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Abstract: In this paper we study estimating ruin probability which is an important problem in
insurance. Our work is developed upon the existing nonparametric estimation method for the
ruin probability in the classical risk model, which employs the Fourier transform but requires
smoothing on the density of the sizes of claims. We propose a nonparametric estimation approach
which does not involve smoothing and thus is free of the bandwidth choice. Compared with the
Fourier-transformation-based estimators, our estimators have simpler forms and thus are easier to
calculate. We establish asymptotic distributions of our estimators, which allows us to consistently
estimate the asymptotic variances of our estimators with the plug-in principle and enables interval
estimates of the ruin probability.

Keywords: classical risk model; nonparametric estimation; ruin probability

1. Introduction

It is well-known that estimating the ruin probability is an important problem in economics and
insurance. There are many works on this topic in the literature, and they can be divided into two groups,
parametric and nonparametric. See (Baumgartner and Gatto 2010); (Croux and Veraverbeke 1990),
(Feng et al. 2020); (Frees 1986); (Mnatsakanov et al. 2008); (Pitts 1994); (Politis 2003); (You et al. 2020)
and (Zhang et al. 2014), among others. In this paper we propose a nonparametric approach to
estimating the ruin probability. Unlike the existing nonparametric methods, our procedure does not
involve smoothing. To illustrate our idea, we begin with the classical risk model

Ut = u + ct−
Nt

∑
i=1

Xi, t ≥ 0, (1)

where u ≥ 0 is the initial surplus, c > 0 is the constant premium rate, and N = {Nt}t≥0 is a Poisson
process with intensity λ > 0, and X1, X2, X3, ... are independent and identically distributed random
variables with density function f and distribution function F supported on (0, ∞). The corresponding
process N = {Nt, t ≥ 0} is called the claim number process, and X = {Xi, i = 1, 2, 3...} are the sizes of
claims. Further, N and {Xi}i=1,2,... are independent. Suppose the mean and variance of claim sizes are
finite, i.e., µ =

∫ ∞
0 xF(dx) < ∞, σ2 =

∫ ∞
0 x2F(dx)− µ2 < ∞.

Let τ = inf{t > 0 : Ut < 0}, which is the first time when Ut < 0. Then the ruin probability is

Ψ(u) = P (τ < ∞|U0 = u) .
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In order to prevent ruin happening with probability one, we assume that the risk process has a relative
safety loading (Gerber 1979) and (Bower et al. 1997), that is,

θ = c/(λµ)− 1 > 0. (2)

As illustrated in (Asmussen and Albrecher 2010) and (Landriault and Willmot 2008), there are
many methods for estimating the ruin probability. For example, the integro-differential equation
technique, renewal theory, Laplace transform, martingale theory, and so on. Since explicit formulas
for ruin probabilities are usually not available, some authors roughly estimate some bounds of ruin
probabilities (Cai and Wu 1997) and (Dickson 1994). However, these methods assume knowing the
inter-claim distribution and the claim size distribution.

Naturally, some authors seek to nonparametrically estimate the ruin probability which does
not require knowing the distribution of the claim size. Examples include but not limited to
the sample reuse method in (Frees 1986), which was extended by (Croux and Veraverbeke 1990)
by virtue of the Pollaczeck–Khinchin formula and U-statistics, the Laplace transform method in
(Mnatsakanov et al. 2008), and the inverse Fourier method in (Zhang et al. 2014). These approaches
assumed that the distribution of the individual claim size F is unknown, but the Poisson intensity λ is
known. Other authors contributed their works with both F and λ estimated from the data, for example,
(Pitts 1994); (Politis 2003); (Baumgartner and Gatto 2010) and (You et al. 2020).

In this paper, we make our contribution to statistical inference for Ψ(u). Our approach is based
on the Fourier inversion in (Zhang et al. 2014) and (You et al. 2020). Using the Fourier inversion and
kernel density, (Zhang et al. 2014) obtained an explicit expression of Ψ(u), with which they proposed a
nonparametric estimator of the ruin probability based on the plug-in principle (see Section 2 for details).

