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Abstract: The inhomogeneity of the cross-sectional distribution of realized assets’ volatility is
explored and used to build a novel class of GARCH (Generalized Autoregressive Conditional
Heteroskedasticity) models. The inhomogeneity of the cross-sectional distribution of realized
volatility is captured by a finite Gaussian mixture model plus a uniform component that represents
abnormal variations in volatility. Based on the cross-sectional mixture model, at each time point,
memberships of assets to risk groups are retrieved via maximum likelihood estimation, as well as the
probability that an asset belongs to a specific risk group. The latter is profitably used for specifying
a state-dependent model for volatility forecasting. We propose novel GARCH-type specifications
the parameters of which act “clusterwise” conditional on past information on the volatility clusters.
The empirical performance of the proposed models is assessed by means of an application to a panel
of U.S. stocks traded on the NYSE. An extensive forecasting experiment shows that, when the main
goal is to improve overall many univariate volatility forecasts, the method proposed in this paper has
some advantages over the state-of-the-arts methods.

Keywords: GARCH models; realized volatility; model-based clustering; robust clustering

1. Introduction

A well known stylized fact in financial econometrics states that the dynamics of conditional
volatility are state dependent since they are affected by the (latent) long-run level of volatility itself.
This issue has motivated a variety of time varying extensions of the standard GARCH class of models
including latent state regime-switching models (Gallo and Otranto 2018; Hamilton and Susmel 1994;
Marcucci 2005), observation-driven regime switching models (Bauwens and Storti 2009, WGARCH),
Generalized Autoregressive Score (Creal et al. 2013, GAS) models, Component GARCH models (Engle
et al. 2013, GARCH-MIDAS), (Engle and Rangel 2008, Spline-GARCH). All these models, directly or
indirectly, relate the conditional variance dynamics to its long-run level.

At the same time, in recent years there has been a growing interest in modeling the volatility of
large dimensional portfolios with a particular interest in the dynamic inter-dependencies among several
assets (Barigozzi et al. 2014; Engle et al. 2019). However, modeling dynamic interdependencies among
several assets would in principle require the estimation of an unrealistic huge number of parameters
compared with the available data dimensions. Model’s parsimony is achieved introducing severe
constraints on the dependence structure of the data (see Pakel et al. 2011). In this respect, Bauwens and
Rombouts (2007) showed evidence in favor of the hypothesis that there exist cluster-wise dependence
structures in the distribution of financial returns.

In this paper, we propose a novel approach to modelling volatility dynamics for large panels
of stocks. In particular, we exploit the cluster structure of returns at cross-sectional level to build
GARCH-type models where the volatility of each assets depends on the past information about the
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cluster structure of the entire market. Although this does not provide a multivariate volatility model
for the entire market, the proposed strategy allows to build univariate models that parsimoniously
use past information on the entire market. In each time period, a robust model-based clustering
method identifies G volatility groups based on realized volatility data. The model-based methodology
allows to assign assets to volatility clusters based on a mixture probability model assumed for the
cross-sectional distribution of the realized volatility. Each volatility cluster is represented by a Gaussian
distribution, and the robustness of the assignment is ensured via the addition of uniform mixture
component to capture abnormal variations in realized volatility. In fact, these observed abnormal
realized volatility typically have an extremely scattered behavior not consistent with the main clusters
referred as “regular clusters” in this work. The robust model-based clustering algorithm is based on the
contribution of Banfield and Raftery (1993) and Coretto and Hennig (2011). The novelty here is that the
aforementioned contributions are extended including constraints that ensures the desired separation
between “regular” clusters, and (outlying) clusters representing abnormal volatility. Then, for a given
asset, its volatility is modeled via a GARCH-type model where parameters depend on the discovered
group-structure in previous periods. The proposed modelling approach is also related to the stream of
literature on state-dependent volatility modelling given that, for any specific asset, the information on
cluster membership can be seen as a synthetic measure of the volatility level of the asset, with respect
to the cross-sectional distribution of volatility at a given time point. The underlying idea is that the
identified clusters can be related to factors characterized by different relative volatility levels. Each
of these factors is then allowed, but not constrained, to have different dynamic properties. Assets
can migrate from one group to another, so that we obtain a form of time-varying state-dependent
conditional variance process determined on the basis of its volatility level relative to the market
cross-sectional level. The latter introduces a novelty in the literature where the state-dependent nature
of the volatility process has been treated in terms of absolute volatility levels (see for example, Bauwens
and Storti 2009, and references therein).

The paper is organized as follows: in Section 2 we introduce the proposed GARCH-type
specification and the supporting clustering method while the related estimation procedure is discussed
in Section 3. In Section 4 we present the results of an application using data on a portfolio of stocks
traded in the NYSE and, finally, in Section 5 we state some final remarks.

2. A Garch-Type Specifications Incorporating Cross-Sectional Volatility Clusters

2.1. The CW-GARCH Specification

Consider a market with s = 1, 2, . . . , S assets traded at times t = 1, 2, . . . , T. At each time
period t an asset s belongs to a volatility group j, where j = 1, 2, . . . , G. Therefore it is assumed that
the cross-sectional distribution of assets’ volatility exhibits a group structure. A volatility cluster
is understood as a group of assets that, at time t, have an “homogeneous” distribution in terms of
volatility. The homogeneity concept underlying the cluster model is explained in the subsequent
Section 2.2. Volatility clusters are groups of assets with similar risk, therefore referred as “risk groups”.
We assume that there are G fixed volatility clusters, where G is not known to the researcher. Each asset
s can migrate from one cluster to another, but the number of clusters G is assumed to be fixed for the
entire time horizon. The class labels are arranged so that they induce a natural ordering in terms of the
riskiness of their assets. That is, for any ja < jb, group jb is riskier than group ja. This ordering is not in
generally necessary from the technical viewpoint since any asset is allowed to migrate from any group
to any other group, however it is adopted to identify the group labels in terms of low-vs-high volatility.
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Let I{A} be the indicator function at the set A, let It−1 be the information set at time t− 1, and let
E[· | It−1] denote the expectation conditional on It−1. Define the indicator variables

Dt,s,j = I{asset s ∈ group j at time t},

and assume that E[Dt,s,j | It−1] = πt,j ∈ [0, 1]. That is, at time t the j-th group is expected to contain
a proportion of πt,j assets. In other words πt,j captures the expected size of the j-th cluster at time t.
The vector gt,s = (Dt,s,1, Dt,s,2, . . . , Dt,s,G)

′ is a complete description of the class memberships of the
s-th asset at time t. The elements of gt,s are called “hard memberships”, because these link each asset to a
unique group inducing a partition at each t.

