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Abstract: We provide the analytical gradient of the full model likelihood for the Dynamic Conditional
Correlation (DCC) specification by Engle (2002), the generalised version by Cappiello et al. (2006),
and of the cDCC model by Aielli(2013). We discuss how the gradient might be further extended by
introducing elements related to the conditional variance parameters, and discuss the issue arising
from the estimation of constrained and/or reparametrised versions of the model. A computational
simulation compares analytical versus numerical gradients, with a view to parameter estimation;
we find that analytical differentiation yields more efficiency and improved accuracy.
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1. Introduction

One of most challenging issues related to the class of Multivariate GARCH (MGARCH) models
is the so-called curse of dimensionality: as a rule, the number of parameters of a MGARCH model
diverges when the number of modelled variables increases. In general terms, denoting as n the number
of variables, the number of parameters in a MGARCH model is O

(
nb
)

with b > 1: in the VECH
model by Engle and Kroner (1995) b = 4, while in the BEKK model, by the same authors, b = 2,
and for the Dynamic Conditional Correlation (DCC) model by Engle (2002) b = 2. The solution most
commonly adopted to overcome the curse of dimensionality is the introduction of constraints on the
parameter space, leading to the so-called diagonal or scalar specifications, or to specifications driven
by external information; see, among many others, Engle (2002); Bauwens et al. (2006); Caporin and
McAleer (2008); and Caporin and Paruolo (2015). Few efforts have been posed on approaches which
make it possible to ease those constraints and keep an MGARCH specification as close as possible to
full parametrisation. Our approach goes into that direction, and is related to the work by Lucchetti
(2002) on the BEKK model.

A key element for the feasibility of model estimation when the number of parameters is large is the
availability of analytical gradients of the likelihood. In this work, we provide the analytical expression
of the gradient for three well-known conditional correlation models: the Dynamic Conditional
Correlation (DCC) model by Engle (2002), the generalisation proposed by Cappiello et al. (2006),
and the more recent Consistent DCC (cDCC) model by Aielli (2013).

Notably, these models are generally estimated by two-step approaches: first, we recover
conditional variance parameters by mean of univariate estimations; then, we maximise the conditional
correlation likelihood with respect to correlation parameters, conditionally on the estimated variance
parameters. In this way, the estimates clearly suffer from a loss of efficiency. However, when the
correlation dynamic is highly restricted, for instance leading to scalar parametrisations, the number
of parameters is quadratic in the number of variables, that is, b = 2, but the model estimation is
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performed by a collection of univariate GARCH likelihoods (one for each marginal) and a correlation
likelihood. The latter might take advantage of correlation targeting, thus estimating O

(
n2) parameters

via a sample statistic. Consequently, the model estimation becomes feasible irrespective of n.
While on the one side restricted parametrisations are feasible, on the other side they are extremely

limited in terms of economic interpretation of the outcomes; in fact, they most likely neglect all
possible interdependence among correlations and variances (i.e., they do not include spillover effects).
The introduction of the gradient for the most general DCC specification will allow estimating the fully
parametrised specifications when the cross-sectional dimension (n) is not too large, and conditionally
to the computing power which is available to the researcher. Alternatively, by adapting the gradient
to intermediate specifications might allow reintroducing even limited spillovers within and between
correlation and/or variance dynamic.

Our contribution could be potentially considered as a tool for measuring the efficiency loss of the
two-step estimation approaches. Moreover, it could be applied in the implementation of full likelihood
estimation approaches, and it will be mostly useful for the application of the maximisation by parts
estimation methodology as suggested in Fan et al. (2015). However, the complexity of the following
analytical formulae represents a serious challenge for the previous purposes.

Other studies have already tackled the problem of deriving the analytical representation of the
DCC model gradient—Engle and Sheppard (2001) presents a partial gradient without taking into
account its recursive structure, while Hafner and Herwartz (2008) report the gradient of the second
stage likelihood of the DCC model of Engle (2002), without considering the derivatives with respect
to the first stage parameters. We also mention other works reporting analytical forms for different
multivariate GARCH models—Ling and McAleer (2003) focused on their VARMA-GARCH model that
nests the constant conditional correlation model of Bollerslev (1990), and Lucchetti (2002) provides the
analytical expression for the gradient of the BEKK model of Engle and Kroner (1995). We complement
this strand of the financial econometrics literature with respect to the most common conditional
correlation models.

Beside the analytical derivatives, and a discussion on how they could be adapted to the
introduction of constraints on the model parameters, we also provide empirical evidences supporting
the use of analytical score. A simulation experiment shows that the use of the analytical gradient has
clear advantages as compared to the numerical gradient, with a sensible reduction in the CPU time,
unless in the case of extremely restricted specifications where its impact is detrimental. However,
even in these cases analytical differentiation yields vastly improved accuracy.

The paper proceeds as follows. In the next section we provide preliminary elements for the
following derivation of the analytical gradient. Section 3 reports several differentials which are then
used in Section 4 to obtain the gradient of the DCC model of Engle (2002). Section 4.2 contains
the gradient of the cDCC model of Aielli (2013) and of the GDCC model of (Cappiello et al. 2006).
Sections 5 and 6 are devoted to a detailed analysis of the issues that arise when actually building a
software implementation of the gradient, together with a simulation in Section 7. Section 8 concludes.

2. Preliminaries

In this section, we establish the notation we will use in the rest of the paper and define explicitly
the class of models we will be working on.

2.1. Notation

In the following sections we make use of the following symbols, operators and matrix relations;
whenever possible, we adhere to the conventions spelled out in Magnus and Neudecker (1999):

- ιn and 0n are n-dimensional vectors whose elements are all 1 and 0, respectively;
- In is the identity matrix of dimension n;
- for a diagonal matrix A we denote by A1/2 the square root of the matrix, where the square root

operates element-wise;
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- diag (a) is a diagonal matrix with the vector a on its main diagonal;
- dg (A) creates a vector from the diagonal of matrix A;
- the δ [A] operator is defined as δ [A] ≡ diag [vec(A)];
- the “:” symbol denotes horizontal concatenation of matrices;
- the operator vech stacks the lower triangular part of a matrix, while the operator vechl stacks

the lower triangular part of a matrix excluding the diagonal;
- for a square diagonal matrix A of dimension n with the vector a over the main diagonal,

we denote by Gn the n2 × n matrix satisfying vec (A) = Gna;
- for a square matrix A of dimension n we denote by Knn the n2 × n2 commutation matrix

satisfying vec (A′) = Knnvec (A);
- we define the “symmetrisation” matrix as Nn = 1

2 (In2 + Knn), which is symmetric and

idempotent with rank n(n+1)
2 ;

- for a symmetric matrix A, we denote by Dn the n2 × n(n+1)
2 duplication matrix satisfying

Dnvech (A) = vec (A);
- Ln is the n(n+1)

2 × n2 “elimination matrix”, satisfying Lnvec(A) = vech(A);
- for a square matrix A we denote by ∆n the n2 × n2 selection matrix satisfying ∆nvec (A) =

vec (diag (dg (A))). This matrix eliminates the off-diagonal elements in the vectorisation of A;
- dA denotes the differential of matrix A;
- the symbol � is used for the Hadamard (element-by-element) matrix product;
- a property we will use repeatedly is: vec (A� B) = δ [A] vec (B) where A and B are square

matrices of the same order; therefore, vec (dB� A) = vec (A� dB)
= δ [A] vec (dB);

- if R is a correlation matrix, we denote by Sn the duplication matrix of dimension n2 × n(n−1)
2

satisfying vec (R) = vec (In) + Snvechl(R); then, vec (dR) = Snvechl(dR).
For selected and relevant matrices we report below them and within parenthesis their

dimensions. For general matrix properties and matrix differentials see Magnus and Neudecker (1999)
and Lütkepohl (1996).