The problem of estimating the probability of ruin when the Poisson intensity λ are unknown was
not studied in (Zhang et al. 2014). Based on (Zhang et al. 2014) and (Politis 2003), (You et al. 2020)
established asymptotically normal distributions of the nonparametric estimators of Ψ(u) with known
λ and with unknown λ. Both (Zhang et al. 2014) and (You et al. 2020) employed the kernel density
estimation of f (x), which requires choice of the smoothing parameter. Specially, given a sample of
claims X = {Xi, i = 1, 2, ..., n}, (You et al. 2020) and (Zhang et al. 2014) estimated the claim size density
f by the kernel density estimator

f̂n(x) =
1

nhn

n

∑
j=1

K(
x− Xj

hn
),

where K is a kernel function and hn is the bandwidth. Instead of estimating f (x), in this paper we
estimate the distribution function F by the empirical distribution function

Fn(x) = n−1
n

∑
j=1

I{Xj≤x},

where I{·} is the indicator function. Therefore, our estimator does not involve nonparametric smoothing
and avoids choice of the bandwidth hn. Given the expression of

Ψ(u) =
λµ

c
− (1− λµ

c
)

1
2π

∫ ∞

−∞

1− e−isu

is
λ
∫ ∞

0 eisu f (u) du−1
ics

1− λ
∫ ∞

0 eisu f (u) du−1
ics

ds (3)

from (Zhang et al. 2014), we will construct an estimator of Ψ(u) by the plug-in device, which replaces λ

and µ by their empirical estimators and f (u) du by dFn(u). Similar to (You et al. 2020), we will establish
asymptotically normal distributions of the nonparametric estimators of Ψ(u) with known λ and with
unknown λ. Since our estimators do not involve the kernel smoothing, they are easier to calculate
than those in (Zhang et al. 2014) and (You et al. 2020). Furthermore, since there is no bandwidth
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choice for our procedure, our procedure is expected to have more stable performance. The asymptotic
distributions of our estimators allow us to consistently estimate the asymptotic variances of our
estimators with the plug-in principle and thus enable interval estimates of the ruin probability.

2. Main Results

The ruin probability Ψ(u) in (3) can be rewritten as

Ψ(u) =
λµ

c
− (1− λµ

c
)ϕ(u), (4)

where

ϕ(u) =
1

2π

∫ ∞

−∞

1− e−isu

is

λφ∗f (s)

1− λφ∗f (s)
ds, (5)

with φ∗f (s) =
φ f (s)−1

ics and φ f (s) =
∫ ∞

0 eisu f (u) du being the inverse Fourier transform of density f .
In the following we consider estimating the ruin probability when λ is known or unknown.

2.1. Estimation with Known Intensity λ

Suppose that a sample {X1, X2, ..., Xn} of the claim size are observed. When λ is known, a natural
estimation method for Ψ(u) is to use the plug-in device, based on (4) and (5). This requires us to
estimate the inverse Fourier transform φ f (·) of density f (·).

Note that φ f (s) =
∫ ∞

0 eisu dF(u). It follows that an empirical type estimator of is given by
φemp(s) =

∫ ∞
0 eisxdFn(s) = 1

n ∑n
j=1 eisXj . By (5), a plug-in estimator of ϕ(u) is

ϕ̃n(u) =
1

2π

∫ ∞

−∞

1− e−isu

is
λφ∗n(s)

1− λφ∗n(s)
ds, (6)

where φ∗n(s) =
φemp(s)−1

ics . It is easy to see that ϕ̃n(u) must be real, because the integrand is conjugate
symmetric. Since the integral in (6) is possibly infinite, following (Zhang et al. 2014) we estimate
Ψ(u) by

Ψ̂n(u) =
λµ̂n

c
− (1− λµ̂n

c
)ϕ̂n(u), u ≥ 0, (7)

where µ̂n = 1
n ∑n

j=1 Xj, ϕ̂n(u) = max{min(M, ϕ̃n(u)),−M}, and M is a large constant. Since the above

estimate does not involve the kernel density estimate f̂n(x), it is simpler and easy to calculate than that
of (Zhang et al. 2014). In particular, we do not need to select the bandwidth hn, and thus it is expected
that our estimator is more stable than Zhang et al.’s and You et al.’s.

In the following we illustrate the above estimation method is feasible through its asymptotic
distribution. To this end, we propose the following assumptions:

(A1) The density function f (x) satisfies that

(1) function f (x) is right-continuous at zero and continuously differentiable in (0, ∞), and f ′′(x)
exists almost everywhere. Further,

∫ ∞
0 | f

′(x)|dx < ∞,
∫ ∞

0 | f
′′(x)|dx < ∞, and

∫ ∞
0 ( f ′(x))2dx < ∞;

(2) E(X4) < ∞, and for some 0 < α < 1
2 , x1+α F̄(xα)→ 0 as x → ∞, where F̄(x) = 1− F(x).