Let rt,s be the return of the asset s at time t. Let {zt,s} be a sequence of random shocks where
zt,s ∼ IID(0, 1). Consider the following returns’ generating process

rt,s = µs + σt,szt,s

σ2
t,s =

(
ωs + αs(rt−1,s − µ)2 + βsσ2

t−1,s

)′
gt−1,s (1)

where ωs, αs and βs are G-dimensional model parameter vectors. In particular ωs = (ωs,1 . . . ωs,G)
′ > 0,

αs = (αs,1 . . . αs,G)
′ ≥ 0, βs = (βs,1 . . . βs,G)

′ ≥ 0. The clustering information about the cross-sectional
volatility enters the model for rt,s via gt−1.To see the connection with the classical GARCH(1,1) model
(Bollerslev 1986), note that

σ2
t,s =

{
ωs,j + αs,j(rt−1,s − µ)2 + βs,jσ

2
t−1,s if asset s ∈ group j,

0 otherwise.

Therefore, conditional on the groups’ memberships at time t− 1, the model (1) specifies a GARCH(1,1)
dynamic structure for all those assets within a given group j. Based on this, model (1) is referred as the
“Clusterwise GARCH” (CW-GARCH) model. Within the j-th cluster, the model parameters ωs,j, αs,j
and βs,j can be interpreted as usual as the intercept, shock reaction and volatility decay coefficients
of the j-latent component. Therefore, we refer to (ωs,j, αs,j, βs,j) as the “within-group” GARCH(1,1)
coefficients. The advantage of model (1) is that it models the conditional variance dynamic in terms of
an ordinal state variable so that the switch between G different regimes is contingent to the overall
market behavior. Volatility clusters are arranged in increasing order of risk from j = 1 to j = G, and in
two different time periods t1 and t2 an asset s may belong to the same risk group, i.e., gt1,s = gt2,s,
leading to the same GARCH regime although its volatility may have changed dramatically because the
overall market volatility changed dramatically. The state variable gt−1,s transforms a cardinal notion,
i.e., volatility, into an ordinal notion induced by the memberships to ordered risk groups.

In order to see how the cluster dynamic interacts with the GARCH-type coefficients, define

ωt,s = ω′sgt−1,s =
G

∑
j=1

ωs,jDt−1,s,j,

αt,s = α′sgt−1,s =
G

∑
j=1

αs,jDt−1,s,j,

βt,s = β′sgt−1,s =
G

∑
j=1

βs,jDt−1,s,j.

The variance dynamic equation in (1) can now be rewritten as

σ2
t,s = ωt,s + αt,s(rt−1,s − µ)2 + βt,sσ2

t−1,s. (2)
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Equation (2) resembles a GARCH(1,1) specification with time-varying coefficients obtained by
weighting the within-groups classical GARCH(1,1) parameters by the class membership state variables.
Although model (2) leads to a convenient interpretation of the model, its formulation is not consistent
with a model with dynamic parameters. In fact, the three model parameter vectors ωs, αs, βs do not
depend on t, and the dynamic of ωt,s, αt,s, βt,s is driven by the state variables {Dt−1,s,j}.

From (2) it can be seen that the dynamic of σ2
t,s changes discontinuously because of the transition

of an asset from a risk group to another. We introduce an alternative formulation of the model where
the dynamic of σ2

t,s is smoothed by replacing the hard membership state variables {Dt−1,s,j} with a
smooth version. There are situations where the membership of an asset is not totally clear (e.g., assets
on the border of the transition between two risk groups), in this situation one may desire to smooth the
transition between groups. Instead of assigning an asset to a risk group, one can attach a measure of
the strength of the membership. In the classification literature these are called “soft labels” or “smooth
memberships” (see Hennig et al. 2016). There are various possibilities for defining a smooth assignment.
The following choice will be motivated in Section 2.2. Define

τt,s,j = E [Dt,s,j | It] = Pr{Dt,s,j = 1 | It}, (3)

now τt,s,j ∈ [0, 1], and ∑G
j=1 τt−1,s,j = 1 for all t = 1, 2, . . . . The quantity τt,s,j gives the strength at which

the asset s is associated to the j-th cluster at time t based on the information at time t. Define the vector
τt,s = (τt,s,1, τt,s,2, . . . , τt,s,G)

′. We propose the following alternative version of model (1) where the
variance dynamic equation is replaced with the following σ̃2 process

rt,s = µs + σ̃t,szt,s

σ̃2
t,s =

(
ωs + αs(rt−1,s − µ)2 + βsσ2

t−1,s

)′
τt−1,s. (4)

We call (4) the “Smooth CW-GARCH” (sCW-GARCH) model. For the sCW-GARCH the variance process
can be written as a weighted sum of GARCH(1,1) models

σ̃2
t,s =

G

∑
j=1

τt−1,j,s

(
ωs,j + αs,j(rt−1,s − µ)2 + βs,sσ2

t−1,s

)
.

As before, write the previous equation in terms of time varying GARCH components as follows

σ̃2
t,s = ω̃t,s + α̃t,s(rt−1,s − µ)2 + β̃t,sσ2

t−1,s,

where

ω̃t,s = ω′sτt−1,s =
G

∑
j=1

ωs,jτt−1,s,j,

α̃t,s = α′sτt−1,s =
G

∑
j=1

αs,jτt−1,s,j,

β̃t,s = β′sτt−1,s =
G

∑
j=1

βs,jτt−1,s,j.

From the latter it can be easily seen that the sort of time varying GARCH(1,1) components of the
sCW-GARCH change smoothly as assets migrate from one risk group to another. In this case,
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the formulation above gives also a better intuition about the role of the within-group GARCH
parameters {ωs,j, αs,j, βs,j}. Note that

ωs,j =
∂ ω̃t,s

∂ τt−1,s,j
, αs,j =

∂ α̃t,s

∂ τt−1,s,j
, βs,j =

∂ β̃t,s

∂ τt−1,s,j
.

Therefore, each of the within-cluster GARCH parameter expresses the marginal variation of the
corresponding GARCH component caused by a change in the degree of memberships with respect to
the corresponding risk group.

From a different angle, it is worth noting that the sCW-GARCH model can be seen as a
state-dependent dynamic volatility model with a continuous state space where, at time t, the current
value of the state is determined by the smooth memberships τt,s. Differently, in the CW-GARCH models,
the state space is discrete, since only G values are feasible, and the current value of the state is now
determined by the hard memberships gt,s.

2.2. Cross-Sectional Cluster Model

In this section, we introduce a model for the cross-sectional distribution of assets’ volatility.
While considerable research has investigated the time-series structure of the volatility process and
its relationships with market and the expected returns (see, among others, Campbell and Hentschel
1992; Glosten et al. 1993), the question of how the distribution of assets’ volatility looks like at a
given time point has received less attention. The key assumption in this work is that, at a given time
point, there are groups of assets whose volatility cluster together to form groups of homogeneous risk.
This assumption has been already explored in Coretto et al. (2011). This is empirically motivated by
analyzing cross-sectional realized volatility data. From the data set studied in Section 4 including 123
stocks traded on the New York Stock Exchange market (NYSE), in Figure 1 we show the kernel density
estimate of the cross-sectional distribution of the realized volatility in two consecutive trading days.
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Figure 1. For the data set introduced in Section 4 it is shown the kernel density estimate of the
cross-sectional distribution of realized volatility in two different time points: panel (a) refers to 27
August 1998; panel (b) refers to 28 August 1998.