2.2. Dynamic Conditional Correlation Models

In the following we focus on three dynamic conditional correlation models. The first, our reference
model, is the DCC model of Engle (2002). Denote an n-dimensional vector of asset returns by xt

and the information set at time t− 1 by It−1. Since our object of interest here are covariances and
correlations, we consider the mean-centred returns εt = xt − E [xt|It−1] and we assume they follow
some unspecified conditional density satisfying

εt|It−1 ∼ D (0n, Σt) .

The conditional covariance matrix can be split into

Σt = V1/2
t RtV1/2

t ,

where Vt = diag (vt) is the diagonal matrix of conditional variances, where vt =
[
σ2

1,t, σ2
2,t, . . . , σ2

n,t

]
,

and Rt is a dynamic correlation matrix. The conditional variances are governed by the following
dynamic equation

vt = ω +A (εt−1 � εt−1) + Bvt−1,

where ω is an n−dimensional parameter vector while A and B are square parameter matrices of
dimension n. Note that the adopted specification nests as a special case a set of univariate GARCH(1,1)
for all assets (under a diagonality assumption for the parameter matrices A and B). Note this structure
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has already been used in Ling and McAleer (2003). The dynamic correlation matrix is further
decomposed into

Rt =
(

Q̃−1/2
t QtQ̃−1/2

t

)
,

where Q̃t = dg (Qt) and

Qt = Γ + A�
(
ηt−1η′t−1 − Γ

)
+ B� (Qt−1 − Γ) , (1)

in which ηt = V−1/2
t εt, A and B are symmetric parameter matrices and Γ is a correlation matrix.

We consider here the most general DCC specification. Restricted forms, such as the scalar one, could be
obtained as special cases by appropriate restrictions on the matrices A and B. For instance, the scalar
model is given by A = α · ιnι′n and B = β · ιnι′n, where α and β are scalar parameters. See Section 6 for
a fuller discussion.

The second model is the cDCC model by Aielli (2013), that solves some drawbacks of the
DCC model of Engle (2002). The two models are very similar. In fact, the cDCC only replaces
Equation (1) with

Qt = Γ + A�
(

Q̃1/2
t−1ηt−1η′t−1Q̃1/2

t−1 − Γ
)
+ B� (Qt−1 − Γ) . (2)

The interested reader should refer to Aielli (2013) for additional details on model properties
and for the comparison between DCC and cDCC. For the cDCC specification A and B are again two
symmetric parameter matrices. Differently from the DCC of Engle (2002), Γ is a symmetric matrix
with ones over the main diagonal (not necessarily positive definite).

The third model is the Generalised DCC (GDCC) of Cappiello et al. (2006) that considers a
quadratic structure in Equation (1)

Qt = Γ− AΓA′ − BΓB′ + Aηt−1η′t−1 A′ + BQt−1B′,

where the parameter matrices are not required to be symmetric, Γ is a correlation matrix and the
intercept Γ− AΓA′ − BΓB′ must be positive definite.

We stress that we choose a very simple dynamic for the conditional variances only for illustrative
purposes. More flexible model structures can be used, even with the adoption of different GARCH-type
dynamics across the assets. In the following, we provide the gradient for our conditional variance
specification, and discuss in more details the implementation and computational aspects of the gradient
only referring to the conditional correlation parameters. Such a choice depends on the fact that
different specifications for the conditional variance dynamic might lead to different implementation
and computational strategies for the full model analytical gradient. We will further discuss this issue
in Section 5.

3. Differentials

We report here a set of differentials which will be then used to construct the gradient of DCC
models. For simplicity, we focus on the Normal likelihood but our approach can be generalised to
other densities. Alternatively, the following results might be anyway used within a Quasi Maximum
Likelihood estimation approach. Given a sample of T observations for n time series, the full model
likelihood is given by

LT(θ) =
T

∑
t=1

lt(θ),

where θ is the parameter vector of the full likelihood, that is

θ =
[
ω′ : vec (A)′ : vec (B)′ : vechl (Γ)′ : vech (A)′ : vech (B)′

]′
.
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Note that θ has dimension d = n + n2 + n2 + n(n−1)
2 + n(n+1)

2 + n(n+1)
2 , also written as d =

d1 + d2 + d3 + d4 + d5 + d6. In order to keep notation clean, however, we will omit the explicit
dependence of the key quantities from θ and write lt instead of lt(θ) and so on for similar cases.

After dropping constant terms, we have

lt ≈ −
1
2

log |Σt| −
1
2

ε′tΣ
−1
t εt. (3)

3.1. Differential of the Full Likelihood

The differential for the likelihood lt is given by

dlt = −ε′tΣ
−1
t dεt −

1
2

d log |Σt|+
1
2

ε′tΣ
−1
t (dΣt)Σ−1

t εt. (4)

We now assume that dεt = 0n given that we focus on mean residuals and do not take into account
possible mean parameters.

By the properties of the trace and vec operators we have

d log |Σt| = tr
(

Σ−1
t dΣt

)
= vec

(
Σ−1

t

)′
vec (dΣt) (5)

and
ε′tΣ
−1
t (dΣt)Σ−1

t εt =
(

ε′tΣ
−1
t ⊗ ε′tΣ

−1
t

)
vec (dΣt) . (6)

Replace (5) and (6) into (4) to obtain

dlt =
1
2

(
ε′tΣ
−1
t ⊗ ε′tΣ

−1
t − vec

(
Σ−1

t

)′)
vec (dΣt) . (7)

We do not report the differential with respect to the non-duplicate elements of Σt to get a more
direct relation with properties of the vec operator and given the model structure.

3.2. Differential of the Conditional Covariance Matrix

We now report the differential of the conditional covariance matrix taking into account its
multiplicative structure:

dΣt = d
(

V1/2
t RtV1/2

t

)
= V1/2

t RtdV1/2
t + dV1/2

t RtV1/2
t + V1/2

t dRtV1/2
t . (8)

We then consider the vec representation of the differential

vec (dΣt) = vec
(

V1/2
t RtdV1/2

t

)
+ vec

(
dV1/2

t RtV1/2
t

)
+ vec

(
V1/2

t dRtV1/2
t

)
and, by properties of the vec operator, we have

vec
(

V1/2
t dRtV1/2

t

)
=
(

V1/2
t ⊗V1/2

t

)
vec (dRt) ,

vec
(

V1/2
t RtdV1/2

t

)
=
(

In ⊗V1/2
t Rt

)
vec

(
dV1/2

t

)
,

and
vec

(
dV1/2

t RtV1/2
t

)
= Knnvec

(
V1/2

t RtdV1/2
t

)
.

