∥∥∥∥max
u∈Ui

[
hi (Si,Ni, Ui, u) +

1
b

b

∑
j=1

Di+1V̂i+1

(
b, Sj

i+1,Ni − I{u 6=0}, Ui + u
)]

− max
u∈Ui

[
hi (Si,Ni, Ui, u) + Hi

(
Si,Ni − I{u 6=0}, Ui + u

)]∥∥∥∥
Zi

=

∥∥∥∥∥
∣∣∣∣∣max

u∈Ui

[
hi (Si,Ni, Ui, u) +

1
b

b

∑
j=1

Di+1V̂i+1

(
b, Sj

i+1,Ni − I{u 6=0}, Ui + u
)]

− max
u∈Ui

[
hi (Si,Ni, Ui, u) + Hi

(
b, Sj

i ,Ni − I{u 6=0}, Ui + u
)]∣∣∣∣ ∥∥∥∥

Zi

≤
∥∥∥∥∥ 2

z

∑
k=0

1
b

∣∣∣∣∣ b

∑
j=1

Di+1V̂i+1

(
b, Sj

i+1,Ni − I{uk 6=0}, Ui + uk

)
− Hi

(
Si,Ni − I{uk 6=0}, Ui + uk

)∣∣∣∣∣
∥∥∥∥∥
Zi

≤ 2
z

∑
k=0

∥∥∥∥∥1
b

b

∑
j=1

Di+1V̂i+1

(
b, Sj

i+1,Ni − I{uk 6=0}, Ui + uk

)
− Hi

(
Si,Ni − I{uk 6=0}, Ui + uk

)∥∥∥∥∥
Zi

≤ 2
z

∑
k=0

∥∥∥∥∥1
b

b

∑
j=1

Di+1

[
V̂i+1

(
i, Sj

i+1,Ni − I{uk 6=0}, Ui + uk

)
− Bi+1

(
Sj

i+1,Ni − I{uk 6=0}, Ui + uk

)]∥∥∥∥∥
Zi

+ 2
z

∑
k=0

∥∥∥Di+1Bi+1

(
Sj

i+1,Ni − I{uk 6=0}, Ui + uk

)
− Hi

(
Si,Ni − I{uk 6=0}, Ui + uk

)∥∥∥
Zi

= 2
z

∑
k=0

(Ek + Ck)

where the first equality comes from the definitions of the estimator and the true value. The third step
comes as a result of Lemma A2, the fourth step comes from a generalization of the triangle inequality.
In the final step we rewrite the expression for convience in what follows.

First we deal with the Ck’s. Given Zi we have that Di+1Bi+1(S
j
i+1,Ni − I{uk 6=0}, Ui + uk) for

j = 1, . . . , b and k = 0, . . . , z are iid with means of Hi(Si,Ni − I{uk 6=0}, Ui + uk) and finite p-norms.
Then by Theorem I.4.1 of Gut (1988) we have that all Ck’s in the above expression go to zero.

Next we consider the Ek’s. Here we have, by the properties of p-norms and the fact that the terms
being averaged are iid, that

Ek ≤
∥∥∥V̂i+1

(
b, Si+1,Ni − I{uk 6=0}, Ui + uk

)
− Bi+1

(
Si+1,Ni − I{uk 6=0}, Ui + uk

)∥∥∥
Zi

since Ek is bounded by the p-norm of any one of the terms being averaged. By the inductive hypothesis∥∥V̂i+1 (b, Si+1,Ni+1, Ui+1)− Bi+1 (Si+1,Ni+1, Ui+1)
∥∥
Zi+1
→ 0,

where Ni+1 = Ni − I{uk 6=0} and Ui+1 = Ui + uk.
Also by a standard condition for uniform integrability (see Gut (1988) p. 178) we have that∥∥V̂i+1 (b, Si+1,Ni+1, Ui+1)− Bi+1 (Si+1,Ni+1, Ui+1)

∥∥
Zi
→ 0, (A9)

provided
sup

b
E
[∣∣V̂i+1 (b, Si+1,Ni+1, Ui+1)− Bi+1 (Si+1,Ni+1, Ui+1)

∣∣p+ε |Zi

]
< ∞
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for some ε. From Lemma A1 we know that

sup
b

E
[∣∣V̂i+1 (b, Si+1,Ni+1, Ui+1)

∣∣p+ε |Zi

]
< ∞

and that
E
[
|Bi+1 (Si+1,Ni+1, Ui+1)|p+ε |Zi

]
< ∞.