(A2) There exists a constant ρ > 0 such that 1− λµc−1 ≥ ρ.

The above assumptions are wild and were used in (Zhang et al. 2014) and (You et al. 2020).
The following result demonstrates that Ψ̂n(u) is

√
n-consistent and asymptotically normal.
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Theorem 1. Suppose that Assumptions (A1)–(A2) hold, then

√
n{Ψ̂n(u)−Ψ(u)} D−→ N (0, S2), (8)

where S2 = [ λ
c {1 + ϕ(u)}]2σ2 + ( λ

µ − 1)2D2 + C0, with C0 = 1
π

λ2

c2 {1 + ϕ(u)}( λ
c µ −

1)
∫ ∞
−∞

(1−e−isu){−iφ′f (s)−µφ f (s)}
−s2{1−λφ∗f (s)}2 ds and D2 = λ2

4π2c2 E[
∫ ∞
−∞

1−e−isu

−s2
φ f (s)−eisXj

(1−λφ∗f (s))
2 ds]2.

Remark 1. Compared with Theorem 1 in (You et al. 2020), we find that the difference of asymptotic variances
between our estimator and their estimator is

n−1(
λ

µ
− 1)2(D2 − D∗2),

where D∗2 = λ2

c2

{
∑3

j=1 Qj(u) + 2 ∑6
j=4 Qj(u)

}
(for details, see page 11 of (You et al. 2020)). Hence, the

asymptotic variance of our estimator has a much simpler form, which allows us a plug-in estimate, but this is
contrary to that of (You et al. 2020) which is hard to estimate directly. It fact, they proposed ro estimate the
variance with resampling methods such as the bootstrap.

2.2. Estimation with Unknown Intensity λ

Theorem 1 is useful if λ is known. However, the true value of λ is not available in practice.
Suppose there are κn contiguous observational time intervals with same length of d. For j = 1, . . . , κn,
let {Njd} be the total number of claims from the starting time to the jth observational time interval
with length d > 0. Then an unbiased estimator of Poisson intensity parameter λ is

λ̂κn = Nκnd/(κnd), (9)

where N0d = 0. By (7), a natural estimator of Ψ(u) (see Remark 1 of (Zhang et al. 2014)) is

Ψ̂∗n(u) =
λ̂κn µ̂n

c
− (1− λ̂κn µ̂n

c
)ϕ̂∗n(u), u ≥ 0, (10)

where ϕ̂∗n(u) = (M∗ ∧ ϕ̃∗n(u)) ∨ (−M∗) for a large constant M∗, and

ϕ̃∗n(u) =
1

2π

∫ ∞

−∞

1− e−isu

is
λ̂κn φ∗n(s)

1− λ̂κn φ∗n(s)
ds. (11)

Additionally, we need the following assumption for establishing the asymptotic distribution
of Ψ̂∗n(u).

(A3) For integer m ≥ 2, E|X|m ≤ m!Hm−2σ2/2, where H is a positive constant.

Assumption (A3) is the classical Cramér condition for all moments of X. It was used in
(You et al. 2020). The following theorem indicates Ψ̂∗n(u) converges to the ruin probability at the
best parametric rate of

√
n.

Theorem 2. Suppose Assumptions (A1)–(A3) hold. If 0 ≤ λ∗ ≡ limn→∞ n/κn < ∞, then

√
n{Ψ̂∗n(u)−Ψ(u)} D−→ N (0, S∗2), (12)
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where S∗2 = S2 +
{

µ
c (1 + ϕ(u))− (1− λµ

c )a( f , λ)
}2

λλ∗
d and

a( f , λ) =
1

2π

∫ ∞

−∞

1− e−isu

is

φ∗f (s)

{1− λφ∗f (s)}2 ds.

Remark 2. Both Ψ̂n(u) and Ψ̂∗n(u) are
√

n-consistent, but the latter has larger variance, which is
understandable because estimating λ brings an additional variation.

Given an initial surplus u, Theorem 2 allows us to construct an 100(1− α)% confidence interval
for Ψ(u):

Ψ̂∗(u)± n−1/2z1−α/2Ŝ∗,

where z1−α/2 is the 100(1− α/2)th percentile of the standard normal distribution, and Ŝ∗ is a consistent
estimator of S∗, for example, from the plug-in device.