Details on how the realized volatility is computed are postponed to Section 4. In both panels
of Figure 1 there is evidence of multimodality, and this is consistent with the idea that there are
groups of assets forming sub-populations with different average volatility levels. In panel (b) the
kernel density estimate is corrupted by few assets exhibiting abnormal large realized volatility, this
happens for a large number of trading days. In Figure 1b the two rightmost density peaks close to
0.006 and 0.012 each capture just few scattered points, although the plot seems to suggest the presence
of two symmetric components. Not the kernel density estimator itself, but the estimate of the optimal
bandwidth of Sheather and Jones (1991) used in this case is heavily affected by this typical right-tail
behavior of the distribution. This sort of artifacts are common to other kernel density estimators.
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Unless a large smoothing is introduced, in the presence of scattered points in low density regions
the kernel density estimate is mainly driven by the shape of the kernel function. On the other hand,
increasing the smoothing would tarnish the underlying multimodality structure.

The cross-sectional structure discussed above is consistent with mixture models. The idea is
that each mixture component represents a group of assets that share similar risk behaviour. Let ht,s

be the realized volatility of the asset s at time t. We assume that at each t there are G groups of
assets. Furthermore, conditional on Dt,s,j = 1, the jth group has a distribution f j(·) that is symmetric
about the center mt,j, has a variance vt,j, and its expected size (proportion) is πt,j = E[· | It−1]. This
implies that the the cross-sectional distribution of the realized volatility (unconditional on {Dt,s,j}) is
represented by the finite location-scale mixture model

G

∑
j=1

πt,j f j(ht,s; mt,j, vt,j). (5)

The idea is that each mixture component represents a group of assets that share similar risk behaviour.
The parameter mt,j represents the average within group realized volatility, while vt,j represents its
dispersion. Mixture models can reproduce clustered population, and it is a popular tool in model-based
cluster analysis (see Banfield and Raftery 1993; McLachlan and Peel 2000, among others). Coretto
et al. (2011) exploited the assumed mixture structure for using robust model-based cluster analysis to
group asset with similar risk, and they proposed a parsimonious multivariate dynamic model where
aggregate clusters’ volatility is modeled instead of individual assets’ volatility. The main goal of their
work was to reduce the unfeasible large dimensionality of multivariate volatility models for large
portfolios. Clustering methods applied to financial time series were also used in Otranto (2008), where
the autoregressive metric (see Corduas and Piccolo 2008) is applied to measure the distance between
GARCH processes.

Finite mixtures of Gaussians, that is when f j(·) is the Gaussian density, are effective to model
symmetrically shaped clusters also when clusters are not exactly normal. But in this case some more
structure is needed to capture the effects of large variations in assets volatility that often show up
for many trading days, e.g., the example shown in panel (b) of Figure 1. In Coretto et al. (2011) it
was proposed to adopt the approach of Coretto and Hennig (2016, 2017) where an improper constant
density mixture component is introduced to catch points (interpreted as noise or contamination) in
low density regions. This makes sense in all those situations where there are points extraneous to
each clusters that have an unstructured behavior, and that can potentially appear everywhere in the
data space. This is not exactly the cases studied in this paper. In fact, realized volatility is a positive
quantity, and this heterogeneous component can only affect the right tail of the distribution. Here we
assume that the group of few assets inflating the right tail of the distribution have a proper uniform
distribution whose support is not overlapping with the other regular volatility clusters. Let j = 0
denote this group of asset exhibiting “abnormal” large volatility, we call this group of points “noise”.
The term noise here is inherited from the robust clustering and classification literature (see Ritter 2014),
where it is understood as a “noisy cluster”, that is, a cluster of points with an unstructured shape
compared with the main groups in the population. The uniform distribution is a convenient choice to
capture atypical group of points not having a central location, and that are scattered in density regions
somewhat separated from the main bulk of the data (Banfield and Raftery 1993; Coretto and Hennig
2016; Hennig 2004).

We assume that

ht,s |Dt,s,0 = 1 ∼ Uniform(lt, ut)

ht,s |Dt,s,j = 1 ∼ Normal(mt,j, vt,j) for j = 1 . . . , G (6)
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where lt < ut are respectively the lower and upper limit of the support of the uniform distribution.
The previous implies that, without conditioning on the class labels {Dt,s,j}, the cross-sectional
distribution of the assets’ volatility is represented by the following finite mixture model

f (ht,s; θt) = πt,0
I{lt ≤ ht,s ≤ ut}

ut − lt
+

G

∑
j=1

πt,j φ(ht,s; mt,j, vt,j), (7)

where φ(·) is Gaussian density function. The unknown mixture parameter vector is θt =

(πt,0, lt, ut, πt,1, mt1 , vt,1, . . . , πt,G, mtG , vt,G)
′. This class of models where introduced in Banfield

and Raftery (1993), and studied in Coretto and Hennig (2010, 2011) to perform robust clustering.
The additional problem here is that if θt is unrestricted one may have situations where the support of
the noise group overlaps with one or more regular clusters if lt is small enough. The latter would be
inconsistent with the empirical evidence. To overcome this, we propose the following restriction, that
is we assume that θt is such that

mj,t + λ
√

vj,t ≤ lt for all j = 1, 2, . . . , G. (8)

The constant λ > 0 controls the maximum degree of overlap between the support of the uniform
distribution representing atypical observations and the closest regular Gaussian component. To see
this, let z0.99 be the 99% quantile of the standard normal distribution, and take λ = z0.99. The restriction
(8) means that the uniform component can only overlap with the closest Gaussian component in its 1%
tail probability. Restriction (8) now ensures a well separation between regular and non-regular assets.

Although the mixture model introduced in this section is interesting for how it is able to fit the
cross-sectional distribution of realized volatility at each time period, the main issue here is to obtain
the hard class memberships variables {Dt,s,j}, and the smooth version {τt,s,j}. Since τt,s,j = Pr{Dt,s,j =

1 | It}, here we have that

τt,s,j =

πt,0
I{lt≤ht,s≤ut}

ut−lt
1

f (ht,s ; θt)
if j = 0,

πt,j φ(ht,s ; mt,j ,vt,j)

f (ht,s ; θt)
if j = 1, 2, . . . , G.

(9)

Quantities in (8) are obtained simply applying the Bayes rule, this the reason why these are also called
“posterior weights” for class memberships. It can be easily shown (see Velilla and Hernández 2005, and
references therein) that the optimal partition of the points can be obtained by applying the following
assignment rule also called “Bayes classifier”

D∗t,s,j = I
{

j = arg max
j=0,1,...,G

{τt,s,j}
}

. (10)

Basically the Bayes classifier assigns a point ht,s to the group with largest posterior probability
of membership. The assignment rule in (10) is optimal in the sense that it achieves the lowest
misclassification rate. Therefore, in order to obtain (10) and (9) from the data one needs to estimate θt at
each cross-section. Although we use the subscript t to distinguish the θ parameter in each cross-section,
we do not assume any dependence in it. Here we treat the number of groups G as fixed an known.
While in some situation, including the one studied in this paper, a reasonable value of G can be
determined based on subject matter considerations, this is not always the case. In Section 4 we will
motivate our choice of G = 3 for this study and we will give some insights on how to fix in it in general.

