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Abstract: We present an empirical study of the Aumann-Serrano performance index for multi-period
gambles when the underlying stochastic process is assumed to be a normal mixture process with
time-varying volatility. We compare the Aumann-Serrano performance index for multi-period
gambles with that for one-period gambles as well as the Sharpe ratio. Our empirical study is obtained
using a selection of U.S. stock data and shows evaluation of a selection of stocks becomes more
distinct in multi-period gambles than in one-period gambles in the sense that a favorable evaluation
score becomes even better in multi-period gambles than in one-period gambles while an unfavorable
evaluation score becomes even worse in multi-period gambles than in one-period gambles.
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1. Introduction

Providing appropriate performance measures is quite important in finance since the evaluation
of assets, projects, cash flows, etc. is essential in finance via appropriate performance measures.
Recently, Aumann and Serrano (2008) proposed the economic index of riskiness (hereafter the
AS index) based on an axiomatic approach. While the AS index is an index of risk, it has been
used in performance measures. A performance measure based on the AS index was proposed by
Kadan and Liu (2014), which is obtained directly from the AS index, i.e., the reciprocal of the AS index.
We use the performance measure based on the AS index proposed by Kadan and Liu (2014) to evaluate
financial assets.

In this study, we intend to study multi-period gambles which stand for gambles over time
where gambles stand for random variables with uncertain outcomes representing asset returns,
projects, cash flows, etc. There exist many occasions where it is more appropriate to treat gambles
as multi-period gambles rather than one-period gambles. For example, when we invest in financial
assets, we are often concerned with long-run profits rather than short-run profits. If asset returns
are observed daily and we are interested in profits five years later, then it may be more appropriate
to treat daily observations as realizations of multi-period gambles rather than those of one-period
gambles since we can take into account dynamic properties of returns more naturally in multi-period
gambles compared to one-period gambles where returns in the future are properly discounted in
multi-period gambles but not in one-period gambles. To the best of our knowledge, empirical studies
of multi-period gambles seem to be rare1 although providing a theoretical framework of multi-period
gambles may not be rare.

We use a setup considered by Kadan and Liu (2014) to deal with multi-period gambles based
on the axiomatic approach of Aumann and Serrano (2008). In other words, we consider a T-period
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gamble g = (g1, g2, · · · , gT) whose AS performance index PAS(g) is given by the unique solution of
the implicit equation

T

∑
t=1

ρt−1E[exp(−PAS(g) · gt)] =
T

∑
t=1

ρt−1,

where ρ ∈ (0, 1) denotes a discount factor. The above equation is equal to Equation (8) of
Kadan and Liu (2014). To the best of our knowledge no studies of the above AS performance index
PAS(g) for multi-period gambles were conducted since it was proposed by Kadan and Liu (2014).
We shall make an empirical study of the above AS performance index using a selection of U.S. stock
market data. We consider as multi-period gambles a stochastic process given by a normal mixture
process with time-varying volatility. Please note that one must assume some models of the dynamic
process of g since the implicit equation given above involves expectation of gt at each time t in order
to obtain the AS performance index PAS(g) for multi-period gambles. We remark that a normal
mixture process is a process with its distribution each time being independently and identically
distributed (i.i.d.). A normal mixture process is a simple stochastic process but is known to capture
well characteristics of distributions often observed in financial data such as skewed and heavy tail
distributions as well as symmetric and multi-modal distributions.

We incorporate time-varying volatility into a normal mixture process in this study. Time-varying
volatility is another stylized feature often observed in financial data. We use a family of generalized
autoregressive conditional heteroskedastic (GARCH) models proposed by Bollerslev (1986), which is a
generalization of the autoregressive conditional heteroskedastic (ARCH) model originally proposed
by Engle (1982), as a time-varying volatility model. By combining a normal mixture process with
time-varying volatility, we can create state-dependent volatility models which allow different volatility
responses to stock price shocks in stable and stressful market conditions, which is not possible
under single-state GARCH models allowing only one mechanism of volatility to market shocks.
State-dependent volatility models are more flexible to capture characteristics of financial data than
single-state volatility models. When we use a family of GARCH models for a selection of U.S. stock
market data, we try to take into account the so-called leverage effect of negative returns with more
influence on the underlying volatility than positive returns. When we evaluate multi-period gambles,
we should capture well the underlying process of multi-period gambles to be used in the performance
measure. Otherwise we cannot obtain the relevant evaluation. Therefore, modeling appropriately
the underlying stochastic process is crucial to conduct evaluation based on the performance measure
for multi-period gambles. Since providing proper evaluation for financial assets, projects, cash flows,
etc. is essential to investors, financial managers, and regulators, our approach should be very useful
to them.