Thus (A9) holds for each k = 0, . . . , z and hence the result is proven.

Proof of Theorem 5. As with the proof of Theorem 4 we proceed by backward induction. Again at
expiry the relation holds trivially since v̂m(b, Sm,Nm, Um) = Bm(Sm,Ni, Ui). The inductive hypothesis
is taken to be ‖v̂i+1(b, Si+1,Ni+1, Ui+1)− Bi+1(Si+1,Ni+1, Ui+1)‖Zi+1 → 0.

Let ĝil(b, Sj
i ,Ni, Ui, u) be as defined at the start of Appendix A and note that, with probability one,

hi

(
Sj

i ,Ni, Ui, u1
)
+ Hi

(
Sj

i ,Ni − I{u1 6=0}, Ui + u1
)

6= hi

(
Sj

i ,Ni, Ui, u2
)
+ Hi

(
Sj

i ,Ni − I{u2 6=0}, Ui + u2
)

,

for all u1, u2 ∈ Ui, u1 6= u2.

Before proceeding, we stop to make three claims:

1.
∥∥∥ 1

b ∑b
l=1 Di+1v̂i+1

(
b, Sl

i+1,Ni − I{u 6=0}, Ui + u
)
− Hi

(
Sj

i ,Ni − I{u 6=0}, Ui + u
)∥∥∥
Zi
→ 0

2.
∥∥∥ĝil(b, Sj

i ,Ni, Ui, u)−
[

hi

(
Sj

i ,Ni, Ui, u
)
− Hi

(
Sj

i ,Ni − I{u 6=0}, Ui + u
)]∥∥∥

Zi
→ 0

3.
∥∥∥I{û∗l =u} − I{u∗=u}

∥∥∥
Zi
→ 0

for all u ∈ Ui and where

û∗l = arg max
u∈Ui

[
ĝil(b, Sj

i ,Ni, Ui, u)
]

and

u∗ = arg max
u∈Ui

[
hi

(
Sj

i ,Ni, Ui, u
)
− Hi

(
Sj

i ,Ni − I{u 6=0}, Ui + u
)]

The proof of item (i) is the same as the proof of the corresponding step in Theorem 4. Since the
estimators in (i) and (ii) differ only in the omission of one term in ĝil , similar arguments prove that (ii)
also holds.

Now for (iii), if û∗l = u∗ then the result holds trivially. Now suppose that û∗l = u 6= u∗ for
some u ∈ Ui. Then,∥∥∥I{û∗l =u} − I{u∗=u}

∥∥∥
Zi

=
∥∥∥I{û∗l =u}

∥∥∥
Zi

= [P (û∗l = u|Zi)]
1
p

=
[
P
(

ĝil(b, Sj
i ,Ni, Ui, u) ≥ hi(S

j
i ,Ni, Ui, u) + Hi(S

j
i ,Ni − I{u 6=0}, Ui + u)

)]1/p

→ 0.

Since (ii) holds and convergence in p-norm implies convergence in probability. Thus (iii) is proven.
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Now proceeding from the definition of the low estimator and the true option value for all u ∈ Ui,

‖v̂i (b, Si,Ni, Ui)− Bi (Si,Ni, Ui)‖Zi

=
∥∥∥ 1

b ∑b
l=1 v̂il (b, Si,Ni, Ui)− Bi (Si,Ni, Ui)

∥∥∥
Zi

=
∥∥∥ 1

b ∑b
l=1

(
Di+1v̂i+1,l

(
b, Sl

i+1,Ni, Ui

)
I{û∗l =0}

+
[

ahi (Si,Ni, Ui, u1) + Di+1v̂i+1,l

(
b, Sl

i+1,Ni − 1, Ui + u1

)]
I{û∗l =u1}

+ . . . +
[

ahi (Si,Ni, Ui, uz) +Di+1v̂i+1,l

(
b, Sl

i+1,Ni − 1, Ui + uz

)]
I{û∗l =uz}

)
− Bi (Si,Ni, Ui)