In the next Section 3 we introduce estimation methods for the quantities of interest, that are class
memberships {Dt,s,j} and smooth weights {τt,s,j}. But before to conclude this session we show how
model (7) under (8) fits the data sets of the example of Figure 1. In this paper we are mainly interested
in the cluster structure of the cross-sectional data, however, it is also of interest to investigate the fitting
capability of the cross-sectional model. Estimated density of the two data sets of example in Figure 1
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are shown in Figure 2. Panel (a) and (b) of Figure 2 refers to the cross-section distribution of realized
volatility on 27/Aug/1998 (compare with panel (a) in Figure 1). Panel (c) and (d) of Figure 2 refers
to the cross-section distribution of realized volatility on 28/Aug/1998 (compare with panel (b) in
Figure 1). In panel (a) and (c) of Figure 2 we show the fitted density based on model (7) with G = 3
under (8), and the additional restriction that πt,0 = 0, i.e., there is no uniform noise. In panels (b) and
(d) the same model is fitted with the uniform component active. Comparing panels (a) and (b) of
Figure 2 with panel (a) in Figure 1 one can see how the proposed model can lead to well separated
components. The comparison of panels (a) and (b) in Figure 2 shows how the introduction of the
uniform component completely modify the fitted regular components. In fact, in the case of panel
(a) the absence of the uniform component causes a strong inflation of the variance of the rightmost
Gaussian component so that the second component seen in panel (b) is completely eaten. A similar
situation happen in panel (c) and (d) of Figure 2. Because of the uniform density in model (7) possible
discontinuities at the boundaries of uniform support may arise in the final estimate. Compare Panel (d)
vs. panel (b) in Figure 2. When the group of noisy assets is reasonably concentrated, the corresponding
support of the fitted uniform distribution becomes smaller, and the uniform density easily dominates
the tail of the closest regular distribution (e.g., this happens in panel (b)). The discontinuity of the
model density is less noticeable in cases like the one in panel (d) where the support of the uniform is
rather large because of extremely scattered abnormal realized volatility. Although the discontinuity
introduced by the uniform distribution adds some technical issues for the estimation theory (see
Coretto and Hennig 2011), it has two main advantages: (i) it allows to represent unstructured groups
of points with a well defined, simple and proper probability model; (ii) the noisy cluster is understood
as a group of points not having any particular shape, and that is different and distinguished from the
regular clusters’ prototype model (the Gaussian density here). Therefore, a discontinuous transition
between regular and non-regular density region obeys to the philosophy in robust statistic that in order
to identify outliers/noise they need to arise in low density regions under the model for the regular
points. Further discussions about the model-based treatment of noise/outliers in clustering can be
found in Hennig (2004) and Coretto and Hennig (2016).
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Figure 2. Parametric density estimate of the cross-sectional distribution for that data sets of the example
in Figure 1. (a) Realized volatility on 27/Aug/1998; fitted density based on model (7) with G = 3,
under the restriction (8) and that π0 = 0 (that is the uniform component is inactive). (b) Realized
volatility on 27/Aug/1998; fitted density based on model (7) with G = 3, under the restriction (8).
(c) Realized volatility on 28/Aug/1998; fitted density based on model (7) with G = 3, under the
restriction (8) and that π0 = 0 (uniform component is inactive). (d) Realized volatility on 28/Aug/1998;
fitted density based on model (7) with G = 3, under the restriction (8).

3. Estimation

The main goal of this paper is to estimate models (1) and (4). If the class membership variables
{Dt,s,j} or the posterior weights {τt,s,j}were known, one could have estimated the unknown parameter
by optimizing the sample log-likelihood function of (1) or (4). However, both {Dt,s,j} and {τt,s,j} are
not known. In Section 2.2 we developed a model for the cross-sectional distribution of the realized
volatility, and an unknown parameter vector θt controls this distribution at each time point. It may
be possible to embed both the time series model, and the cross-sectional model in a single likelihood
function and proceed with a single Maximum Likelihood (ML) estimation. Although this is in principle
possible, it would lead to an unfeasible optimization problem. Since we assume that at each time
point the time series model (1) (or (4)) does interact with the current values of {Dt,s,j} (or {τt,s,j}), we
propose to simplify the estimation in two separate steps:

Step 1: using cross-sectional data on realized volatility, at each time period the parameter θt is
estimated based on ML. The fitted θt is used to obtain an estimates of {D∗t,s,j} and {τt,s,j}
based on (9) and (10).

Step 2: the ML (or quasi-ML) method applied to estimate the unknown parameters of (1) or (4).
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Step 1 is performed by solving the following constrained ML program

maximize
θt

S

∑
s=1

log f (hs,t; θt),

subject to 0 < vmin ≤ vj,t, for j = 1, 2, . . . , G,

0 < vmin ≤ (ut − lt)2/12,

mj,t + λ
√

vj,t ≤ lt, for j = 1, 2, . . . , G.

(11)

Let θ̂t the solution of the previous ML program. Additionally to the model constraint introduced in (8),
the proposed ML optimization has two further constraints that require the specification of positive
constant vmin. This is a lower bound for the variance of both types of mixture components (e.g., the
Gaussian and the uniform). It is well known that the unconstrained ML for mixture of location-scales
distribution does not exist, and in practice it can easily leads to spurious solutions (see McLachlan
and Peel 2000; Redner and Walker 1984, among the others). In our study we set vmin = 10−5, while
we take λ = z0.99 as explained in Section 2.2. The numerical solution of (11) is complicated by the
discontinuities introduced by the uniform component, and the additional constraint implementing (8).
The Expectation-Maximization (EM) algorithm proposed in Coretto and Hennig (2011) can be easily
adapted to obtain θ̂t. Based on θ̂t the corresponding {D̂t,sj} and {τ̂t,s,j} are computed by plugging in θ̂t

into (9) and (10).
In Step 2, conditional on the estimated memberships, {D̂t,sj} and {τ̂t,s,j}, for any asset s,

the parameters of the model for returns, ψs = (µs, ω
′
s, α
′
s, β

′
s)
′
, are estimated maximizing the

conditional likelihood function

maximize
ψs

T

∑
t=1

log φ(rt,s|It−1, Ls,t−1; ψs),

subject to ωj > 0, for j = 1, 2, . . . , G,

αj ≥ 0, for j = 1, 2, . . . , G,

β j ≥ 0, for j = 1, 2, . . . , G.