We compare performance of a selection of U.S. stocks when they are evaluated as realizations
of multi-period gambles with that when they are evaluated as realizations of one-period gambles.
Performance of one-period gambles is computed by the AS performance index for one-period gambles,
i.e., the solution PAS(g) of the implicit equation

E[exp(−PAS(g)g)] = 1

for one-period gambles g, assuming the underlying stochastic process of gambles g to be a normal
mixture process with time-invariant volatility, a special case of the normal mixture process with
time-varying volatility of GARCH families, i.e., the assumption of the stochastic process of multi-period
gambles in this study. The difference of the assumption of the underlying stochastic process of
multi-period gambles from that of one-period gambles is whether the volatility process is time-varying
or time-invariant. Therefore, we explicitly model time-varying volatility as GARCH families in
evaluation of multi-period gambles with late return observations properly discounted. On the other
hand, we assume volatility to be time-invariant in evaluation of one-period gambles with late return
observations not discounted. We will examine the consequences of the difference in the model of
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multi-period gambles from that of one-period gambles in this study. The data we use in this study
covered the global financial crisis where tremendous volatility clustering was observed in stock
markets. Therefore, we anticipate in our sample period the AS performance index for multi-period
gambles is more relevant than that for one-period gambles since the former takes into account volatility
clustering but the latter does not. In addition, our anticipation is verified by our empirical results.
Our results show when stocks are more poorly evaluated by the AS performance index for one-period
gambles than the Sharpe ratio, then they are evaluated even more poorly in multi-period gambles
than in one-period gambles. On the other hand, when stocks are more favorably evaluated by the
AS performance index for one-period gambles than the Sharpe ratio, then they are evaluated more
favorably in multi-period gambles than in one-period gambles. In other words, evaluation of a
selection of stocks becomes more distinct in multi-period gambles than in one-period gambles in the
sense that a favorable evaluation score becomes even better in multi-period gambles than in one-period
gambles while an unfavorable evaluation score becomes even worse in multi-period gambles than in
one-period gambles.

The rest of the paper is organized as follows. In Section 2, we present the literature review related
to our method. In Section 3, we present our setup and the assumptions of the underlying stochastic
process. In Section 4, we show our empirical study using a selection of U.S. stock data. In Section 5,
we present concluding comments.

2. Literature Review

In this section, we provide the literature review related to our study. The AS index has received
a lot of attention in finance (see, e.g., Foster and Hart 2009; Hart 2011; Homm and Pigorsch 2012a;
Kadan and Liu 2014; Sculze 2014; Niu et al. 2018; Hodoshima and Miyahara 2020). Another performance
measure based on the AS index in the literature is the economic performance measure proposed by
Homm and Pigorsch (2012a) for one-period gambles, which is a modification of the Sharpe ratio by
replacing standard deviation by the AS index. Hodoshima (2020) compared the economic performance
measure proposed by Homm and Pigorsch (2012a) and the AS performance index for one-period
gambles proposed by Kadan and Liu (2014) and showed the latter is superior to the former.

There also exist plenty of other performance measures. See, e.g., Cogneau and Hubner (2009a, 2009b),
and Cherny and Madan (2009). While these performance measures were compared by many studies,
these preceding studies were mainly analyzed as static performance measures, i.e., the underlying
gambles are assumed to be one-period gambles. Also many of these performance measures
are proposed in ad hoc ways. On the other hand, the performance measure based on the AS
index is based on an axiomatic approach. Although performance measures based on the AS
index have been used to evaluate performance of various funds, portfolios, individual assets, etc.
(see, e.g., Homm and Pigorsch 2012a; Kadan and Liu 2014; Hodoshima 2019; Hodoshima and Otsuki 2019),
they are confined to only one-period gambles. Therefore, our use of the AS performance index for
multi-period gambles in empirical studies is the first trial in the literature.

A normal mixture process or a normal mixture distribution has been studied in the
statistics and econometrics literature for several decades. See, e.g., Everitt and Hand (1981);
McLachlan and Peel (2000); and Titterington et al. (1985). There are also many applications of the
normal mixture process in finance (cf., e.g., Kon 1984; Alexander 2004; Hodoshima 2019). To capture the
leverage effect, we employ the asymmetric GARCH model (hereafter AGARCH model) considered by
Engle (1990) and Engle and Ng (1993) and the model proposed by Glosten et al. (1993) (hereafter GJR
model). Therefore, we use a normal mixture process with time-varying GARCH volatility taking into
account the leverage effect as the underlying stochastic process for multi-period gambles. Models we
consider in this paper are similar to those treated in Alexander and Lazar (2009). However, we use
an estimation method different from Alexander and Lazar (2009) who used the maximum likelihood
estimator (MLE). In other words, we use an empirical characteristic function approach due to
Xu and Wirjanto (2010) as an estimation method for our models. In particular, we estimate a normal
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mixture process with components up to three, which is different from the previous empirical study of
Alexander and Lazar (2009), where components in the normal mixture process were restricted to two.
It was stated in Alexander and Lazar (2009) that in estimating a normal mixture process with three
components by the MLE, convergence was harder to attain. On the other hand, we do not encounter
such problems in our empirical study by an empirical characteristic function approach.