∥∥∥
Zi

≤
∥∥∥ 1

b ∑b
l=1 Di+1v̂i+1,l

(
b, Sl

i+1,Ni, Ui

)
I{û∗l =0} − Hi (Si,Ni, Ui) I{u∗=0}

∥∥∥
Zi

+
∥∥∥ 1

b ∑b
l=1 Di+1v̂i+1,l

(
b, Sl

i+1,Ni − 1, Ui + u1

)
I{û∗l =u1} − Hi (Si,Ni − 1, Ui + u1) I{u∗=u1}

∥∥∥
Zi

+ . . . +
∥∥∥ 1

b ∑b
l=1 Di+1v̂i+1,l

(
b, Sl

i+1,Ni − 1, Ui + uz

)
I{û∗l =uz} − Hi (Si,Ni − 1, Ui + uz) I{u∗=uz}

∥∥∥
Zi

+
∥∥∥hi (Si,Ni, Ui, u1) I{û∗l =u1} − hi (Si,Ni, Ui, u1) I{u∗=uz}

∥∥∥
Zi

+ . . . +
∥∥∥hi (Si,Ni, Ui, uz) I{û∗l =uz} − hi (Si,Ni, Ui, uz) I{u∗=uz}

∥∥∥
Zi

(A10)

where the inequality in the third step is due to a generalization of the triangle inequality.
The immediate consequence of claim (iii) above is that all terms in Equation (A10) with the form∥∥∥hi(Si,Ni, Ui, u)I{û∗l =u} − hi(Si,Ni, Ui, u)I{u∗=u}

∥∥∥
Zi
→ 0

for all u ∈ Ui. Thus

z

∑
k=0

∥∥∥hi(Si,Ni, Ui, uk)I{û∗l =uk} − hi(Si,Ni, Ui, uk)I{u∗=uk}

∥∥∥
Zi
→ 0.

It remains to show that the remaining terms in (A10) converge in the p-norm. Taking one of these
terms, that is, fix a u ∈ Ui, we now show this converges in the p-norm to zero.∥∥∥ 1

b ∑b
l=1 Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u 6=0}, Ui + u
)

I{û∗=u} − Hi

(
Si,Ni − I{u 6=0}, Ui + u

)
I{u∗l =u}

∥∥∥
Zi

=
∥∥∥ 1

b ∑b
l=1

[
Di+1v̂i+i,l

(
b, Sl

i+1,Ni − I{u 6=0}, Ui + u
)

I{û∗l =u} − [Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u 6=0}, Ui + u
)

I{u∗=u}

]
+ 1

b ∑b
l=1 Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u 6=0}, Ui + u
)

I{u∗=u} − Hi

(
Si,Ni − I{u 6=0}, Ui + u

)
I{u∗=u}

∥∥∥
Zi

≤
∥∥∥ 1

b ∑b
l=1

[
Di+1v̂i+i,l

(
b, Sl

i+1,Ni − I{u 6=0}, Ui + u
)

I{û∗l =u} − Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u 6=0}, Ui + u
)

I{u∗=u}

]∥∥∥
+
∥∥∥ 1

b ∑b
l=1 Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u 6=0}, Ui + u
)

I{u∗=u} − Hi

(
Si,Ni − I{u 6=0}, Ui + u

)
I{u∗=u}

∥∥∥
Zi

≤
∥∥∥Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u 6=0}, Ui + u
)∥∥∥
Zi
·
∥∥∥I{û∗l =u} − I{u∗=u}

∥∥∥
Zi

+
∥∥∥I{u∗=u}

∥∥∥
Zi
·
∥∥∥ 1

b ∑b
l=1 Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u 6=0}, Ui + u
)
− Hi

(
Si,Ni − I{u 6=0}, Ui + u

) ∥∥∥
Zi

,

where the first step comes from adding and subtracting the same term, the second comes from applying
the triangle inequality and the third step comes from factoring out common terms.

Now by (iii), ∥∥∥I{û∗l =u} − I{û∗=u}

∥∥∥
Zi
→ 0,

by (i), ∥∥∥∥∥1
b

b

∑
l=1

Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u 6=0}, Ui + u
)
− Hi

(
Si,Ni − I{u 6=0}, Ui + u

) ∥∥∥∥∥
Zi

→ 0,



J. Risk Financial Manag. 2020, 13, 95 26 of 31

and we note that ∥∥∥I{u∗=u}

∥∥∥
Zi

< ∞ and∥∥∥Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u 6=0}, Ui + u
)∥∥∥
Zi

< ∞,

by (A7).
Hence we have proven the consistency of the low-biased estimator.