(12)

where φ(x|.) denotes the conditional density of X, Ls,t−1 = gt,s, for the CW-GARCH model,
and Ls,t−1 = τt,s, for the sCW-GARCH model.

In order to gain some insight on the statistical properties of the estimation procedure for the
dynamic volatility coefficients, we have performed a Monte Carlo simulation study. Namely, first,
conditional on appropriately selected state variables gt,s (see below), we have generated nsim = 500
time series of length T = 2500, taking the CW-GARCH as Data Generating Process (DGP). The same
model has then been fitted to each of these series maximizing the conditional likelihood function in
(12). Further, the described simulation procedure has been implemented taking the sCW-GARCH
model as DGP, again conditioning on appropriately selected state variables τt,s. In order to facilitate
the comparison of results across different DGPSs, the same vector of volatility coefficients ψ has been
used for simulating from both CW-GARCH and sCW-GARCH.

The length of the simulated series has been selected to match the time series dimension of the
panel analyzed in Section 4. We note that the models proposed in this paper are conditional to the state
variables gt,s and τt,s. In practical applications, these are not observed and, in fact, the cross-sectional
clustering algorithm is introduced in order to recover them. In order to a have a sampling design
that is consistent with the empirical evidence, the simulation uses input state variables the gt,s and
τt,s obtained from applying the clustering algorithm (11) on carefully selected stocks in the panel
studied in Section 4. We recall that models (2) and (4) contain the GARCH(1,1) model as a nested case
if an asset does not migrate across states, but stays stably in one of the volatility clusters. In order to
have a sampling representing maximum heterogeneity, we looked for the gt,s and τt,s of an asset with
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the distribution over the states {low, medium, high, noise} having maximal entropy. This particular
selection guarantees that the state variables gt,s and τt,s used as input for the simulation, represent
the dynamics of an asset that travels uniformly across the states. The same GARCH-type parameter
vector, corresponding to the the ψ–row in Table 1, have been fixed to simulate both (2) and (4). While
there exists an extensive empirical literature about the classical GARCH(1,1) model, so that it is known
what a realistic parameter should be picked for a numerical experiment, this obviously does not apply
to models (2) and (4) proposed in this paper. Therefore we decided to fix ψ as a perturbation of the
median behavior (across the market) obtained from the in-sample results in Section 4.1.

The simulation results, summarized in Table 1, support the following facts. First, for both DGPs,
the estimates are on average close to the DGP coefficients. Second, in general, the simulated Root
Mean Squared Errors (RMSE) are, in relative terms, small, compared to the level of the underlying
coefficient. Finally, no clear ordering of the two models arises in terms of efficiency in the estimation of
model parameters.

Table 1. Results of Monte Carlo simulations for CW-GARCH and sCW-GARCH models. Key to table:
ψ = “true” parameter values; Ê(ψ̂A) = Monte Carlo average of fitted parameters for model A (A ∈ {c, s})
where c and s refer to CW-GARCH and sCW-GARCH models, respectively; se(E(ψ̂A)) = simulated
standard error of Monte Carlo mean of ψ̂A; RMSE(ψ̂A) = simulated RMSE of ψ̂A.

ω∗0 α0 β0 ω∗1 α1 β1 ω∗2 α2 β2 ω∗3 α3 β3

ψ 0.240 0.020 0.950 1.600 0.090 0.680 0.390 0.110 0.870 0.030 0.020 0.960

CW-GARCH

Ê(ψ̂c) 0.318 0.016 0.940 1.315 0.085 0.721 0.415 0.110 0.869 0.093 0.017 0.953
se(Ê(ψ̂c)) 0.015 0.001 0.003 0.015 0.002 0.003 0.013 0.001 0.002 0.007 0.001 0.001
RMSE(ψ̂c) 0.078 0.004 0.010 0.285 0.005 0.041 0.025 0.000 0.001 0.063 0.003 0.007

sCW-GARCH

Ê(ψ̂s) 0.323 0.015 0.941 1.314 0.081 0.725 0.438 0.110 0.864 0.097 0.016 0.953
se(Ê(ψ̂s)) 0.017 0.001 0.003 0.014 0.002 0.003 0.016 0.001 0.003 0.008 0.001 0.002
RMSE(ψ̂s) 0.083 0.005 0.009 0.286 0.009 0.045 0.048 0.000 0.006 0.067 0.004 0.007

4. Empirical Study

Our data set is composed of 5-min log-returns for 123 assets traded on the NYSE from
11/Aug/1998 to 18/Jul/2008 for a total of 2500 trading days. The assets have been selected in
order to guarantee the (i) availability of a sufficiently long time-span; (ii) maximize liquidity over the
time period of interest. 5-min returns have then been aggregated on a daily scale to compute daily
Realized Variances on open-to-close log-returns.

For the step 1 of the estimation we fix G = 3. G is an important decision, and rarely is
determined from the data alone. Although there is large collection of methods to select an appropriate
number of clusters, a consensus in the literature has not been reached. In the model-based clustering
context a popular choice is to select G based on the BIC, or alternative information criteria (for a
comprehensive review see McLachlan and Peel 2000). However, none of the existing methods have
strong theoretical guarantees, and often, it makes more sense to supervise the choice of G based on
subject-matter considerations additional to data-driven methods (Hennig and Liao 2013; Hennig et al.
2016). The choice of G = 3 is motivated based on various arguments. First of all we considered G
ranging from 2 to 6 and we looked at many cross-sectional fit at random (as in Figure 2). The BIC
criterion always suggested G = {3, 4}, a supervised analysis of the results confirmed that meaningful
cross-sectional fits were always obtained with G = 3 or G = 4. We also explored the opinion of several
professional financial analysts, and the general conclusion is that a classification into low-medium-high
risk is the conventional operational way to categorize risk. Our cross-sectional model (7) also includes
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an atypical component for catching extremely large risk levels. Therefore we finally considered G = 3
and G = 4, and based on the performance of the forecasting experiment described in Section 4.2, we
finally decided that G = 3 is the appropriate number of regular groups to consider because G = 3
produced the overall lowest average (across assets) Root Mean Square Prediction Error (RMSPE).
Details about forecasting performance are treated in Section 4.2. Selection of a G value that optimizes
the predictive performance is an appropriate way to approach the selection of G when the main goal
is to predict future volatility. For each cross-sectional fit of θt the mixture component are always
ordered in terms of increasing risk. Therefore the groups j = 1, 2, 3 always correspond to groups of
increasing average realized volatility. In other words, the cluster indexes js are rearranged so that
mt,1 ≤ mt,2 ≤ mt,3, and in case of equal means the order is based on variances vt,j, and for equal
variances the order based on the expected size πt,j. We refer to the groups corresponding to j = 1, 2, 3 as
group = low, medium, high. The group identified with j = 0 is called noise, and in the ordering scheme
is placed after the high group because in this empirical application it always captures overall highest
volatility assets. For the noise component, an indexing alternative to j = 0 may be decided, although in
principle outlying points can be everywhere in the data range, and the uniform component may well
catch small outliers or inliers (see Coretto and Hennig 2010). In the robust clustering literature it is
common to denote the noise component with j = 0 so that G still defines the number of regular clusters.