For the diagonal matrix of conditional standard deviations V1/2
t the following holds

vec
(

dV1/2
t

)
=

1
2

(
In ⊗V−1/2

t

)
vec (dVt) ,
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where Vt is the diagonal matrix of conditional variances.
Then, using the diagonality of Vt we have

vec (dVt) = Gndvt,

where vt is the vector of conditional variances. After collecting terms we have

vec (dΣt) = Nn

[(
In ⊗V1/2

t RtV−1/2
t

)
Gndvt +

(
V1/2

t ⊗V1/2
t

)
vec (dRt)

]
. (9)

Putting together Equations (7) and (9), the differential of the full likelihood becomes

dlt =
1
2

[
ε′tΣ
−1
t ⊗ ε′tΣ

−1
t − vec

(
Σ−1

t

)′]
×

×Nn

[(
In ⊗V1/2

t RtV−1/2
t

)
Gndvt +

(
V1/2

t ⊗V1/2
t

)
vec (dRt)

]
;

note, however, that the Jacobian term in Equation (7) is the vectorisation of a symmetric matrix,
and therefore remains unchanged if multiplied by Nn. The expression above, therefore, becomes

dlt =
1
2

[
ε′tΣ
−1
t ⊗ ε′tΣ

−1
t − vec

(
Σ−1

t

)′]
×

×
[(

In ⊗V1/2
t RtV−1/2

t

)
Gndvt +

(
V1/2

t ⊗V1/2
t

)
vec (dRt)

]
which can be abbreviated to

dlt = C1,tdvt + C2,tdRt. (10)

The calculation of the two partial Jacobian terms C1,t and C2,t is greatly simplified by defining

ξt ≡ V1/2
t Σ−1

t εt. (11)

The first partial Jacobian C1,t becomes

C1,t
(1×n)

=
1
2

[
ε′tΣ
−1
t ⊗ ε′tΣ

−1
t − vec

(
Σ−1

t

)′] (
In ⊗V1/2

t RtV−1/2
t

)
Gn

=
1
2

[(
ε′tΣ
−1
t ⊗ ξ ′tRtV−1/2

t

)
− vec

(
V−1

t

)′]
Gn (12)

since (
In ⊗V−1/2

t RtV1/2
t

)
vec

(
Σ−1

t

)
= vec

(
V−1/2

t RtV1/2
t Σ−1

t

)
= vec

(
V−1

t

)
.

As for the second one,

C2,t
(1×n2)

=
1
2

[
ξ ′t ⊗ ξ ′t − vec

(
R−1

t

)′]
(13)

where the equality

vec
(

Σ−1
t

)′ (
V1/2

t ⊗V1/2
t

)
= vec(V1/2

t Σ−1
t V1/2

t )′

= vec
[
(V−1/2

t ΣtV−1/2
t )−1

]′
= vec

(
R−1

t

)′
was used.
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3.3. Differential of the Vector of Conditional Variances

Now focus on the dvt term, keeping in mind we adopt a simplified parametrisation
where all conditional variances follow a GARCH(1,1)-type dynamic, the one adopted in
Ling and McAleer (2003). Recalling that vt = ω +A (εt−1 � εt−1) + Bvt−1, we have the relation

dvt = dω + dA (εt−1 � εt−1) + 2A (εt−1 � dεt−1) + dBvt−1 + Bdvt−1.

Given that dεt−1 = 0n this simplifies into

dvt = dω + dA (εt−1 � εt−1) + dBvt−1 + Bdvt−1,

and then by standard differentiation rules we have

dvt = dω +
[

In ⊗ (εt−1 � εt−1)
′
]

vec
(
dA′

)
+
(

In ⊗ v′t−1
)

vec
(
dB′

)
+ Bdvt−1.

We consider the differential with respect to the vec of parameter matrices (removing thus the
transpose), obtaining

dvt = dω +
[

In ⊗ (εt−1 � εt−1)
′
]

Knnvec (dA) + (14)

+
(

In ⊗ v′t−1
)

Knnvec (dB) + Bdvt−1

= dω + W1,tvec (dA) + W2,tvec (dB) + Bdvt−1,

where
W1,t
(n×n2)

=
[

In ⊗ (εt−1 � εt−1)
′
]

Knn (15)

and
W2,t
(n×n2)

=
(

In ⊗ v′t−1
)

Knn. (16)

Note that the matrices A and B need not be symmetric, but in many cases they may have some
kind of structure so that the differential with respect to more restricted specifications could be easily
obtained. For instance, a collection of univariate GARCH(1,1) corresponds to diagonal parameter
matrices, and thus to vec (dA) = Gnda where a is an n-dimensional parameter vector (similarly for
the matrix B).

3.4. Differential of the Conditional Correlation Matrix

We now focus on vec (dRt). Starting from the decomposition of the correlation matrix we have

dRt = d
(

Q̃−1/2
t QtQ̃−1/2

t

)
= dQ̃−1/2

t QtQ̃−1/2
t + Q̃−1/2

t dQtQ̃−1/2
t + Q̃−1/2

t QtdQ̃−1/2
t .

The diagonal matrix Q̃−1/2
t is a function of elements of Qt, we thus report first its differential with

respect to Qt

dQ̃−1/2
t = d

[(
Q̃1/2

t

)−1
]
= −Q̃−1/2

t dQ̃1/2
t Q̃−1/2

t

which follows by properties of differentials. Then

dQ̃1/2
t =

1
2

Q̃−1/2
t dQ̃t.
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By substituting these results into the differential of the conditional correlation matrix we have

dRt = −
1
2

Q̃−1
t dQ̃tRt + Q̃−1/2

t dQtQ̃−1/2
t − 1

2
RtdQ̃tQ̃−1

t

where we used dQ̃1/2
t = Q̃−1/2

t dQ̃t = dQ̃tQ̃−1/2
t , which comes from the diagonality (hence,

commutability) of Q̃t and Q̃−1/2
t .

Turning to the vec of the correlation matrix, we have

vec (dRt) = −1
2

(
Rt ⊗ Q̃−1

t

)
vec

(
dQ̃t

)
− 1

2

(
Q̃−1

t ⊗ Rt

)
vec

(
dQ̃t

)
+

+
(

Q̃−1/2
t ⊗ Q̃−1/2

t

)
vec (dQt) .

Note that vec
(
dQ̃t

)
is the vectorisation of a symmetric matrix, so vec

(
dQ̃t

)
= Knnvec

(
dQ̃t

)
.

As a consequence, (
Q̃−1

t ⊗ Rt

)
vec

(
dQ̃t

)
=

(
Q̃−1

t ⊗ Rt

)
Knnvec

(
dQ̃t

)
= Knn

(
Rt ⊗ Q̃−1

t

)
vec

(
dQ̃t

)
and therefore

−1
2

[(
Rt ⊗ Q̃−1

t

)
+
(

Q̃−1
t ⊗ Rt

)]
vec

(
dQ̃t

)
= −Nn

(
Rt ⊗ Q̃−1

t

)
vec

(
dQ̃t

)
.

Finally, by using vec
(
dQ̃t

)
= ∆nvec (dQt), we obtain

vec (dRt) = C3,tvec (dQt) ,

where
C3,t

(n2×n2)

=
[(

Q̃−1/2
t ⊗ Q̃−1/2

t

)
− Nn

(
Rt ⊗ Q̃−1

t

)
∆n

]
. (17)

3.5. Differential of the Dynamic Matrix QT

Note that the dynamic of the DCC model is given by

Qt = Γ + A�
(
ηt−1η′t−1 − Γ

)
+ B� (Qt−1 − Γ) .