3. The Model for Multi-Period Gambles

In this section, we present the theoretical framework for multi-period gambles and the normal
mixture process with time-varying GARCH volatility as the process of multi-period gambles.

As shown by Kadan and Liu (2014), our theoretical framework for multi-period gambles is given
as follows. We consider a T-period gamble g = (g1, g2, · · · , gT) where each gt denotes a gamble at
time t(t = 1, 2, · · · , T). We consider an investor with a time-separable utility function U : RT 7−→ R
with the form given by

U(w1, w2, · · · , wT) =
T

∑
t=1

ρt−1u(wt) (1)

where u denotes a utility function, ρ ∈ (0, 1) is a discount factor, and (w1, w2, · · · , wT) denotes the
level of wealth from 1 to T. Notice domain of the level of wealth is not, unlike Kadan and Liu (2014),
restricted to positive region since the AS performance index can be defined in positive region as well
as negative region (cf. Hodoshima and Miyahara 2020). First we present two definitions to provide
ordering of one-period gambles.

Definition 1 (Definition 2 of Kadan and Liu (2014)). A gamble g is wealth-uniformly rejected by an investor
with utility function u, if u rejects g at all initial wealth levels w0.

Definition 2 (Definition 3 of Kadan and Liu (2014)). A gamble g wealth-uniformly dominates a gamble g′

if whenever g is wealth-uniformly rejected by a utility function u, g′ is also wealth-uniformly rejected by u.

Then, the following proposition provides a property of the AS performance index for
one-period gambles.

Proposition 1 (Proposition 1 of Kadan and Liu (2014)). Wealth-uniform dominance induces a complete
order on the set G of one-period gambles. This order can be represented by a performance index PAS(g) assigned
to any gamble g ∈ G, which is given by the unique solution to the implicit equation

E[exp(−PAS(g)g)] = 1. (2)

That is, for any two gambles g and g′, g wealth-uniformly dominates g′ if and only if PAS(g) ≥ PAS(g′).

The property of the above proposition is extended to multi-period gambles as follows.

Proposition 2 (Proposition 3 of Kadan and Liu (2014)). Wealth-uniform dominance induces a complete
order on GT . This order can be represented by a performance index PAS(g) assigned to any T-period gamble
g = (g1, g2, · · · , gT) ∈ GT , which is given by the unique solution to the implicit equation

T

∑
t=1

ρt−1E[exp(−PAS(g) · gt)] =
T

∑
t=1

ρt−1. (3)

That is, for any two gambles g and g′, g wealth-uniformly dominates g′ if and only if PAS(g) ≥ PAS(g′).

There have been no empirical studies of multi-period gambles yet so that we do not know what
kind of consequences the concept of multi-period gambles entails. In this study, we use a selection of
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U.S. stocks as examples of multi-period gambles to compute the AS performance index given by the
solution of the implicit Equation (3). We also use the same data as examples of one-period gambles
to compare the AS performance index, given by the solution of the implicit Equation (2), with the
AS performance index for multi-period gambles, given by the solution of the implicit Equation (3).
Furthermore, we compare the two different AS performance indexes with the Sharpe ratio computed
from data.

To derive the AS performance index for multi-period gambles, we employ several parametric
models under the maintained assumption that the underlying stochastic process of multi-period
gambles follows a normal mixture process with time-varying volatility of GARCH families. We follow
Alexander and Lazar (2009); Haas et al. (2004); and Xu and Wirjanto (2010) to assume that the return
X t of an asset is given by

X t = εt (4)

where εt follows a mixture of K normal distributions with a time-varying volatility process

εt|It−1 ∼ πk N(µk, σ2
k,t) (5)

for t = 1, · · · , T and k = 1, · · · , K, where N(µk, σ2
k,t) denotes normal distribution with mean µk and

variance σ2
k,t, It−1 is the information set up to time t− 1, 0 ≤ πk ≤ 1, and ∑K

k=1 πk = 1. We assume that
the conditional variance of the k-th component follows three possible processes;

(1) GARCH(1,1) process
σ2

k,t = ωk + αkε2
t−1 + βkσ2

k,t−1 (6)

(2) Asymmetric GARCH(1,1) (AGARCH(1,1)) process

σ2
k,t = ωk + αk(εt−1 − λk)

2 + βkσ2
k,t−1 (7)

(3) GJR(1,1) process (the model based on Glosten et al. (1993))

σ2
k,t = ωk + αkε2

t−1 + λkd−t−1ε2
t−1 + βkσ2

k,t−1 (8)

where d−t = 1 if εt < 0 and 0 otherwise, component conditional variances depend on the previous
innovation εt−1 as well as their own previous conditional variances.