2.3. Computation on Ruin Probability

To obtain the estimate Ψ̂∗n(u) of ruin probability in (10), one needs to calculate ϕ̃∗n(u) in (11).

Let G∗n(s) =
λ̂κn φ∗n(s)

is{1−λ̂κn φ∗n(s)}
. Then

ϕ̃∗n(u) =
1

2π

∫ ∞

−∞
G∗n(s) ds− 1

2π

∫ ∞

−∞
e−isuG∗n(s) ds.

The above equation is well defined, since the integrals are finite. Let H∗n(u) =
1

2π

∫ ∞
−∞ e−isuG∗n(s) ds be the Fourier transform of G∗n(s). Then ϕ̃∗n(u) = H∗n(0) − H∗n(u). Therefore,

our major task is to calculate H∗n(u), which is easy to implement in standard software.

2.4. Proofs of Theorems

To facilitate the proofs, we first introduce some technical lemmas. Then we give the proofs
of theorems.

Lemma 1. If Assumption (A1) holds. Then, for any ε > 0, P(sups |
φ f (s)−φemp(s)

is | > ε) = o(n−1).

Proof of Lemma 1. By the inequality |eisx − 1| ≤ |sx|, we have

∣∣∣φ f − φemp(s)
is

∣∣∣ =
∣∣∣∫ ∞

0 (eisx − 1)dF(x)−
∫ ∞

0 (eisx − 1)dFn(x)
is

∣∣∣
=

∣∣∣∫ ∞
0

∫ x
0 eisydydF(x)−

∫ ∞
0

∫ x
0 eisydydFn(x)

is

∣∣∣
=

∣∣∣∫ ∞
0 (1− F(x))eisxdx−

∫ ∞
0 (1− Fn(x))eisxdx

is

∣∣∣.
Hence, for ε > 0, by Lemma 1 of (Zhang et al. 2014), we obtain that

P
(

sup
s

∣∣φ f − φemp(s)
is

∣∣ > ε
)
≤ P

(∫ ∞

0
|F(x)− Fn(x)|dx > ε

)
= o(n−1).

Lemma 2. Let An(s) = λ
c

φ f (s)−φemp(s)
is . If Assumptions (A1)–(A2) hold, then E

∫ ∞
−∞ |An(s)|2ds =

O(n−1) and E
∫ ∞
−∞ |An(s)|4ds = O(n−2).
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Proof of Lemma 2. Note that φemp(s) = 1
n ∑n

j=1 eisXj , it follows that

φ f (s)− φemp(s)
is

=
1
n

n

∑
j=1

φ f (s)− eisXj

is
.

Taking expectation, we obtain that E{φemp(s)− φ f (s)/(is)} = 0 and

Var{φemp(s)− φ f (s)/(is)} = n−1Var{
φ f (s)− eisXj

is
} =

φ2
f (s)− φ f (2s)

ns2 .

By Fubini’s theorem, we have

E
∫ ∞

−∞
|An(s)|2ds =

∫ ∞

−∞
E
∣∣∣λ

c
φ f (s)− φemp(s)

is

∣∣∣2 ds

= (
λ

c
)2 1

n

∫ ∞

−∞

φ2
f (s)− φ f (2s)

s2 ds

= O(n−1).

Again, using Fubini’s theorem, we establish that

E
∫ ∞

−∞
|An(s)|4ds = E

∫ ∞

−∞

∣∣∣λ
c

φ f (s)− φemp(s)
is

∣∣∣4 ds

=
∫ ∞

−∞

[
Var(

λ

c
φ f (s)− φemp(s)

is
)2 + (Var(

λ

c
φ f (s)− φemp(s)

is
))2

]
ds

=
∫ ∞

−∞
(

λ

c
)4 1

n2

[
Var(

φ f (s)− eisXj

is
)2 + (Var(

φ f (s)− eisXj

is
))2
]

ds.

By independence of the sample points, we have

E
∫ ∞

−∞
|An(s)|4ds =

∫ ∞

−∞
(

λ

c
)4 1

n2 E
[φ f (s)− eisXj

is

]4
ds

= (
λ

c
)4 1

n2

∫ ∞

−∞

6φ2
f (s)φ f (2s)− 4φ f (s)φ f (3s) + φ f (4s)− 3φ4

f (s)

s4 ds

= O(n−2).