The differential is thus

dQt =
(
ιnι′n − A− B

)
� dΓ + dA�

(
ηt−1η′t−1 − Γ

)
+ dB� (Qt−1 − Γ) +

+B� dQt−1 + A� d
(
ηt−1η′t−1

)
.

For the last term we can write

d
(
ηt−1η′t−1

)
= d

(
V−1/2

t−1 εt−1ε′t−1V−1/2
t−1

)
= dV−1/2

t−1 εt−1ε′t−1V−1/2
t−1 + V−1/2

t−1 εt−1ε′t−1dV−1/2
t−1 ,
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where two differentials have been dropped since here we are assuming for the sake of simplicity1 that
dεt = 0n for all values of t. Using previous results on the differentials of the conditional standard
deviations we have

dV−1/2
t−1 = −1

2
V−1/2

t−1 dVt−1V−1
t−1

and using this last result we have

d
(
ηt−1η′t−1

)
= −V−1

t−1dVt−1V−1/2
t−1 εt−1ε′t−1V−1/2

t−1 −V−1/2
t−1 εt−1ε′t−1V−1/2

t−1 dVt−1V−1
t−1

= −1
2

V−1
t−1dVt−1ηt−1η′t−1 −

1
2

ηt−1η′t−1dVt−1V−1
t−1.

Taking the vec of the previous expression we obtain

vec
(
d
(
ηt−1η′t−1

))
= −1

2

[(
ηt−1η′t−1

)
⊗V−1

t−1

]
vec (dVt−1) +

−1
2

[
V−1

t−1 ⊗
(
ηt−1η′t−1

)]
vec (dVt−1) .

By a reasoning similar to the one in the previous subsection, we note that Vt−1 is diagonal, hence
symmetric and therefore Knnvec (dVt−1) = vec (dVt−1). As a consequence,

vec
(
d
(
ηt−1η′t−1

))
= −1

2

[(
ηt−1η′t−1

)
⊗V−1

t−1

]
vec (dVt−1) +

−1
2

[
V−1

t−1 ⊗
(
ηt−1η′t−1

)]
Knnvec (dVt−1)

= −Nn

[
V−1

t−1 ⊗
(
ηt−1η′t−1

)]
Gndvt−1. (18)

For other elements in vec (dQt) results follow from properties of differentials and matrix operators.
For the Γ matrix we have

vec
((

ιnι′n − A− B
)
� dΓ

)
= δ

[
ιnι′n − A− B

]
vec (dΓ)

= δ
[
ιnι′n − A− B

]
Snvechl (dΓ) .

For the two parameter matrices driving the dynamics we obtain, instead,

vec
(
dA�

(
ηt−1η′t−1 − Γ

))
= vec

((
ηt−1η′t−1 − Γ

)
� dA

)
= δ

[
ηt−1η′t−1 − Γ

]
vec (dA)

= δ
[
ηt−1η′t−1 − Γ

]
Dnvech (dA) ,

and

vec (dB� (Qt−1 − Γ)) = vec ((Qt−1 − Γ)� dB)

= δ [Qt−1 − Γ] vec (dB)

= δ [Qt−1 − Γ] Dnvech (dB) .

The differential also has a recursive structure, so

vec (B� dQt−1) = δ [B] vec (dQt−1) .

1 Obviously, in a realistic application the conditional expectation of the observables xt has to be modelled somehow.



J. Risk Financial Manag. 2020, 13, 49 10 of 21

Finally, we must take into account the dependence of elements Qt from the conditional variances.

vec
(

A� d
(
ηt−1η′t−1

))
= δ [A] vec

(
d
(
ηt−1η′t−1

))
= −1

2
δ [A]

[(
ηt−1η′t−1

)
⊗V−1

t−1

]
Gndvt−1 +

−1
2

δ [A]
[
V−1

t−1 ⊗
(
ηt−1η′t−1

)]
Gndvt−1.

By an analogous argument as in Equation (18), the above can also be written as

vec
(

A� d
(
ηt−1η′t−1

))
= −δ [A] Nn

[
V−1

t−1 ⊗
(
ηt−1η′t−1

)]
Gndvt−1.

In order to use a more manageable notation, we introduce the following matrices:

J1(
n2× n(n−1)

2

) = δ
[
ιnι′n − A− B

]
Sn, (19)

J2,t(
n2× n(n+1)

2

) = δ
[
ηt−1η′t−1 − Γ

]
Dn, (20)

J3,t(
n2× n(n+1)

2

) = δ [Qt−1 − Γ] Dn, (21)

J4,t
(n2×n)

= −δ [A] Nn

[
V−1

t−1 ⊗
(
ηt−1η′t−1

)]
Gn, (22)

J5
(n2×n2)

= δ [B] . (23)

After substituting them into the differential we obtain

vec (dQt) = J1vechl (dΓ) + J2,tvech (dA) + J3,tvech (dB) +

+J4,tdvt−1 + J5vec (dQt−1) . (24)

4. Gradient of the DCC Model

By differentiating Equation (3), the score for the DCC model is seen to equal

∂lt
∂θ′

= C1,t
∂vt

∂θ′
+ C2,tC3,t

∂vec (Qt)

∂θ′
. (25)

Furthermore, the derivatives of vt with respect to the various parameter matrices are

∂vt

∂ω′
= In + B

∂vt−1

∂ω′
,

∂vt

∂vec (A)′
= W1,t + B

∂vt−1

∂vec (A)′
,

∂vt

∂vec (B)′
= W2,t + B

∂vt−1

∂vec (B)′
,

∂vt

∂vechl (Γ)′
= 0,

∂vt

∂vech (A)′
= 0,

∂vt

∂vech (B)′
= 0.
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In the same fashion, the derivatives of Qt are

∂vec (Qt)

∂ω′
= J4,t

∂vt−1

∂ω′
+ J5

∂vec (Qt−1)

∂ω′
, (26)

∂vec (Qt)

∂vec (A)′
= J4,t

∂vt−1

∂vec (A)′
+ J5

∂vec (Qt−1)

∂vecA′ ,

∂vec (Qt)

∂vec (B)′
= J4,t

∂vt−1

∂vec (B)′
+ J5

∂vec (Qt−1)

∂vec (B)′
,

∂vec (Qt)

∂vechl (Γ)′
= J1 + J5

∂vec (Qt−1)

∂vechl (Γ)′
,

∂vec (Qt)

∂vech (A)′
= J2,t + J5

∂vec (Qt−1)

∂vech (A)′
,

∂vec (Qt)

∂vech (B)′
= J3,t + J5

∂vec (Qt−1)

∂vech (B)′
.