We make component conditional variances not dependent on the previous conditional variances
of other components. Then, the conditional mean, variance, skewness, and kurtosis of Xt given the
information set up to time t− 1 are given respectively by

µ =
K

∑
k=1

πkµk

σ2
t =

K

∑
k=1

πk(σ
2
k,t + µ2

k)− µ2

τt =
1
σ3

t

K

∑
k=1

πk(µk − µ)
[
3σ2

k,t + (µk − µ)2
]

(9)

κt =
1
σ4

t

K

∑
k=1

πk

[
3σ4

k,t + 6(µk − µ)2σ2
k,t + (µk − µ)4

]
.

When X t follows the above normal mixture process with time-varying volatility of GARCH
families, the following equality holds for E[exp(−PAS(g) · gt)] in the implicit Equation (3) of the AS
performance index:

E[exp(−PAS(g) · gt)] =
K

∑
k=1

πk exp(−µkPAS(g) + σ2
k,tP

AS(g)2/2) (10)



J. Risk Financial Manag. 2020, 13, 288 6 of 18

since the moment-generating function (MGF) E[exp(sY)] of a random variable Y is given by

exp(µs + σ2s2/2) (11)

when Y follows normal distribution N(µ, σ2). Notice E[exp(−PAS(g) · gt)] is, besides the minus sign,
nothing but the MGF of gt as a function of PAS(g).

When a multi-period gamble g = (g1, g2, · · · , gT) follows the normal mixture process with the
above GARCH families, the AS performance index for the gamble g = (g1, g2, · · · , gT) is given by the
unique solution PAS(g) to the implicit equation

T

∑
t=1

ρt−1
K

∑
k=1

πk exp(−µkPAS(g) + σ2
k,tP

AS(g)2/2) =
T

∑
t=1

ρt−1. (12)

where ρ ∈ (0, 1) is a discount factor.
In this study, we seek to obtain the AS performance index for multi-period gambles empirically.

Providing a sufficient condition for existence of the AS performance index for multi-period gambles as
in that for one-period gambles given by Aumann and Serrano (2008); Homm and Pigorsch (2012b);
and Sculze (2014) is beyond the scope of this study.

To obtain the AS performance index for multi-period gambles, we first estimate the parametric
models for the underlying stochastic model of the normal mixture process with time-varying volatility
of GARCH families. To estimate the parametric models, we use an empirical characteristic function
(ECF) approach of Xu and Wirjanto (2010) which has several advantages as a method of estimating
the parametric models: a closed-form objective distance function is available, the estimator has
strong consistency and asymptotic normality, and the characteristic function is always uniformly
bounded, unlike the likelihood function which is not always bounded over its parameter space
(cf. Xu and Wirjanto 2010).

We employ the continuous empirical characteristic function (CECF) approach by
Xu and Wirjanto (2010) to estimate the AS performance index when the underlying stochastic
process is given by the normal mixture process with time-varying volatility of GARCH families.
The CF associated with Equations (4) and (5) is defined by

Ct(r, θ) = E[eirX t ] =
K

∑
k=1

πk exp
(

iµkr− 1
2

σ2
k,tr

2
)

(13)

where i =
√
−1 and θ denotes the set of parameters in the model.

The ECF of the above equation is given by

Ct(r, X t) = exp(irX t). (14)

Then we consider the following distance measure given by

Dt(θ; X t) =
∫
| Ct(r, X t)− Ct(r, θ) |2 exp(−br2)dr. (15)

We have the following result for the closed-form expression of the above distance function
Dt(θ; X t).
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Proposition 3 (Proposition 1 of Xu and Wirjanto (2010)). If the return X t is generated from Equations (4)
and (5) and the distance measure under the CECF is given by Equation (15), then the closed-form-expression for
the distance measure Dt(θ; X t) is given by

Dt(θ; X t) =

√
π

b
+

K

∑
k=1

π2
k

√
π

b + σ2
k,t

−2
K

∑
k=1

πk

√
π

1
2 σ2

k,t + b
exp

(
− (X t − µk)

2

4b + 2σ2
k,t

)
+2 ∑

k 6=h
πkπh

√
π

b + 1
2 (σ

2
k,t + σ2

h,t)

× exp(− (µk − µh)
2

4b + 2(σ2
k,t + σ2

h,t)
). (16)

We remark the conditional variance σ2
k,t of the k-th component in the closed-form-expression

given above can be any of the three possible processes of GARCH families given above. In other
words, the closed-form-expression (16), originally for the standard GARCH models, continues to hold
for other forms of GARCH families such as AGARCH and GJR models. We employ b = 1 when we
implement estimation by minimizing the closed-form expression as in Xu and Wirjanto (2010).