Lemma 3. Suppose that Assumptions (A1)–(A2) hold. Then

(i) (Consistency) µ̂n − µ
P−→ 0, ϕ̂n(u)− ϕ(u) P−→ 0, and λ̂κn − λ

P−→ 0.

(ii) (Asymptotic normality)
√

n(µ̂n − µ)
D−→ N(0, σ2),

√
n(λ̂κn − λ)

D−→ N(0, λ
d ), and

√
n(ϕ̂n(u)−

ϕ(u)) D−→ N(0, D2).

Proof of Lemma 3. By the property of the Poisson process N and the size of claim X, it is easy to obtain

µ̂n − µ
P−→ 0, λ̂κn − λ

P−→ 0,
√

n(µ̂n − µ)
D−→ N(0, σ2), and

√
n(λ̂κn − λ)

D−→ N(0, λ
d ). In the following we

show that ϕ̂n(u)− ϕ(u) P−→ 0.
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First, combining (5) and (6) leads to

ϕ̃n(u)− ϕ(u) = − 1
2π

∫ ∞

−∞

1− e−isu

is
An(s)

(1− λφ∗f (s))
2 ds

+
1

2π

∫ ∞

−∞

1− e−isu

is
A2

n(s)
(1− λφ∗f (s) + An(s))(1− λφ∗f (s))

2 ds

≡ −In(u) + IIn(u). (13)

Let ε1 and ε2 be two small positive constants such that ϕ(u) + ε1 + ε2 < M. Define Vn = {|In(u)| <
ε1, |IIn(u)| < ε2} and its complementary set V̄n. Then

ϕ̂n − ϕ(u) = {ϕ̂n − ϕ(u)}IVn + {ϕ̂n − ϕ(u)}IV̄n

= {ϕ̃n − ϕ(u)}IVn + {ϕ̂n − ϕ(u)}IV̄n

=
4

∑
i=1

Hn,i(u), (14)

where Hn,1(u) = −In(u), Hn,2(u) = IIn(u)IVn , Hn,3 = In(u)IV̄n
and Hn,4 = (ϕ̂n(u) − ϕ(u))IV̄n

.
Using the inequality |φ f − 1| ≤ |iµs|, Hölder’s inequality and Assumption (A2), we obtain that

|In(u)| ≤
1

2π

∫ ∞

−∞
|1− e−isu

is
| |An(s)|
|1− λφ∗f (s)|2

ds

≤ 1
2ρ2π

∫ ∞

−∞
|1− e−isu

is
||An(s)|ds

≤ 1
2ρ2π

(
∫ ∞

−∞
|1− e−isu

is
|

4
3 ds)

3
4 (
∫ ∞

−∞
|An(s)|4ds)

1
4

≤ C(
∫ ∞

−∞
|An(s)|4ds)

1
4 .

By Markov’s inequality and Lemma 2, we have

P(|In(u)| ≥ ε1) ≤
E|In(u)|4

ε4
1

≤ C · E
∫ ∞

−∞
|An(s)|4ds = O(

1
n2 ). (15)

For 0 < δ < ρ, let Bn,δ = {sups |An(s)| ≤ δ}, and let Bn,δ be its complementary set. On the set Bn,δ,
we have

|IIn(u)| ≤
1

2π

∫ ∞

−∞
|1− e−isu

is
| A2

n(s)
(1− λφ∗f (s) + An(s))(1− λφ∗f (s))

2 ds

≤ C
∫ ∞

−∞

∣∣∣1− e−isu

is

∣∣∣|An(s)|2ds. (16)

Then, the Cauchy-Schwarz inequality, |IIn(u)| ≤ C
∫ ∞
−∞ |An(s)|2ds and |IIn(u)| ≤ C(

∫ ∞
−∞ |An(s)|4ds)

1
2 .