We finally represent the gradient in a more compact form as

∂lt
∂θ′

= [C1,t : C2,tC3,t]

[
∂vt
∂θ′

∂vec(Qt)
∂θ′

]
, (27)

where

[
∂vt
∂θ′

∂vec(Qt)
∂θ′

]
((n+n2)×dim(θ))

=

 In : W1,t : W2,t : 0
(n×(d4+d5+d6))

0
(n2×(d1+d2+d3))

: J1 : J2,t : J3,t

+

+

 B 0
(n×n2)

J4,t J5

 [ ∂vt−1
∂θ′

∂vec(Qt−1)
∂θ′

]
. (28)

4.1. Gradient of Other DCC Specifications

Using the previous results, we could derive the gradient of several variants of the DCC model
of Engle (2002). In fact, alternative models generally differ from that of Engle (2002), only in the
equation governing the correlation dynamic. We provide here an example for the GDCC model
of Cappiello et al. (2006), while in the next section we focus on the more recent cDCC model of
Aielli (2013).

The differential of the GDCC equation is

dQt = dΓ− dAΓA′ − AdΓA′ − AΓdA′ +

−dBΓB′ − BdΓB′ − BΓdB′ +

+dAηt−1η′t−1 A′ + Ad
(
ηt−1η′t−1

)
A′ + Aηt−1η′t−1dA′ +

+dBQt−1B′ + BdQt−1B′ + BQt−1dB′.

and taking the vec, with some manipulations and using previous results for the differential of
d
(
ηt−1η′t−1

)
, we obtain

vec (dQt) = J1vechl (dΓ) + J2,tvech (dA) + J3,tvech (dB) + (29)

+J4,tdvt−1 + J5vec (dQt−1) ,
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where

J1 = (In2 + A⊗ A + B⊗ B) Sn, (30)

J2,t = 2Nn
[
(AΓ⊗ In) +

(
Aηt−1η′t−1 ⊗ In

)]
, (31)

J3,t = 2Nn [(BΓ⊗ In) + (BQt−1 ⊗ In)] , (32)

J4,t = −1
2
(A⊗ A) Nn

[
V−1

t−1 ⊗
(
ηt−1η′t−1

)]
Gn, (33)

J5 = B⊗ B. (34)

Finally, the gradient has exactly the same form as in (27) with the J matrices defined in (30)–(34).

4.2. Gradient of the cDCC Model

The cDCC model of Aielli (2013) differs from the DCC model of Engle (2002) just in the dynamic
equation of the Qt matrix. Thus, the two gradients are very similar: the differential of Qt is equal to

dQt =
(
ιnι′n − A− B

)
� dΓ + dA�

(
Q̃1/2

t−1ηt−1η′t−1Q̃1/2
t−1 − Γ

)
+

+dB� (Qt−1 − Γ) + B� dQt−1 + A� d
(

Q̃1/2
t−1ηt−1η′t−1Q̃1/2

t−1

)
.

The difference from the original DCC by Engle (2002) therefore comes from two terms: dA�(
Q̃1/2

t−1ηt−1η′t−1Q̃1/2
t−1 − Γ

)
and d

(
Q̃1/2

t−1ηt−1η′t−1Q̃1/2
t−1

)
. For the former, we simply have

J̃2,t(
n2× n(n+1)

2

) = δ
[

Q̃1/2
t−1ηt−1η′t−1Q̃1/2

t−1 − Γ
]

Dn. (35)

On the contrary, the differential for the dynamic correlations shocks must be entirely reconsidered.
First note that

d
(

Q̃1/2
t−1ηt−1η′t−1Q̃1/2

t−1

)
= dQ̃1/2

t−1ηt−1η′t−1Q̃1/2
t−1 +

+Q̃1/2
t−1d

(
ηt−1η′t−1

)
Q̃1/2

t−1 +

+Q̃1/2
t−1ηt−1η′t−1dQ̃1/2

t−1.

Taking the vec and using the operator’s properties we obtain

vec
(

d
(

Q̃1/2
t−1ηt−1η′t−1Q̃1/2

t−1

))
=

(
ηt−1η′t−1Q̃1/2

t−1 ⊗ In

)
vec

(
dQ̃1/2

t−1

)
+

+
(

Q̃1/2
t−1 ⊗ Q̃1/2

t−1

)
vec

(
d
(
ηt−1η′t−1

))
+

+
(

In ⊗ Q̃1/2
t−1ηt−1η′t−1

)
vec

(
dQ̃1/2

t−1

)
.

Using previous results we also have

vec
(

d
(

Q̃1/2
t−1ηt−1η′t−1Q̃1/2

t−1

))
=
(

Q̃1/2
t−1 ⊗ Q̃1/2

t−1

)
vec

(
d
(
ηt−1η′t−1

))
+

+
1
2

[(
ηt−1η′t−1Q̃1/2

t−1 ⊗ In

)
+
(

In ⊗ Q̃1/2
t−1ηt−1η′t−1

)]
Q̃−1/2

t−1 vec (dQt−1) .
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Using the last equation we can reconsider the recursive element of the differential

vec
(

A� d
(

Q̃1/2
t−1ηt−1η′t−1Q̃1/2

t−1

))
= δ [A] vec

(
d
(

Q̃1/2
t−1ηt−1η′t−1Q̃1/2

t−1

))
=

= −1
2

δ [A]
(

Q̃1/2
t−1 ⊗ Q̃1/2

t−1

) [(
ηt−1η′t−1

)
⊗V−1

t−1

]
Gndvt−1+

−1
2

δ [A]
(

Q̃1/2
t−1 ⊗ Q̃1/2

t−1

) [
V−1

t−1 ⊗
(
ηt−1η′t−1

)]
Gndvt−1+

+
1
2

δ [A]
[(

ηt−1η′t−1Q̃1/2
t−1 ⊗ In

)
+
(

In ⊗ Q̃1/2
t−1ηt−1η′t−1

)]
Q̃−1/2

t−1 vec (dQt−1) .

Taking into account these additional elements, and algebraic equalities adopted in the previous
section, we have:

J̃4,t
(n2×n)

= −δ [A]
(

Q̃1/2
t−1 ⊗ Q̃1/2

t−1

)
Nn

[
V−1

t−1 ⊗
(
ηt−1η′t−1

)]
Gn, (36)

J̃5,t
(n2×n2)

= δ [B] + δ [A]× Nn

(
ηt−1η′t−1Q̃1/2

t−1 ⊗ In

)
Q̃−1/2

t−1 ,

and we stress that the last matrix is now time-varying.
Finally, the cDCC gradient has the following compact form (which is identical to that of the DCC

model apart for the content of the four matrices with a tilde)

∂lt
∂θ′

= [C1,t : C2,tC3,t]

[
∂vt
∂θ′

∂vec(Qt)
∂θ′

]
(37)

[
∂vt
∂θ′

∂vec(Qt)
∂θ′

]
((n+n2)×dim(θ))

=

 In : W1,t : W2,t : 0
(n×(d4+d5+d6))

0
(n2×(d1+d2+d3))

: J1 : J̃2,t : J3,t

+

+

 B 0
(n×n2)

J̃4,t J̃5,t

 [ ∂vt−1
∂θ′

∂vec(Qt−1)
∂θ′

]
.

We note that the differences between the gradient of the DCC of Engle (2002) and of the cDCC of
Aielli (2013) are confined to the matrices J̃4,t, J̃5,t, and J̃6,t, where the last one is dynamic for the cDCC
while it is static for the DCC. As a result, the implementation of the analytical gradient for the cDCC
model would be computationally (marginally) more complex than that for the DCC model.