The CECF estimation of the model is to minimize D(θ) = ∑T
t=1 Dt(θ; X t) with respect to the set of

unknown parameters in the model. The following result holds for the asymptotic normality result.

Proposition 4. √
T(θ̂ − θ) =⇒ N(0, Λ−1ΩΛ−1) (17)

where θ̂ denotes the estimator by the CECF approach, =⇒ denotes convergence in distribution, Λ = E
[

∂2D(θ)
∂θ∂θ′

]
,

and Ω = E
[

∂D(θ)
∂θ

∂D(θ)
∂θ′

]
.

See Heathcote (1977) for the proof of the above proposition.

4. The Empirical Estimation Results

In this section, we estimate the AS performance index for multi-period gambles by the CECF
approach described in the previous section when the underlying stochastic process is assumed to be
the normal mixture process with time-varying volatility of GARCH families. We employ a selection of
U.S. stock return data to estimate the AS performance index. We estimate the AS performance index
for multi-period gambles as well as for one-period gambles and compare the two AS performance
indexes to find out the consequences of the assumption for multi-period gambles. The AS performance
index for one-period gambles is obtained as a parametric MLE assuming the underlying stochastic
process follows the normal mixture process with time-invariant volatility, which is a special case of the
normal mixture process with time-varying volatility of GARCH families, i.e., the assumption of the
underlying stochastic process for the AS performance index for multi-period gambles. We use the two
market indexes of the Dow Jones Industrial Average (DOW) and Nasdaq Composite Index (NASDAQ)
and individual stocks of Johnson and Johnson (JNJ), Amazon, and Microsoft as a selection of U.S.
stocks. We employ daily return data of these stocks from January 2, 2008, till April 28, 2017. We show
the Sharpe ratio for these data in addition to the AS performance index for multi-period gambles as
well as for one-period gambles. The Sharpe ratio is computed directly from data. The risk-free rate is
obtained from the Treasury bill rate data, downloaded from Ken French’s homepage.

We first provide summary statistics for the stock return data in Table 1. Summary statistics are
mean, standard deviation (s.d.), skewness, and kurtosis. Mean ranges from 0.027 in DOW to 0.129 in
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Amazon. Standard deviation ranges from 1.054 in Johnson & Johnson to 2.485 in Amazon. Therefore,
Amazon is a stock with the highest mean and the highest risk. All the stocks are positively skewed
with the exception of NASDAQ. All the stocks have heavy tails compared to the normal distribution.

Table 1. Summary Statistics of the Stock Returns. Table 1 presents summary statistics of the stock
return data we study in this paper, i.e., mean, standard deviation (s.d.), skewness, and kurtosis.

Name Mean s.d. Skewness Kurtosis

DOW 0.027 1.221 0.157 13.836
NASDAQ 0.045 1.407 −0.071 10.451

JNJ 0.044 1.054 0.690 16.582
Amazon 0.129 2.485 0.977 14.435
Microsoft 0.044 1.793 0.467 13.784

JNJ stands for Johnson & Johnson.

We follow Engle and Ng (1993) to test serial correlation in levels and squares of stock return data
and to examine if the value of εt−1 influences current volatility. Table 2 provides results of Ljung-Box
statisics2 of serial correlation of the twelfth-order for levels and squares of stock return data as well
as results of the sign bias test statistic, negative size bias test statistic, positive size bias test statistic,
and joint test statistic described in Engle and Ng (1993). The sign bias test statistic, negative size
bias test statistic, and positive sign bias test statistic given in Engle and Ng (1993) are respectively
the t-test statistic of the explanatory variable d−t−1, d−t−1εt−1, and d+t−1εt−1 in the regression equation
of the normalized residual as the dependent variable where d−t−1 = 1 if εt−1 < 0 and 0 otherwise,
d+t−1 = d−t−1 + 1, and the normalized residual is the residual divided by the conditional standard
deviation estimate. The joint test statistic is the Lagrange multiplier (LM) test statistic for adding the
three variables of the sign bias, negative size bias, and positive sign bias in the regression equation of
the normalized residual as the dependent variable. Table 2 shows all the stocks are serially uncorrelated
in levels but serially highly correlated in squares of stock returns, which are conformable with the
stylized facts of financial data. With respect to the effects of the value of εt−1 on current volatility,
the negative size bias test is always highly significant, which is the same as in Engle and Ng (1993) for
the Japanese stock index data in their study. The sign bias test statistic is positive and highly significant
for the two indexes but insignificant for two individual stocks of Amazon and Microsoft. Later, we will
see the best model in Amazon and Microsoft are GARCH(1,1) three components models, the most
complicated models, where the effect of the negative sign of εt−1 being not in simple forms may be
due to this insignificant result. The positive size bias test is not significant for the two indexes, which is
the same as in Engle and Ng (1993) for the Japanese stock index in their study. However, it is positive
and significant for the three individual stocks. Therefore, the negative size bias test is significant while
the positive size bias test is not significant in the two indexes of the DOW and NASDAQ, indicating
the effect of εt−1 on current volatility is asymmetric in the DOW and NASDAQ. On the other hand,
the negative size bias test and the positive size bias test are both significant in Johnson & Johnson,
Amazon, and Microsoft, indicating the effect of εt−1 on current volatility is symmetric in the three
individual stocks. The joint test is highly significant for all the stocks.