Therefore,

E|Hn,2| = E[|Hn,2|I(Vn ∩ Bn,δ)] + E[|Hn,2|I(Vn ∩ B̄n,δ)]

≤ C · E
∫ ∞

−∞
|An(s)|2ds + ε2P(B̄n,δ) = O(n−1). (17)
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In order to get the bounds of Hn,3 and Hn,4, we need to study probability P(V̄n). By Markov’s
inequality, we have

P({|IIn(u)| ≥ ε2} ∩ Bn,δ) ≤
E[|IIn(u)|2 I(Bn,δ)]

ε2
2

≤ C · E
∫ ∞

−∞
|An(s)|4ds = O(

1
n2 ),

which, combined with Lemma 1, leads to

P(|IIn(u)| ≥ ε2) = P({|IIn(u)| ≥ ε2} ∩ Bn,δ) + P({|IIn(u)| ≥ ε2} ∩ B̄n,δ)

≤ P({|IIn(u)| ≥ ε2} ∩ Bn,δ) + P(B̄n,δ)

= O(
1
n2 ) + o(

1
n
). (18)

This, combined with (15) and (18), gives us that

P(V̄n) ≤ P(|In(u)| ≥ ε1) + P(|IIn(u)| ≥ ε2)

≤ P(|In(u)| ≥ ε1) + P({|IIn(u)| ≥ ε2} ∩ Bn,δ) + P(B̄n,δ)

= o(
1
n
) + O(

1
n2 ). (19)

Hence, applying Hölder’s inequality and Lemma 2, we obtain that

E|Hn,3(u)| ≤ E[|In(u)|IV̄n
|]

= (E|In(u)|4)
1
4 P(V̄n)

3
4

= o(
1
n
) + O(

1
n2 ). (20)

By (19), we get

E|Hn,4(u)| ≤ (M + ϕ(u))P(V̄n) = o(
1
n
) + O(

1
n2 ). (21)

It follows from (14), (15), (17), (20) and (21) and Markov’s inequality that ϕ̂n(u)− ϕ(u) P−→ 0.

Next, we show that
√

n(ϕ̂n(u)− ϕ(u)) D−→ N(0, D2). By (14),
√

n{ϕ̂n(u)− ϕ(u)} =
√

n ∑4
i=1 Hn,i.

It follows from Markov’s inequality that for any ε > 0,

P(|
√

n
4

∑
i=2

Hn,i| > ε) ≤
√

n ∑4
i=2 E|Hn,i|

ε
,

which together with (15), (17), (20) and (21) implies that
√

n ∑4
i=2 Hn,i

P−→ 0. Therefore,

√
n{ϕ̂n(u)− ϕ(u)} =

√
nHn,1 + oP(1) (22)

= −
√

n
1

2π

∫ ∞

−∞

1− e−isu

is
An(s)

(1− λφ∗f (s))
2 ds + oP(1)

= − λ

2c
√

nπ

n

∑
j=1

∫ ∞

−∞

1− e−isu

−s2

φ f (s)− eisXj

(1− λφ∗f (s))
2 ds + oP(1).
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Applying Fubini’s theorem, we establish that

E[
√

nHn,1] = E
[
− 1

2
√

nπ

λ

c

n

∑
j=1

∫ ∞

−∞

1− e−isu

−s2

φ f (s)− eisXj

(1− λφ∗f (s))
2 ds

]

= − 1
2
√

nπ

λ

c

n

∑
j=1

∫ ∞

−∞

1− e−isu

−s2

E[φ f (s)− eisXj ]

(1− λφ∗f (s))
2 ds

= 0

and

Var(
√

nHn,1) = (
1

2
√

nπ

λ

c
)2

n

∑
j=1

Var
(∫ ∞

−∞

1− e−isu

−s2

φ f (s)− eisXj

(1− λφ∗f (s))
2 ds

)

=
λ2

4π2c2 Var
(∫ ∞

−∞

1− e−isu

−s2

φ f (s)− eisXj

(1− λφ∗f (s))
2 ds

)
=

λ2

4π2c2 E
[∫ ∞

−∞

1− e−isu

−s
φ f (s)− eisXj

s(1− λφ∗f (s))
2 ds

]2

≤ λ2

4π2c2 E
{∫ ∞

−∞

(1− e−isu

−s

)2
ds
∫ ∞

−∞

[ φ f (s)− eisXj

s(1− λφ∗f (s))
2

]2
ds
}

,

where the last inequality is from the Hölder inequality. Therefore,

Var(
√

nHn,1) ≤
λ2

4π2c2

∫ ∞

−∞

(1− e−isu

−s

)2
ds
∫ ∞

−∞

1
s2(1− λφ∗f (s))

4 E[φ f (s)− eisXj ]2ds

=
λ2

4π2c2

∫ ∞

−∞

(1− e−isu)2

s2 ds
∫ ∞

−∞

φ f (2s)− φ2
f (s)

s2(1− λφ∗f (s))
4 ds.