5. Two-Step Estimation of Dcc-Like Models

The previous sections provide the analytical expressions for the gradient of selected DCC
specifications. The availability of analytical gradients has relevant advantages from the model
estimation point of view. In fact, they might bring about substantial savings in the CPU time needed for
model estimation, particularly so when the model dimension n is large. However, some qualifications
have to be made.

When estimating DCC-type models, most practitioners refrain from maximising the full
log-likelihood and rely instead on a two-step approach put forward by Engle (2002). In the first
step, a battery of n univariate GARCH models is estimated, one for each series; the second step
involves the maximisation of the log-likelihood (3) over the parameter matrices Γ, A and B by taking
εt and vt as given and using the estimated residuals and conditional variances in their stead.

Given the structure of the gradient, the two-step approach has adverse consequences on efficiency.
In fact, estimating the conditional variance parameters separately from the conditional correlation
parameters leads to using numerical procedures for the evaluation of the gradient and the Hessian
that neglect the dependence of the conditional variance parameters’ derivatives on the conditional
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correlation. The availability of the DCC model gradient might be of help even in the case we plan
to maintain a two-step estimation approach. In fact, the Maximisation by Parts (MbP) approach of
Fan et al. (2015), introduces an iterative approach for a general case that includes DCC-type models.
The framework of MbP requires that a log-likelihood function depends on two sets of parameters and
can be decomposed as

LT (θ1, θ2) = L1,T (θ1) + L2,T (θ1, θ2) . (38)

Imposing the first order conditions leads to

∂LT (θ1, θ2)

∂θ′1
=

∂L1,T (θ1)

∂θ′1
+

∂L2,T (θ1, θ2)

∂θ′1
= 0, (39)

∂LT (θ1, θ2)

∂θ′2
=

∂L2,T (θ1, θ2)

∂θ′2
= 0. (40)

Fan et al. (2015) suggest estimating the parameters according to an iterative scheme that takes
advantage of the fact that one of the two parameters set appears only in one of the two components of
the likelihood, and tries at the same time to avoid neglecting the second term of ∂LT(θ1,θ2)

∂θ′1
. The MbP

approach estimates parameters iterating between the two following systems of first order conditions,
where j is the iteration index:

∂L1,T (θ1)

∂θ′1
+

∂L2,T
(
θ1, θ̂j−1,2

)
∂θ′1

= 0, (41)

∂L2,T
(
θ̂j,1, θ2,

)
∂θ′2

= 0. (42)

The DCC log-likelihood is coherent with that framework, as Engle (2002) shows that we can
separate the conditional variance contribution to the overall likelihood from the conditional correlation
contribution. Moreover, if we let the conditional correlation parameters to be included in the set
θ1 and the conditional variance parameters to be included in θ2, coherently with our previous
derivations, we have that the conditional variance parameters enter in the log-likelihood of the
conditional correlations. The availability of the analytical gradient for a DCC model allows adopting
the MbP approach with a computational advantage compared to the use of numerical methods.

However, as the gradient with respect to the conditional variance parameters depend on the
GARCH-type specifications adopted, we concentrate from now on only on the implementation of the
gradient with respect to the conditional correlation parameters.

6. Software Implementation of Analytical Gradients

The implementation of computer code to translate the formulae of the previous section into actual
algorithms is not trivial. First, it should be noted that for efficient numerical implementation of the
score several special matrices used here (such as Dn, Knn or ∆n) are selection/permutation matrices.
Therefore, pre- or post-multiplication of a matrix (say, A) by a special matrix simply amounts to
selecting/reordering the rows and columns of A, thereby avoiding floating-point operations.

Moreover, the full generality of the law of motion for Qt as provided in Equation (1) is
rarely needed, and practitioners have focused on several sub-cases, which allow for different
reparametrisations, some of which involve parameter restrictions. In all these cases, the parameter
vector θ is re-expressed as θ = θ(ψ), where ψ contains the unrestricted parameters for the numerical
maximisation algorithm. We present here the analysis for the DCC model by Engle (2002) but similar
adaptations are possible for the other DCC specifications as well.

The first example of these restrictions involves the Γ matrix in (1), which could generally be
parametrised as a positive semidefinite symmetric matrix with ones on the diagonal. However,
the n(n−1)

2 free parameters that Γ contains are often constrained in such a way that Γ equals some
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prescribed matrix, usually obtained from the data. This idea, introduced in Engle and Mezrich (1996),
is very common among prectitioners and goes under the name of “variance targeting”.2

Moreover, the A and B matrices are also often reparametrised as well in several ways:

Cholesky factorisation The A and B matrices are expressed as

A = HAH′A, B = HBH′B, (43)

where HA and HB are lower triangular matrices, ensuring that A and B are positive semi-definite.
In this case, ψ′ = [vech(HA)

′ : vech(HB)
′] and θ = θ(ψ) is a bijective transformation and no

constraints are set.
Rank-1 specification The A and B matrices are expressed as

A = aa′, B = bb′, (44)

where a and b are column n-vectors. Note that this is a special case of the one above, where
A and B are restricted to be rank 1 matrices. Here, ψ′ = [a′ : b′] is a 2n × 1 vector and
the transformation is not invertible. This parametrisation implies n2 − n constraints; as a
consequence, the dimension of ψ is O(n).

Scalar DCC The A and B matrices are expressed as

A = α · ιnι′n, B = β · ιnι′n, (45)

where α and β are positive scalars. Note that this is a restricted case of the above, where
a =
√

α · ιn and b =
√

β · ιn. Here, ψ′ = [α : β] (a 2× 1 vector) and n2 + n− 2 constraints are
implied; hence, the dimension of ψ is fixed at 2, irrespective of n.

All these reparametrisations have the advantage that the unknown element of ψ can vary freely
and no numerical check on the symmetry and positive-semidefinitness on A and B is required.

The analytical gradient with respect to the unconstrained parameters ψ is readily obtained by
post-multiplying Equation (4) by the Jacobian term Ψ = ∂θ

∂ψ , that could be written more extensively as

Ψ
dim(θ)×dim(ψ)

=
∂θ

∂ψ
=


∂vechlΓ

∂ψ

∂vechA
∂ψ

∂vechB
∂ψ

 =


ΨΓ

ΨA

ΨB

 . (46)

Note that the matrix Ψ is time-invariant, so it can be computed just once: in practice, once a loop
over t = 1 . . . T has been run on Equation (25) and the results have been stored into a T × dim(θ)

matrix, all is needed for computing the analytical score with respect to ψ is post-multiplying this
matrix by Ψ.

If the Γ matrix is estimated without restrictions, then ΨΓ = I n(n−1)
2

; instead, under variance

targeting Γ contains no parameters at all and ΨΓ simply vanishes.
As for ΨA, for the three cases listed above, we have that,

dvech(A) =


2Ln [Nn (HA ⊗ In) Dn]dvech (HA) Cholesky

2Ln [Nn (a⊗ In)]da rank-1

Lnιn2da = ι n(n+1)
2

dα scalar

2 A possible alternative reparametrisations, based on hyperbolic trigonometric functions, is the one proposed in
Pelletier (2006).
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so that

ΨA =


2Ln [Nn (HA ⊗ In) Dn] Cholesky

2Ln [Nn (a⊗ In)] rank-1

ι n(n+1)
2

scalar

(47)

and similar expressions hold, mutatis mutandis, for the matrix B.