2 The Ljung-Box statistics we use here are modified ones by Diebold (1988) who corrected the original Ljung-Box statistic
which is known to reject the null hypothesis too often.
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Table 2. Diagnostic Test Results for the Stock Returns.

Name DOW NASDAQ JNJ Amazon Microsoft

Ljung-Box(12) in levels 14.613 8.413 17.048 8.733 17.016
Ljung-Box(12) in squares 139.398 ** 166.417 ** 94.072 ** 103.016 ** 93.730 **

Sign Bias 3.072 ** 3.302 ** 2.259 * −0.455 1.490
Negative Size Bias −12.016 ** −11.047 ** −11.474 ** −4.738 ** −7.275 **
Positive Size Bias 1.952 1.770 2.610 ** 2.449 * 3.423 **

Joint Test 164.971 ** 142.924 ** 167.640 ** 43.036 ** 84.583 **

JNJ stands for Johnson & Johnson. One and two asterisks of * and ** indicate significance at the 5 and 1 percent
levels respectively.

Table 2 provides results of Ljung-Box statistics, modified by Diebold (1988), of serial correlation of
the twelfth-order in levels and squares of the stock return data as well as results of the sign bias test
statistic, negative size bias test statistic, positive size bias test statistic, and joint test statistic.

We then show the best model for each stock with respect to the Bayesian Information Criterion
(BIC). We show the best estimation results for three classes of GARCH(1,1) families, i.e., GARCH(1,1)
model, AGARCH(1,1) model, and GJR(1,1) model in Tables 3–7. Standard errors are obtained using
asymptotic variance given in Equation (17) in Proposition 4. In models with more than one component,
probability of one component is determined automatically by the restriction of the sum of probabilities
of all the components being equal to one so that its standard error is not given. The best estimation
results are the AGARCH(1,1) two components model for the two indexes and the GARCH(1,1) two
and three components models for the three individual stocks. The AGARCH(1,1) two components
model as the best model in the DOW and NASDAQ conform to the results of the negative size bias
test and positive size bias test described above. The GARCH(1,1) two and three components models as
the best model in the three individual stocks are also in harmony with the results of the negative size
bias test and positive size bias test explained above, indicating the effect of εt−1 on current volatility is
symmetric in the three individual stocks.

We describe the estimation results only for the best model in each stock below although the best
estimation results for the three classes of GARCH(1,1) families are provided in Tables 3–7. The best
model in the stock indexes DOW and NASDAQ are both AGARCH(1,1) two components models.
They are composed of a dominant state with negative mean and a positive shock state with positive
mean. The estimate of α, the effect of previous innovation εt−1, is larger in the dominant state with
negative mean than in the positive shock state with positive mean, indicating the effect of previous
innovation is larger in the dominant state than in the positive shock state. The estimate of β, the effect
of previous conditional variance σ2

k,t−1, is smaller in the dominant state with negative mean than in
the positive shock state with positive mean, indicating the effect of previous conditional variance is
short-lived in the dominant state than in the positive shock state. The estimate of λ is larger in the
dominant state than in the positive shock state, indicating the effect of previous innovation of minus
sign on volatility is larger in the dominant state than in the positive shock state.

Table 3 shows the best estimation results for the DOW in the three classes of GARCH(1,1) families,
i.e., GARCH(1,1) model, AGARCH(1,1) model, and GJR(1,1) model. Standard errors, shown in
parentheses, are obtained using asymptotic variance given in Equation (17) in Proposition 4. In models
with more than one component, probability of one component is determined automatically by the
restriction of the sum of probabilities of all the components being equal to one so that its standard
error is not given.
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Table 3. Estimation of the Three Classes of GARCH(1,1) Families in the DOW.