Using the inequality |φ f (s)− 1| ≤ |iµs| and Assumption (A2), we obtain that

(1− λφ∗f (s))
4 ≥ (1− |λφ∗f (s)|)

4 = (1− |λ
c

φ f (s)− 1
is

|)4 ≥ (1− µλ

c
)4 ≥ ρ4.

Then

Var(
√

nHn,1) ≤
λ2

4ρ4π2c2

∫ ∞

−∞

(1− e−isu)2

s2 ds
∫ ∞

−∞

φ f (2s)− φ2
f (s)

s2 ds

< ∞.

Therefore, by the CLT and Slutsky’s theorem, we obtain that

√
n(ϕ̂n(u)− ϕ(u))→ N(0, D2),

where D2 = λ2

4π2c2 E[
∫ ∞
−∞

1−e−isu

−s2
φ f (s)−eisXj

(1−λφ∗f (s))
2 ds]2.

Lemma 4. Let ξn1 = (λ̂κn − λ)a( f , λ), ξn2 = n−1 ∑n
j=1 Zj and ξn = ξn1 + ξn2, where

Zj = −
λ

2πc

∫ ∞

−∞

1− e−isu

s2[1− λφ∗f (s)]
2 [e

isXj − φ f (s)] ds.
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Suppose that assumptions (A1)–(A3) hold. Then P{|ξn| > C + op(n−1/2)} = o(n−1/2), where C is any
given constant.

Proof of Lemma 4. The proof is similar to Lemma A.2 in (You et al. 2020).

Proof of Theorem 1. Our argument for the proof is to first establish the Bahardur representation of our
estimator, based on its explicit formula in (7). Then the result of theorem follows from the Bahardur’s
representation. By (4) and (7), we have

√
n
{

Ψ̂n(u)−Ψ(u)
}

=
√

n
[

λ

c
{1 + ϕ(u)}(µ̂n − µ) + (

λ

c
µ̂n − 1){ϕ̂n(u)− ϕ(u)}

]
=

λ

c
{1 + ϕ(u)}

√
n(µ̂n − µ) + (

λ

c
µ− 1)

√
n{ϕ̂n(u)− ϕ(u)}

+
λ

c
√

n(µ̂n − µ){ϕ̂n(u)− ϕ(u)}. (23)

By Lemma 3 and Slutsky’s theorem, the last term of (23) converges to zero in probability as
n→ ∞. Thus,

√
n{Ψ̂n(u)−Ψ(u)} =

λ

c
{1 + ϕ(u)}

√
n(µ̂n − µ)

+(
λ

c
µ− 1)

√
n{ϕ̂n(u)− ϕ(u)}+ op(1). (24)

This, combined with (22), leads to the following Bahardur representation:

√
n{Ψ̂n(u)−Ψ(u)} =

λ

c
{1 + ϕ(u)}

√
n(µ̂n − µ) + (

λ

c
µ− 1)

√
nHn,1 + op(1)

=
1√
n

n

∑
j=1

λ

c

[
(1 + ϕ(u))(Xj − µ)

+(
λ

c
µ− 1)

1
2π

∫ ∞

−∞

(1− e−isu)(eisXj − φ f (s))
−s2(1− λφ∗f (s))

2 ds
]
+ op(1)

=
1√
n

n

∑
j=1

Bj + op(1), (25)

where Bj = λ
c

[
(1 + ϕ(u))(Xj − µ) + ( λ

c µ− 1) 1
2π

∫ ∞
−∞

(1−e−isu)(eisXj−φ f (s))
−s2(1−λφ∗f (s))

2 ds
]

. Note that E[B1] =

E[ 1
n ∑n

j=1 Bj] = ( λ
c µ− 1)E[Hn,1] = 0 and

Var(B1) =
λ2

c2 Var
(
{1 + ϕ(u)}(Xj − µ)

)
+

λ2

c2 Var
(
(

λ

c
µ− 1)

1
2π

∫ ∞

−∞

(1− e−isu)(eisXj − φ f (s))
−s2(1− λφ∗f (s))

2 ds
)

+2
λ2

c2 Cov
(
{1 + ϕ(u)}(Xj − µ), (

λ

c
µ− 1)

1
2π

∫ ∞

−∞

(1− e−isu)(eisXj − φ f (s))
−s2(1− λφ∗f (s))