7. Empirical Example

In order to give the reader an idea of the computational advantages that analytical scores bring
about, we ran the following experiment: we generated random data for T = 512, 1024, 2048 and
evaluated the score at a given ψ, for four different DCC specification.

We evaluate CPU time and precision in the computation of the derivative of l(θ; xt); this task is
accomplished by taking a specific data point xt, t = 1 . . . T; note that the evaluation of CPU time and
precision has nothing to do with the way the specific sample xt was generated, as long as the point xt

belongs to the support of the density whose log-likelihood we are evaluating.
However, to make sure this is the case, we ran the experiment several times, on data points

that belong to the support of densities that can conceivably be of interest to the practitioners,
such as such as those that represent persistency at high frequencies, jumps and long-memory
(see, for example, Gradojevic et al. 2020);3 we found no appreciable differences and the additional
tables, not included in the paper for the sake of completeness but available upon request from the
authors, are completely in line with the one reported in this section.

The DGPs we chose can be ordered in increasing order of restrictedness; we use the following sets
of parameters:

1. Unrestricted (no transformation): Γ = In, A = 0.1 · Pn and B = 0.9 · Pn, where Pn = In + n−1ιnι′n;
therefore,

ψ =

[
0 n(n−1)

2
: 0.1 · vech(Pn) : 0.9 · vech(Pn)

]′
;

2. Cholesky: Γ = In, HA = 0.1 · Hn and HB = 0.9 · Hn, where Hn is a lower-triangular matrix equal
to Pn in its non-zero elements; therefore,

ψ =

[
0 n(n−1)

2
: 0.1 · vech(Pn) : 0.9 · vech(Pn)

]′
;

3. rank-1: Γ = In, a = 0.1 · ιn and b = 0.9 · ιn; therefore,

ψ =

[
0 n(n−1)

2
: 0.1 · ιn : 0.9 · ιn

]′
;

4. scalar: Γ = In, α = 0.1 and β = 0.9; therefore,

ψ =

[
0 n(n−1)

2
: 0.1 : 0.9

]′
.

The same specifications were also analysed under the variance targeting setup, where of course
the first block of ψ drops out.

The score was computed both analytically and numerically. For each parameter configuration,
Tables 1 and 2 report two indicators, respectively:

3 We thank an anonymous referee for bringing up this point.
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1. the CPU timings ratio ρ = tN
tA

, where tN and tA are the CPU times for the numerical and analytical
gradient, respectively;

2. an indicator of the numerical accuracy of numerical derivatives, dmax, given the max absolute
difference between numerical and analytical gradients.4

Results show quite clearly that analytical differentiation is uniformly advantageous in terms
of precision, and increasingly so as dim(ψ) gets large, either because of larger n or fewer
constraints on the model. The quality of numerical approximation also degrades uniformly as
the sample size T grows. The comparison was performed by using the central difference formula
(see for example, Epperson 2013, Section 2.2) for numerical derivatives; obviously, more sophisticated
methods, such as Richardson extrapolation, would yield more accuracy but would also imply heavier
CPU usage.

On the contrary, analytical derivatives seem to yield a speed premium only when ψ is O(n2) or
more, as the formulae presented in this paper entail a computational overhead that seems roughly
to be O(n). As can be seen, analytical derivatives dominate numerical ones in all those situations
when the number of unrestricted parameters gets large. Interestingly, the opposite happens when
constraints are pushed to the extreme: in the scalar model with variance targeting, the number of
unrestricted parameters is fixed at 2 no matter what the model size is, and analytical derivatives are
actually detrimental, and increasingly so as n gets larger. Sample size does not seem to make much
difference, instead.

For any realistic estimation problem, therefore, the combined effect of increased precision
and quicker computation make it advisable to employ analytical derivatives any time the model
being estimated is more general than the simple scalar model: even if CPU time were roughly
equivalent in the two cases, the deterioration in precision one gets with numerical derivatives
would imply a substantial increase in the number of iterations needed to reach the maximum of
the log-likelihood function.

A word of warning: our results should be considered only suggestive, since the actual
hardware and software setup may make quite a large difference: for example, the results reported in
Table 2 were obtained on a Linux machine with 20 physical CPU cores, using the gretl package
linking to the OpenBLAS matrix library (Wang et al. 2013). Results may be different on other
hardware/software combinations.

4 One may think that a discrepancy should not mean in itself that numerical derivatives are “wrong” and analytical ones are
“right”. The analytical results were carefully checked for small values of n and were found to be correct; since the formulae
employed in the score calculations in Sections 3 and 4 do not contain operations that should be particularly sensitive
to rounding errors, we are confident in their validity. Nevertheless, to be on the safe side, we repeated the comparison
using a slower but more accurate algorithm for computing numerical derivatives and found that dmax decreased uniformly,
as expected.
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Table 1. Maximum distance indices (dmax).

Model 1: No Tranformation 2: Cholesky
No Targeting Targeting No Targeting Targeting

T 512 1024 2048 512 1024 2048 512 1024 2048 512 1024 2048

n = 2 0.0003 0.0003 0.0025 0.0003 0.0003 0.0032 0.0002 0.0002 0.0020 0.0002 0.0002 0.0020
n = 3 0.0012 0.0025 0.0052 0.0012 0.0025 0.0078 0.0010 0.0029 0.0035 0.0010 0.0029 0.0035
n = 4 0.0014 0.0052 0.0082 0.0014 0.0052 0.0164 0.0017 0.0051 0.0123 0.0017 0.0051 0.0123
n = 5 0.0040 0.0077 0.0193 0.0040 0.0077 0.0391 0.0049 0.0086 0.0304 0.0049 0.0086 0.0304
n = 6 0.0044 0.0239 0.0410 0.0044 0.0239 0.0564 0.0053 0.0124 0.0648 0.0053 0.0124 0.0648
n = 7 0.0048 0.0218 0.0709 0.0048 0.0218 0.0580 0.0075 0.0265 0.0622 0.0075 0.0265 0.0622
n = 8 0.0126 0.0377 0.1104 0.0126 0.0377 0.0776 0.0104 0.0286 0.0925 0.0104 0.0286 0.0925
n = 9 0.0129 0.0570 0.1127 0.0129 0.0570 0.0927 0.0131 0.0375 0.1216 0.0131 0.0375 0.1216
n = 10 0.0253 0.0654 0.1746 0.0253 0.0654 0.1492 0.0212 0.0621 0.2129 0.0212 0.0621 0.2129
n = 15 0.0399 0.1289 0.4150 0.0399 0.1289 0.3692 0.0395 0.1086 0.3534 0.0395 0.1086 0.3534
n = 20 0.0927 0.2619 0.8656 0.0927 0.2619 0.7093 0.0919 0.2900 0.6051 0.0919 0.2900 0.6052
n = 25 0.1850 0.4536 1.1483 0.1850 0.4536 0.9630 0.1321 0.4474 0.9838 0.1321 0.4474 0.9838