Step 2 of the estimation procedure is performed considering a Gaussian Quasi-Likelihood function,
that is we set

log φ(rt,s|It−1, Ls,t−1; ψs) = −
1
2

log(σ2
t,s)−

1
2

log(2π)− (rt,s − µs)

2σ2
t,s

, (13)

leading to the following expression for the overall Quasi-Likelihood

log `(rs|ψs) =
T

∑
t=1

log φ(rt,s|It−1, Ls,t−1; ψs)

= −1
2

T

∑
t=1

log(σ2
t,s)−

T
2

log(2π)− 1
2

T

∑
t=1

(rt,s − µs)

2σ2
t,s

.

Maximizing (14) with respect to ψs, for any asset s, leads to consistent and asymptotically Normal
estimates of (µs, ωs, αs, βs) even when the conditional returns distribution in (13) is not correctly
specified (Bollerslev and Wooldridge 1992).

4.1. In-Sample Results

The cross-sectional estimation showed that there are various interesting patterns in the data.
Assets migrate from one risk group to another over time, but these class switch dynamics show a
strong dose of persistence In Figures 3–5 we show time series of the realized volatility and class
switches for three assets, e.g., asset JNJ, asset LSI, and asset NOVL. For each asset we consider two
period of 365 days: the period August 2004–August 2005 for the lowest overall market volatility in our
sample, and the period March 2001–March 2002 for the largest overall market volatility. Each of the
Figures 3–5 corresponds to an asset, panels (a) and (b) refers to the low volatility period, panels (b)
and (d) show the large volatility period. In Figure 3 we note that asset JNJ persistently stays in the
low class of risk, and eventually it switches to the next medium group for short time intervals when
the market volatility bumps up. The interesting thing to observe is that this behavior is almost the
same in the two periods, e.g., the dynamic of these switches does not depend from the level of the
market volatility. As expected in the high volatility period the persistence in the low group decreases,
but overall the pattern is rather stable. If we count the number of changes from one class to another,
asset JNJ is the most stable asset overall with the longest permanence in the low risk group. On the
other hand asset LSI in Figure 4 was chosen because it is the most unstable, i.e., it is the asset with the
largest number of jumps from one class to another. This asset has a less persistent dynamic in terms
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of class switches. The interesting thing is that this asset stay more in the lower risk group when the
market volatility increases. A different pattern is observed for asset NOVL in Figure 5. asset NOVL,
as asset LSI, has a strong tendency to stay in high risk group with a preference for the noise group.
However, contrary to asset LSI, asset NOVL increases its stay in the noise group as the market volatility
increases. The cross-sectional clustering step also transform a cardinal quantity like volatility into
an ordinal variable much easier to interpret. One of the advantage of such a categorization of the
volatility is that it is market contingent. These graphical plots of the class switches may be of practical
interests for financial analyst. This is an interesting application itself maybe worth to be explored in
more details in further research.
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Figure 3. (a) Time series of the realized variance of asset JNJ from August 2004 to August 2005.
(b) Sequence of fitted class labels memberships for the asset JNJ from August 2004 to August 2005.
(c) Time series of the realized variance of asset JNJ from March 2001 to March 2002. (d) Sequence of
fitted class labels memberships for the asset JNJ from March 2001 to March 2002.
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Figure 4. (a) Time series of the realized variance of asset LSI from August 2004 to August 2005.
(b) Sequence of fitted class labels memberships for the asset LSI from August 2004 to August 2005.
(c) Time series of the realized variance of asset LSI from March 2001 to March 2002. (d) Sequence of
fitted class labels memberships for the asset LSI from March 2001 to March 2002.
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Figure 5. (a) Time series of the realized variance of asset NOVL from August 2004 to August 2005.
(b) Sequence of fitted class labels memberships for the asset NOVL from August 2004 to August 2005.
(c) Time series of the realized variance of asset NOVL from March 2001 to March 2002. (d) Sequence of
fitted class labels memberships for the asset NOVL from March 2001 to March 2002.
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Moving our attention to the results of Step 2 of the estimation procedure, Table 2 reports the
average and median values of the second stage conditional log-likelihood and of the Bayesian
Information Criterion (BIC) for CW-GARCH, sCW-GARCH and two benchmarks given by the GARCH
and GJR models of order (1,1), respectively. We remind that the volatility equation of a GJR(1,1) model
(Glosten et al. 1993) is given by

σ2
t,s = ωs + αs(rt−1,s − µs)

2 + βsσ2
t−1,s + γs(rt−1,s − µs)

2 I((rt−1,s − µs) < 0),

where the additional γ coefficients controls for leverage effects. In particular, the occurrence of leverage
effects is associated to positive values of the coefficient. The GARCH(1,1) model is nested within the
GJR specification for γ = 0.

The CW-GARCH and sCW-GARCH models are clearly outperforming the benchmarks in terms
of both average and median BIC, with the sCW-GARCH being the best performer. As expected,
the GJR-GARCH outperforms the simpler GARCH model.

The picture is completed by the analysis of Figure 6 that the reports the box-plots of the ratios
between the BIC values of CW-GARCH and sCW-GARCH, in the numerator, and those of the
benchmarks, in the denominator. For ease of presentation, the ratios have been multiplied by 100 so
that, in the plot, values above 100 indicate that the benchmark is outperformed by the model in the
numerator. The plot makes evident that, in the vast majority of cases, CW-GARCH and sCW-GARCH
perform better than GARCH and GJR models. Also, while there are several assets for which the
CW-GARCH and sCW-GARCH are doing remarkably better than the benchmarks (in some cases the
gain in BIC is above 40%, for the GARCH, and above 25%, for the GJR), the reverse does not hold.

Finally, it is interesting to look at the average (Table 3) and median (Table 4) estimated coefficients
across the whole set of 123 assets. For both CW-GARCH and sCW-GARCH, some regularitites arise.
First and most importantly, the α coefficient tends to decrease as we move from low to high volatility
components, taking its minimum value for the noise component. This implies that the impact of past
squared returns tends to be down-weighted as the relative volatility level increases. Intuitively, this
effect reaches its extreme level in the case of the noise component when it is reasonable to expect
that the current returns do not offer a strong signal for the prediction of future conditional variance.
Accordingly, the volatility persistence (α + β) also takes its minimum value for the noise component.
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Figure 6. (a) Boxplots of the distribution (across the portfolio) of the ratio (BIC achieved by a given
model)/(BIC achieved by the GARCH(1,1) model), where the ratio is scaled in percentage value. Each data
point is a BIC-ratio for model (1) or (4) achieved by one of the S = 123 assets in the sample. (b) Boxplots
of the distribution (across the portfolio) of the ratio (BIC achieved by a given model)/(BIC achieved by the
GJR-GARCH(1,1) model), where the ratio is scaled in percentage value. Each data point is a BIC-ratio for
model (1) or (4) achieved by one of the S = 123 assets in the sample.
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Table 2. Average and median log-likelihood and Bayesian Information Criterion (BIC) values for
models (1) and (4). The average (or median) is taken across the S = 123 assets in the sample.