GARCH-2component

µ1 µ2 ω1 α1 β1 ω2 α2

0.162 −0.443 0.002 0.059 0.903 0.000 0.366
(0.030) (0.271) (0.004) (0.008) (0.008) (0.080) (0.043)

β2 π1 π2 BIC

0.831 0.755 0.245 6289.892
(0.012) (0.073)

GJR-1component

µ1 ω1 α1 λ1 β1 BIC

0.048 0.014 0.000 0.175 0.896 6193.376
(0.001) (0.001) (0.029) (0.013) (0.023)

AGARCH-2component

µ1 µ2 ω1 α1 λ1 β1 ω2

−0.054 0.179 0.000 0.169 0.591 0.829 0.000
(0.129) (0.192) (0.011) (0.103) (0.115) (0.035) (0.022)

α2 λ2 β2 π1 π2 BIC

0.030 0.370 0.936 0.612 0.388 6182.353
(0.102) (0.425) (0.193) (0.678)

Table 4 shows the best estimation results for the NASDAQ in the three classes of GARCH(1,1)
families, i.e., GARCH(1,1) model, AGARCH(1,1) model, and GJR(1,1) model. Standard errors, shown in
parentheses, are obtained using asymptotic variance given in Equation (17) in Proposition 4. In models
with more than one component, probability of one component is determined automatically by the
restriction of the sum of probabilities of all the components being equal to one so that its standard
error is not given.

Table 4. Estimation of the Three Classes of GARCH(1,1) Families in the NASDAQ.

GARCH-2component

µ1 µ2 ω1 α1 β1 ω2 α2

-0.186 0.280 0.023 0.188 0.865 0.000 0.026
(0.007) (0.016) (0.020) (0.010) (0.008) (0.006) (0.001)

β2 π1 π2 BIC

0.942 0.500 0.500 7153.053
(0.007) (0.008)

GJR-1component

µ1 ω1 α1 λ1 β1 BIC

0.084 0.021 0.000 0.162 0.900 7125.000
(0.001) (0.001) (0.028) (0.018) (0.019)

AGARCH-2component

µ1 µ2 ω1 α1 λ1 β1 ω2

-0.042 0.272 0.000 0.160 0.795 0.822 0.000
(0.146) (0.254) (0.059) (0.156) (0.114) (0.118) (0.018)

α2 λ2 β2 π1 π2 BIC

0.018 0.312 0.957 0.656 0.344 7076.656
(0.060) (0.476) (0.120) (0.579)

Table 5 shows the best estimation results for Johnson & Johnson in the three classes of GARCH(1,1)
families, i.e., GARCH(1,1) model, AGARCH(1,1) model, and GJR(1,1) model. Standard errors, shown in
parentheses, are obtained using asymptotic variance given in Equation (17) in Proposition 4. JNJ stands
for Johnson & Johnson. In models with more than one component, the probability of one component is
determined automatically by the restriction of the sum of probabilities of all the components being
equal to one so that its standard error is not given.
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Table 5. Estimation of the Three Classes of GARCH(1,1) Families in JNJ.

GARCH-2component

µ1 µ2 ω1 α1 β1 ω2

0.075 −0.010 0.020 0.101 0.771 0.052
(0.002) (0.009) (0.004) (0.004) (0.002) (0.005)

α2 β2 π1 π2 BIC

0.139 0.887 0.625 0.375 6073.109
(0.005) (0.012) (0.049)

GJR-1component

µ1 ω1 α1 λ1 β1 BIC

0.048 0.039 0.023 0.161 0.846 6087.186
(0.000) (0.000) (0.000) (0.000) (0.000)

AGARCH-1component

µ1 ω1 α1 λ1 β1 BIC

0.048 0.004 0.091 0.675 0.850 6103.388
(0.000) (0.000) (0.000) (0.000) (0.000)

Table 6 shows the best estimation results for Amazon in the three classes of GARCH(1,1) families,
i.e., GARCH(1,1) model, AGARCH(1,1) model, and GJR(1,1) model. Standard errors, shown in
parentheses, are obtained using asymptotic variance given in Equation (17) in Proposition 4. In models
with more than one component, probability of one component is determined automatically by the
restriction of the sum of probabilities of all the components being equal to one so that its standard
error is not given.

Table 6. Estimation of the Three Classes of GARCH(1,1) Families in Amazon.