2 ds
)

= (
λ

c
(1 + ϕ(u)))2σ2 + n(

λ

c
µ− 1)2Var

(
− 1

2π

∫ ∞

−∞

1− e−isu

is
An(s)

(1− λφ∗f (s))
2 ds
)

+
1
π

λ2

c2 (1 + ϕ(u))(
λ

c
µ− 1)E

[∫ ∞

−∞

(Xj − µ)(1− e−isu)(eisXj − φ f (s))
−s2(1− λφ∗f (s))

2 ds
]
.
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Then, by simple algebra, we arrive at

Var(B1) =
[λ

c
{1 + ϕ(u)}

]2
σ2 + (

λ

c
µ− 1)2Var(

√
nHn,1)

+
1
π

λ2

c2 {1 + ϕ(u)}(λ

c
µ− 1)

∫ ∞

−∞

(1− e−isu)(−iφ′f (s)− µφ f (s))

−s2(1− λφ∗f (s))
2 ds.

=
[λ

c
{1 + ϕ(u)}

]2
σ2 + (

λ

c
µ− 1)2D2

+
1
π

λ2

c2 {1 + ϕ(u)}(λ

c
µ− 1)

∫ ∞

−∞

(1− e−isu)(−iφ′f (s)− µφ f (s))

−s2(1− λφ∗f (s))
2 ds = S2.

It follow from the central limit theorem that 1√
n ∑n

j=1 Bj → N(0, S2). Applying Slutsky’s theorem

and (25), we obtain that
√

n{Ψ̂n(u)−Ψ(u)} D−→ N (0, S2), as n→ ∞.

Proof of Theorem 2. Our idea of the proof is to apply Lemma 4, and to follow the argument for the
proof of Theorem 2.2 in (You et al. 2020). By (4) and (10), we have

Ψ̂∗n(u)−Ψ(u) =
{ λ̂κn

c
(µ̂n − µ) +

µ

c
(λ̂κn − λ)

}{
1 + ϕ(u)

}
− (1− λ̂κn µ̂n

c
){ϕ̂∗n(u)− ϕ(u)},

where ϕ̂∗n(u) = (M∗ ∧ ϕ̃∗n(u)) ∨ (−M∗). To establish the asymptotic distribution of Ψ̂∗n(u)−Ψ(u), we
need to study ϕ̃∗n(u). By (6) and (11),we have

ϕ̃∗n(u)− ϕ̃n(u) = (λ̂κn − λ)
1

2π

∫ ∞

−∞

1− e−isu

is
φ∗n(s)

(1− λφ∗n(s))(1− λ̂κn φ∗n(s))
ds.

Applying Lemmas 1 and 3, we obtain that sups |φ∗n(s)− φ∗f (s)| = op(1) and

1
2π

∫ ∞

−∞

1− e−isu

is
φ∗n(s)

(1− λφ∗n(s))(1− λ̂κn φ∗n(s))
ds = a( f , λ) + op(1),

where a( f , λ) = 1
2π

∫ ∞
−∞

1−e−isu

is
φ∗f (s)

{1−λφ∗f (s)}2 ds. Therefore,

ϕ̃∗n(u)− ϕ̃n(u) = (λ̂κn − λ)a( f , λ) + op(n−1/2). (26)

Combining (13), (16) and (26) and Lemma 2 leads to

ϕ̃∗n(u)− ϕ(u) = (λ̂κn − λ)a( f , λ)− In(u) + rn,

where rn = op(n−1/2). By (15), we see that In(u) = Op(n−2). Hence, ϕ̃∗n(u)− ϕ(u) = op(1). Let ξn =

(λ̂κn − λ)a( f , λ)− In(u). Then

ξn = (λ̂κn − λ)a( f , λ)− λ

2πc
n−1

n

∑
j=1

∫ ∞

−∞

1− e−isu

s2[1− λφ∗f (s)]
2 [e

isXj − φ f (s)] ds

≡ ξn1 + ξn2,

ϕ̃∗n(u) = ξn + ϕ(u) + rn, and P(|ϕ̃∗n(u)| > M∗) ≤ P{|ξn| > (M∗ − |ϕ(u)| − |rn|}. Then, by Lemma 4

and the proof of Theorem 2.2 in (You et al. 2020), it is easy to obtain
√

n(Ψ̂∗n(u) − Ψ(u)) D−→
N (0, S∗2).
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