GARCH GJR-GARCH CW-GARCH sCW-GARCH

Average BIC −29,218.33 −29,488.13 −29,901.60 −29,942.67
Median BIC −29,579.29 −29,782.38 −29,851.66 −29,923.45

Average loglik 14,620.90 14,759.71 14,997.74 15,018.28
Median loglik 14,801.38 14,906.84 14,972.77 15,008.67

Table 3. Averages of estimated coefficients for models (1) and (4). For scaling reason coefficients
marked with (*) are multiplied by 105. The average is taken across the S = 123 assets in the sample.

Component GARCH GJR-GARCH CW-GARCH sCW-GARCH

Low Mid High Noise Low Mid High Noise

ω * 56.1997 31.3277 6.7061 4.8966 4.3016 619.17 5.1024 4.0491 5.4529 620.44
α 0.1283 0.0692 0.1365 0.1030 0.0803 0.0311 0.1419 0.0984 0.0706 0.0315
β 0.6525 0.7262 0.8405 0.8310 0.8742 0.7992 0.8535 0.8423 0.8730 0.7992
γ 0.0826

Table 4. Median of estimated coefficients for models (1) and (4). For scaling reason coefficients marked
with (*) are multiplied by 105. The median is taken across the S = 123 assets in the sample.

Component GARCH GJR-GARCH CW-GARCH sCW-GARCH

low mid high noise low mid high noise

ω * 0.1905 0.1785 0.1238 0.1273 0.0033 0.3170 0.1707 0.1469 0.0342 0.5252
α 0.0484 0.0278 0.0755 0.0617 0.0399 0.0087 0.0741 0.0574 0.0427 0.0075
β 0.9232 0.9367 0.9269 0.9280 0.9538 0.9283 0.9268 0.9370 0.9485 0.9283
γ 0.0366

In addition, since the GARCH model can be obtained as a special case of the CW-GARCH model,
we test the signficance of the likelihood gains yielded by the latter model via a Likelihood Ratio Test
(LRT). The p-values of the LRT test, for all the 123 assets included in our panel, have been graphically
represented in Figure 7. In order to improve the readability of the plot, we have transformed the
p-values on a logit scale. The null hypothesis is rejected at any reasonable significance level for 122
assets out of 123.
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Figure 7. p-values of the Likelihood Ratio Test (LRT) test of CW-GARCH vs. GARCH for all the 123
assets included in our panel. The y-axis of the plot is scaled in terms of logit(p-value), y-axis labels are
shown as percentage p-values.

4.2. Forecasting Experiments

In order to assess the ability of the proposed models to generate accurate one-step-ahead volatility
forecasts, we have performed an out-of-sample forecasting exercise based on a mixed-rolling window
design with re-estimation every 50 observations over a moving window of 1500 days, implying 20
re-estimation for each asset. So, the first 1500 observations have been taken as initial sample period
while the last 1000 have been kept for out-of-sample forecast evaluation. As for the in-sample analysis,
the GARCH(1,1) and GJR(1,1) models are considered as benchmarks.

For clarity, for a generic asset s, the structure of the forecasting design can be summarized in the
following steps

1. Using observation from 1 to 1500, fit a CW-GARCH, sCW-GARCH, GARCH and GJR-GARCH
model to the time series of returns on asset s

2. Generate one-step-ahead forecasts of conditional variance for the subsequent 50 days, that is for
times 1501 to 1550

3. Re-estimate the models using an updated estimation window from 51 to 1550
4. Iterate steps 2-3 until the end of the series.

The series of forecasts obtained by the three models considered are then scored using two
different performance measures: the Root Mean Squared Prediction Error (RMSPE) and the QLIKE loss
(Patton 2011). Letting, ht be the realized volatility at time t and σ̂2

t,k the conditional variance predicted
by model k where k ∈ {GARCH,GJR-GARCH, CW-GARCH,sCW-GARCH}, the RMSPE and QLIKE
for model k are given by

RMSPEk :=

√
avg

j

{(
σ̂2

T+j,k − hT+j,k

)2
}

,

QLIKEk := avg
j

{
log(σ̂2

T+j,k) +
h2

T+j

σ̂2
T+j,k

}
,

for T = 1500 and j = 1, . . . , 1000. In both cases, lower average values of the loss will be associated to
better performers. Both the RMSPE and QLIKE are strictly consistent for the conditional variance of
returns and can be shown to be robust to the quality of the volatility proxy used for forecast evaluation.
The results of the forecasting comparison for all the 123 assets included in our data set have been
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summarized in Table 5 that, for both RMSPE and QLIKE, reports the percentage of times that each of
the models considered has been found to be the best performer. Here, slightly different pictures are
obtained under the RMSPE and QLIKE losses, respectively. Under the RMSPE loss, the CW-GARCH
model is resulting the best performer for approximately 1/3 of the assets while the remaining models
are characterized by very close performances, with the GJR-GARCH slightly outperforming the
GARCH and sCW-GARCH models. Overall, a state dependent models, either the CW-GARCH or
sCW-GARCH model, results to be the best performer for approximately 55% of the assets. Under the
QLIKE loss, no clear winner arises. The GJR-GARCH and CW-GARCH give very close “winning”
frequencies, with the first slightly outperforming the latter. Overall, one of the state-dependent models
results to be the best performer for approximately 50% of the assets.

Although looking the “winning” frequencies offers a simple and tempting way of summarizing
the forecasting performance of different models across a large number of assets, it should be remarked
that this approach does not allow to consistently rank models according to their overall “aggregate”
forecasting performance since “winning” frequencies do not incorporate any information on a cardinal
measure of the model’s predictive ability.

Table 5. Percentage frequencies (across the S = 123 assets) of models resulting the best performer
according to Root Mean Square Prediction Error (RMSPE) and QLIKE.

GARCH GJR-GARCH CW-GARCH sCW-GARCH

RMSPE 20.34% 24.58% 33.05% 22.03%
QLIKE 17.80% 32.20% 29.66% 20.34%

To overcome this limit, Table 6 provides a summary of the RMSPE and QLIKE distributions across
the 123 assets included in our panel. Namely, the table shows that the median loss is substantially
lower for CW-GARCH and sCW-GARCH models than for the benchmarks. The performance gap
appears more evident for the RMSPE than for the QLIKE. Furthermore, compared to the GARCH
and GJR-GARCH models, the CW-GARCH and sCW-GARCH models are characterized by more
stable forecasting performances, as documented by the value of the InterQuartile Range (IQR) for both
RMSPE and QLIKE.

Table 6. Median and IQR of the distribution (across the S = 123 assets) of the RMSPE (×103) and
the QLIKE.