Appendix B.2. Lemma Proofs

Proof of Lemma A1. If every hi(Si,Ni, Ui, u) has finite p-th moment, then each ||hi(Sk,Nk, Uk, u)||Zi

is finite. Since the max, discounting, and conditional expectation operators preserve finiteness of
moments then it follows that ||Bk(Sk,Nk, Uk)||Zi and also ||Hk(Sk,Nk, Uk)||Zi must also be finite.

Proceeding to (A6), fix ti and proceed by backward induction on tk from tm to ti. At expiry (A6)
follows from (A5). Then for tk < tm,

sup
b

∥∥V̂k(b, Sk,Nk, Uk)
∥∥
Zi

= sup
b

∥∥∥∥max
u∈Uk

[
hk(Sk,Nk, Uk, u) + Ĥk(b, Sk,Nk − I{u 6=0}, Uk + u)

]∥∥∥∥
Zi

= sup
b

∥∥∥∥∥ max
u∈Uk ,u

[
hk(Sk,Nk, Uk, u) +

1
b

b

∑
j=1

Dk+1V̂k+1(b, Sj
k+1,Nk − I{u 6=0}, Uk + u)

]∥∥∥∥∥
Zi

≤ ‖hk(Sk,Nk, Uk, 0)‖Zi
+ sup

b

∥∥∥∥∥1
b

b

∑
j=1

Dk+1V̂k+1(b, Sj
k+1,Nk, Uk)

∥∥∥∥∥
Zi

+ ‖hk(Sk,Nk, Uk, u1)‖Zi
+ sup

b

∥∥∥∥∥1
b

b

∑
j=1

Dk+1V̂k+1(b, Sj
k+1,Nk − 1, Uk + u1)

∥∥∥∥∥
Zi

+ . . . + ‖hk(Sk,Nk, Uk, ur)‖Zi
+ sup

b

∥∥∥∥∥1
b

b

∑
j=1

Dk+1V̂k+1(b, Sj
k+1,Nk − 1, Uk + ur)

∥∥∥∥∥
Zi

≤ sup
b

∥∥V̂k+1(b, Sk+1,Nk, Uk)
∥∥
Zi

+ ‖hk(Sk,Nk, Uk, u1)‖Zi
+ sup

b

∥∥V̂k+1(b, Sk+1,Nk − 1, Uk + u1)
∥∥
Zi

+ . . . + ‖hk(Sk+1,Nk, Uk, ur)‖Zi
+ sup

b

∥∥V̂k+1(b, Sk+1,Nk − 1, Uk + ur)
∥∥
Zi

,

where hk(Sk,Nk, Uk, 0) = 0. This is the sum of a finite number of terms, each of which is finite.
For (iii) the proof is similar to that of (ii).

Proof of Lemma A2. In order to prove Lemma A2 we proceed by induction by considering the cases
for n = 1 and n = 2. For n = 1,

A1 = |max(a1 + b1)−max(a1 + c1)| = |b1 − c1| < B1

therefore A1 ≤ B1. Now, for n = 2

A1 = |max(a1 + b1, a2 + b2)−max(a1 + c1, a2 + c2)|

Consider the following,

1. a1 + b1 > a2 + b2

(a) a1 + c1 > a2 + c2

Then
A2 = |a1 + b1 − a1 − c1| = |b1 − c1| ≤ B2
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(b) a1 + c1 < a2 + c2

Note that conditions (i) and (b) imply that

b2 − b1 < a1 − a2 < c2 − c1 (A11)

and we have

A2 = |a1 + b1 − a2 − c2|
= |a1 + b1 − c1 + c1 − a2 − c2|
≤ |b1 − c1|+ |(a1 − a2)− (c2 − c1)|
≤ |b1 − c1|+ |(b2 − b1)− (c2 − c1)|
= |b1 − c1|+ |b2 − c2 − (b1 − c1)|
≤ 2|b1 − c1|+ |b2 − c2|
≤ 2|b1 − c1|+ 2|b2 − c2|
= B2

where the first inequality comes from the triangle inequality, the second comes from
Inequality (A11) and the third inequality comes from another application of the
triangle inequality.