model 3: Rank-1 4: Scalar
No Targeting Targeting No Targeting Targeting

T 512 1024 2048 512 1024 2048 512 1024 2048 512 1024 2048

n = 2 8.3 × 10−5 0.0002 0.0007 8.3 × 10−5 0.0002 0.0007 0.0002 0.0002 0.0006 0.0002 0.0002 0.0006
n = 3 6.6 × 10−5 0.0005 0.0014 6.6 × 10−5 0.0005 0.0014 1.9 × 10−5 0.0004 0.0006 1.9 × 10−5 0.0004 0.0006
n = 4 0.0002 0.0009 0.0008 0.0002 0.0009 0.0008 3.5 × 10−5 0.0004 0.0031 3.5 × 10−5 0.0004 0.0031
n = 5 0.0004 0.0009 0.0022 0.0004 0.0009 0.0022 1.4 × 10−5 0.0005 5.4 × 10−5 1.4 × 10−5 0.0005 5.4 × 10−5

n = 6 0.0002 0.0012 0.0045 0.0002 0.0012 0.0045 0.0003 0.0005 0.0003 0.0003 0.0005 0.0003
n = 7 0.0006 0.0018 0.0026 0.0006 0.0018 0.0026 0.0007 0.0017 0.0026 0.0007 0.0017 0.0026
n = 8 0.0004 0.0016 0.0043 0.0004 0.0016 0.0043 0.0010 0.0014 0.0006 0.0010 0.0014 0.0006
n = 9 0.0009 0.0026 0.0058 0.0009 0.0026 0.0058 3.3 × 10−5 0.0005 0.0018 3.3 × 10−5 0.0005 0.0018
n = 10 0.0006 0.0022 0.0031 0.0006 0.0022 0.0031 0.0005 0.0007 0.0055 0.0005 0.0007 0.0055
n = 15 0.0010 0.0039 0.0152 0.0010 0.0039 0.0152 0.0005 0.0020 0.0005 0.0005 0.0020 0.0005
n = 20 0.0018 0.0063 0.0112 0.0018 0.0063 0.0112 0.0026 0.0031 0.0311 0.0026 0.0031 0.0311
n = 25 0.0022 0.0055 0.0174 0.0022 0.0055 0.0174 0.0065 0.0329 0.0254 0.0065 0.0329 0.0254

T is sample size, while n is the number of series in the model.
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Table 2. Time ratios tN/tA.

Model 1: No Tranformation 2: Cholesky
No Targeting Targeting No Targeting Targeting

T 512 1024 2048 512 1024 2048 512 1024 2048 512 1024 2048

n = 2 1.47 1.53 1.48 1.47 1.42 1.27 1.59 1.49 6.54 1.51 1.43 1.40
n = 3 2.96 3.03 2.94 2.77 2.67 2.49 3.12 2.96 2.98 2.83 2.73 2.61
n = 4 5.03 5.07 4.89 4.42 4.44 3.92 5.21 4.96 5.03 4.57 4.33 4.28
n = 5 7.55 7.59 7.30 6.41 6.44 5.97 7.60 7.36 7.49 6.60 6.30 6.17
n = 6 5.57 5.68 5.55 4.71 4.73 4.25 5.58 5.54 5.75 5.14 4.71 4.53
n = 7 7.31 6.91 7.01 5.88 5.91 5.40 7.04 7.06 7.12 5.94 5.84 5.50
n = 8 8.54 8.24 8.33 6.91 7.46 6.33 8.45 8.48 8.61 7.06 6.90 6.45
n = 9 9.47 9.23 9.41 7.73 8.37 6.60 9.51 9.65 9.63 7.85 7.74 7.02
n = 10 10.41 9.79 9.47 8.06 8.26 8.14 10.72 9.96 10.40 8.19 8.11 7.69
n = 15 11.65 11.14 12.42 8.78 9.03 8.33 12.25 11.48 11.57 9.14 8.97 8.33
n = 20 8.84 8.45 8.89 6.13 6.03 6.25 9.02 8.71 8.93 6.40 5.97 6.38
n = 25 7.50 7.71 7.68 5.06 4.99 5.13 7.72 7.63 7.54 5.88 5.19 5.13

model 3: Rank-1 4: Scalar
No Targeting Targeting No Targeting Targeting

T 512 1024 2048 512 1024 2048 512 1024 2048 512 1024 2048

n = 2 1.11 1.07 1.09 0.93 1.01 0.92 0.70 0.68 0.71 0.58 0.55 0.56
n = 3 1.87 1.90 1.80 1.30 1.32 1.42 1.06 1.04 1.07 0.54 0.53 0.55
n = 4 2.78 3.15 1.32 1.71 1.59 1.83 1.68 1.57 1.67 0.55 0.54 0.54
n = 5 3.94 4.33 3.78 2.07 1.97 2.19 2.37 2.26 2.32 0.53 0.51 0.53
n = 6 2.73 2.61 2.69 1.33 1.26 1.40 1.71 1.67 1.80 0.27 0.28 0.28
n = 7 3.35 3.14 3.31 1.41 1.35 1.52 2.15 2.10 2.16 0.25 0.26 0.26
n = 8 3.82 4.05 3.83 1.53 1.45 1.58 2.60 2.54 2.57 0.24 0.24 0.24
n = 9 4.14 3.97 4.12 1.50 1.30 1.61 2.89 2.82 2.90 0.21 0.21 0.22
n = 10 4.48 4.19 4.42 1.51 1.39 1.50 3.06 2.93 3.14 0.19 0.18 0.19
n = 15 4.48 4.36 4.76 1.07 1.02 1.15 3.44 3.55 2.02 0.09 0.09 0.10
n = 20 3.33 3.41 3.35 0.60 0.63 0.58 2.79 2.69 3.13 0.04 0.04 0.04
n = 25 2.87 2.98 2.72 0.42 0.42 0.40 2.45 2.44 2.48 0.02 0.02 0.02

T is sample size, while n is the number of series in the model.

8. Concluding Remarks

The formulae we developed make it possible to compute the analytical score for the DCC model
quickly and efficiently. Compared to the numerical derivatives modern statistical packages provide,
the advantages are twofold: increased precision and computational speed.

However, while increased precision depends rather uniformly on the size of the model being
estimated, the effects on CPU time are worth some more detailed comment: generally speaking,
analytical derivatives are especially beneficial for larger models when the parameters of the law
of motion for the conditional correlation matrix are not overly constrained. In the extreme
case of the scalar DCC model with covariance targeting, the computational overhead implied by
analytically differentiating the log-likelihood offsets completely the advantages. In all other cases,
analytical derivatives provide substantial savings in computing time, often dramatic. Sample size,
on the other hand, does not seem to affect the relative speed of analytical versus numerical gradient
calculation very much.

In the light of the enormous importance of modelling covariance for large numbers of variables
using parametric structures which do not impose an excessive number of constraints, the usage of
analytical derivatives seems to be imperative in all cases when modelling accurately the time profile of
conditional correlations is essential.

Such situations arise frequently in practice, and a few examples can be given: first, conditional
correlation models are relevant for risk management, particularly so when the portfolio includes a
great number of assets. Second, these models may prove highly beneficial in asset allocation problems,
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since predictions on both the conditional mean and the conditional covariance matrix are required to
determine the optimal portfolio composition; in these cases the number of assets in the investment
universe is often rather large, so computational complexity is likely to be a very real issue. Third,
the possibility of estimating full DCC models in medium-sized problems makes it possible to account
for spillovers and interdependence between conditional variances and within conditional correlations,
and thereby analyze the diffusion of shocks within and/or between financial markets in greater detail.
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