GARCH GJR-GARCH CW-GARCH sCW-GARCH

Median of RMSPE 0.44 0.46 0.27 0.27
IQR of RMSPE 0.64 0.83 0.37 0.43

Median of QLIKE −7.17 −7.21 −7.31 −7.32
IQR of QLIKE 1.13 1.20 0.89 0.90

Figure 8 reports, for each model, the boxplot of the percentage differences between the loss
value yielded by the model and that registered for the top performer for a given asset. The plots
clearly show that these gaps tend to be smaller for CW-GARCH and sCW-GARCH models rather than
for the benchmarks. Our findings on the distribution of performance gaps among the four models
considered are further investigated and confirmed by Figure 9, for the RMSPE, and Figure 10, for the
QLIKE. In each figure the first two plots compare, the average loss yielded by the CW-GARCH and
sCW-GARCH, respectively, on the y-axis, with the average obtained for the GARCH models. The two
scatter-plots in the second row repeat the comparison replacing the GARCH with the GJR model on
the x-axis.
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Figure 8. For each loss and each method, it is shown the distribution (across the S = 123 assets) of the
percentage difference between the loss of the method and the loss of the top performer, relative to the
size of the loss of the top performer. A large relative difference indicates a large performance gap from
the top performer. (a) RMSPE percentage relative difference to top performer. (b) QLIKE percentage
relative difference to top performer.
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Figure 9. Distribution (across the S = 123 assets) of RMSPE (×103), that is each point in these scatters
is the RMSPE (×103) for a given asset. The dashed line is the 45-degree line. (a) RMSPE for the
classical GARCH(1,1) model against the RMSPE for the CW-GARCH specification. (b) RMSPE for the
classical GARCH(1,1) model against the RMSPE for the sCW-GARCH specification. (c) RMSPE for
the GJR-GARCH(1,1) model against the RMSPE for the CW-GARCH specification. (d) RMSPE for the
GJR-GARCH(1,1) model against the RMSPE for the sCW-GARCH specification.
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Figure 10. Distribution (across the S = 123 assets) of QLIKE, that is each point in these scatters
is the time QLIKE for a given asset. The dashed line is the 45-degree line. (a) QLIKE for the
classical GARCH(1,1) model against the QLIKE for the CW-GARCH specification. (b) QLIKE for
the classical GARCH(1,1) model against the QLIKE for the sCW-GARCH specification. (c) QLIKE for
the GJR-GARCH(1,1) model against the QLIKE for the CW-GARCH specification. (d) QLIKE for the
GJR-GARCH(1,1) model against the QLIKE for the sCW-GARCH specification.

Finally, as a further robustness check we have computed the Diebold-Mariano statistic (Diebold
and Mariano 1995) in order to test the null hypothesis of Equal Predictive Ability (EPA) of CW-GARCH
and sCW-GARCH against the two benchmarks given by GARCH and GJR-GARCH, respectively.
The results of our testing exercise have been summarized in Table 7. Here, by %L we denote the
percentage of assets for which the average MSPE of the benchmark (GARCH or GJR-GARCH) is lower
than that of CW-GARCH or sCW-GARCH model, respectively. In parentheses, below the above value,
we report the percentage of times in which this corresponded to a significant Diebold-Mariano test
statistic the usual 5% level. Similarly, %W indicates the percentage of assets for which the average
MSPE of the CW-GARCH or sCW-GARCH is lower than that of the benchmark. For example, when
the GARCH is taken as a benchmark, the average MSPE of GARCH is lower than that yielded by
CW-GARCH in approx. 28.5% of cases, corresponding to 35 assets. In addition, for 80% of these assets,
corresponding to 28 stocks, the Diebold-Mariano test rejects the null of EPA at the 5% level.

The results of our analysis reveal that, in the vast majority of cases (≈ 70%), both CW-GARCH
and sCW-GARCH yield an average MSPE that is lower than that of the benchmarks. Furthermore,
in over 80% of cases, this leads to a rejection of the EPA hypothesis at the 5% significance level.
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Table 7. Forecasting performance of CW-GARCH and sCW-GARCH models vs. GARCH (left panel)
and GJR-GARCH (right panel), respectively: signs of average MSPE differentials (relative frequencies)
and Diebold-Mariano rejection frequencies.

Benchmark: GARCH Benchmark: GJR

CW-GARCH sCW-GARCH CW-GARCH sCW-GARCH

%L %W %L %W %L %W %L %W
28.5
(80.0)

71.5
(81.8)

26.8
(63.6)

73.2
(86.7)

33.3
(73.2)

66.7
(85.4)

30.1
(59.5)

69.9
(82.6)

Key to table: %L: percentage of assets for which the average MSPE of the benchmark (GARCH or GJR) is lower
than that of CW-GARCH or sCW-GARCH; %W: percentage of assets for which the average MSPE of the
CW-GARCH or sCW-GARCH is lower than that of the benchmark; in parentheses: percentage of times in
which this corresponded to a significant Diebold-Mariano test statistic the usual 5% level.

5. Conclusions and Final Remarks

We have presented a novel approach to forecasting volatility for large panels of assets. Compared
to existing approaches, our modelling strategy has some important advantages. First, conditional on
the information on the group structure, inference is based on a computationally feasible two-stage
procedure. This implies that the investigation of the multivariate group structure of the panel,
performed in Stage 1, is separated from the fitting of the dynamic volatility forecasting models, that is
performed in Stage 2. The desirable consequence of this architecture is that, at Stage 2, it is possible to
incorporate multivariate information on the cross-sectional volatility distribution, without having to
face the computational complexity of multivariate time series modelling.

Second, for a given stock, the fitted volatility forecasting model has coefficients that are asset
specific and time-varying. Last but not least, the structure of our modelling approach is inherently
flexible and can be easily adapted to consider alternative choices of the clustering variables as well as
of the second-stage parametric specifications used for volatility forecasting. For example, the GARCH
specification of the latent components of the CW-GARCH and sCW-GARCH could be easily replaced
by other conditional heteroskedastic models such as, for example, GJR (Glosten et al. 1993) or even more
sophisticated Realized GARCH models (Hansen et al. 2012), directly using information on realized
volatility measures for conditional variance forecasting. On an empirical ground, both in-sample and
out-of-sample results, provide strong evidence that the proposed approach is able to improve over
simple univariate GARCH-type models, thus confirming the intuition that taking into account the
information on the group structure of volatility can be profitable in terms of predictive accuracy in
volatility forecasting.
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Abbreviations

the following abbreviations are used in this manuscript:

GARCH Generalized autoregressive conditional heteroskedasticity

GJR-GARCH GJR model proposed by Glosten et al. (1993)

CW-GARCH Clusterwise generalized autoregressive conditional heteroskedasticity

sCW-GARCH Smooth CW-GARCH

NYSE New York Stock Exchange

ML Maximum Likelihood

RMSPE Root mean square prediction error

QLIKE Loss function proposed by Patton (2011)
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