2. a2 + b2 > a1 + b1

(a) a2 + c2 > a1 + c1

Then
A2 = |a2 + b2 − a2 − c2| = |b2 − c2| ≤ B2

(b) a2 + c2 < a1 + c1

Note that conditions (ii) and (b) imply that

b1 − b2 < a2 − a1 < c1 − c2 (A12)

and we have

A2 = |a2 + b2 − a1 − c1|
= |a2 + b2 − c2 + c2 − a1 − c1|
≤ |b2 − c2|+ |(a2 − a1)− (c1 − c2)|
≤ |b2 − c2|+ |(b1 − b2)− (c1 − c2)|
= |b2 − c2|+ |b1 − c1 − (b2 − c2)|
≤ 2|b2 − c2|+ |b1 − c1|
≤ 2|b2 − c2|+ 2|b1 − c1|
= B2

where again the first inequality comes from the triangle inequality, the second comes
from Inequality (A12) and the third inequality comes from another application of the
triangle inequality.

Therefore A2 ≤ B2.
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Now assume that the inductive hypothesis An ≤ Bn is true. We need to show that An+1 ≤ Bn+1.
First define in and jn such that

ain + bin = max(a1 + b1, . . . , an + bn)

and
ain + cin = max(a1 + c1, . . . , an + cn)

respectively. Now,

An+1 = |max(a1 + b1, . . . , an + bn, an+1 + bn+1)−max(a1 + c1, . . . , an + cn, an+1 + cn+1)|
=
∣∣max(ain + bin , an+1 + bn+1)−max(ajn + cjn , an+1 + cn+1)

∣∣
Consider the following,

1. ain + bin > an+1 + bn+1

(a) ajn + cjn > an+1 + cn+1

An+1 = |ain + bin − ajn − cjn |

≤ 2
n

∑
i=1
|bi − ci|

≤ 2
n+1

∑
i=1
|bi − ci|

= Bn+1

where the first inequality comes from the inductive hypothesis.
(b) ajn + cjn < an+1 + cn+1

By the definitions of in and jn and (b) we have

ain + cin ≤ ajn + cjn < an+1 + cn+1.

This combined with (i) gives

bn+1 − bin < ain − an+1 < cn+1 − cin (A13)

Then

An+1 = |ain + bin − an+1 − cn+1|
= |ain + bin − cin + cin − an+1 − cn+1|
≤ |bin − cin |+ |(ain − an+1)− (cn+1 − cin)|
≤ |bin − cin |+ |(bn+1 − bin)− (cn+1 − cin)|
= |bin − cin |+ |bn+1 − cn+1 − (bin − cin)|
≤ 2|bin − cin |+ |bn+1 − cn+1|
≤ Bn+1

where again the first inequality comes from the triangle inequality, the second comes
from Inequality (A13) and the third inequality comes from another application of the
triangle inequality.

2. ain + bin < an+1 + bn+1
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(a) ajn + cjn < an+1 + cn+1

An+1 = |an+1 + bn+1 − an+1 − cn+1|
= |bn+1 − cn+1|

≤ 2
n+1

∑
i=1
|bi − ci|

= Bn+1

(b) ajn + cjn > an+1 + cn+1

By the definitions of in and jn and (ii) we have

ajn + bjn ≤ ain + bin < an+1 + bn+1.

This combined with (b) gives

bjn − bn+1 < an+1 − ajn < cjn − cn+1 (A14)

Then

An+1 = |an+1 + bn+1 − ajn − cjn |
= |an+1 + bn+1 − cn+1 + cn+1 − ajn − cjn |
≤ |bn+1 − cn+1|+ |(an+1 − ajn)− (cjn − cn+1)|
≤ |bn+1 − cn+1|+ |(bjn − bn+1)− (cjn − cn+1)|
= |bn+1 − cn+1|+ |bjn − cjn − (bn+1 − cn+1)|
≤ 2|bn+1 − cn+1|+ |bjn − cjn |
≤ Bn+1

where again the first inequality comes from the triangle inequality, the second comes
from Inequality (A14) and the third inequality comes from another application of the
triangle inequality.

Therefore An+1 ≤ Bn+1 and the Lemma is proven.
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