GARCH-3component

µ1 µ2 µ3 ω1 α1 β1 ω2 α2

0.037 0.333 32.090 0.005 0.007 0.982 0.000 0.623
(0.010) (0.090) (0.157) (0.004) (0.001) (0.001) (0.447) (0.018)

β2 ω3 α3 β3 π1 π2 π3 BIC

0.739 9.372 10.806 0.961 0.746 0.246 0.008 10107.635
(0.036) (0.279) (4.533) (0.015) (0.025) (0.030)

GJR-3component

µ1 µ2 µ3 ω1 α1 λ1 β1 ω2

0.145 0.303 −0.375 0.022 0.006 0.045 0.969 0.000
(0.065) (0.026) (0.085) (0.010) (0.001) (0.017) (0.003) (0.000)

α2 λ2 β2 ω3 α3 λ3 β3 π1

0.000 0.000 0.999 0.000 0.003 0.591 0.758 0.460
(0.000) (0.001) (0.002) (0.024) (0.002) (0.051) (0.010) (0.086)

π2 π3 BIC

0.306 0.234 10525.101
(0.084)

AGARCH-3component

µ1 µ2 µ3 ω1 α1 λ1 β1 ω2

0.270 −0.349 0.881 0.000 0.007 0.609 0.984 0.000
(0.447) (0.597) (0.805) (0.142) (0.042) (0.744) (0.115) (0.770)

α2 λ2 β2 ω3 α3 λ3 β3 π1

0.096 1.799 0.778 0.000 1.494 0.000 0.677 0.524
(0.073) (2.123) (0.011) (1.932) (1.997) (1.493) (0.068)

π2 π3 BIC

0.360 0.117 10204.766
(0.714) (0.158)
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Table 7 shows the best estimation results for Microsoft in the three classes of GARCH(1,1) families,
i.e., GARCH(1,1) model, AGARCH(1,1) model, and GJR(1,1) model. Standard errors, shown in
parentheses, are obtained using asymptotic variance given in Equation (17) in Proposition 4. In models
with more than one component, probability of one component is determined automatically by the
restriction of the sum of probabilities of all the components being equal to one so that its standard
error is not given.

Table 7. Estimation of the Three Classes of GARCH(1,1) Families in Microsoft.

GARCH-3component

µ1 µ2 µ3 ω1 α1 β1 ω2 α2

-0.016 0.331 14.043 0.001 0.028 0.948 2.571 0.622
(0.000) (0.000) (0.006) (0.000) (0.000) (0.000) (0.005) (0.001)

β2 ω3 α3 β3 π1 π2 π3 BIC

0.067 3.539 1.522 0.985 0.751 0.239 0.010 8611.326
(0.000) (0.063) (0.022) (0.000) (0.000) (0.000)

GJR-3component

µ1 µ2 µ3 ω1 α1 λ1 β1 ω2

0.156 −0.159 −0.043 0.028 0.029 0.000 0.954 0.000
(0.058) (0.045) (0.178) (0.016) (0.005) (0.021) (0.007) (0.049)

α2 λ2 β2 ω3 α3 λ3 β3 π1

0.005 0.641 0.783 0.000 0.000 0.000 0.998 0.569
(0.005) (0.059) (0.038) (0.003) (0.000) (0.004) (0.003) (0.028)

π2 π3 BIC

0.253 0.177 8835.438
(0.061)

AGARCH-3component

µ1 µ2 µ3 ω1 α1 λ1 β1 ω2

0.055 0.209 −0.185 0.000 0.027 0.885 0.949 0.000
(0.047) (0.188) (0.607) (0.058) (0.027) (0.547) (0.037) (0.076)

α2 λ2 β2 ω3 α3 λ3 β3 π1

1.087 0.591 0.637 0.000 0.132 1.783 0.018 0.751
(2.615) (0.563) (0.376) (0.784) (0.095) (1.765) (0.463) (0.148)

π2 π3 BIC

0.134 0.114 8656.691
(0.069)

The best model in the individual stocks of Johnson & Johnson, Amazon, and Microsoft are
GARCH(1,1) two and three components models. The best model in Johnson & Johnson is a GARCH(1,1)
two components model where the dominant state is with positive and significant mean and another
state is a negative shock state with negative mean. The estimate of α, the effect of previous innovation,
is larger in the negative shock state than in the dominant state, which is usually the case in previous
studies of this kind (cf., e.g., Alexander and Lazar 2009). However, the estimate of β, the effect of
previous conditional variance, is larger in the negative shock state than in the dominant state with
positive mean, which differs from many of previous studies of this kind (cf., e.g., Alexander and
Lazar 2009). The best model in Amazon is a GARCH(1,1) three components model with distinctive
parameter estimates. It has three components with positive and significant mean in every element.
In particular, the second and third components are both positive shock states with the third one being
extraordinary size. The estimate of α is also huge in the extraordinary third component and large
in the second component while the estimate of β is not small in these components. The best model
in Microsoft is also a GARCH(1,1) three components model. The second and third components are
both positive shock states with positive and significant mean. The third component is also a positive
shock state of very large size. The estimate of α is large in the second component and very large
in the third component, indicating the impact of previous innovation is large in these components.
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The estimate of β in the extraordinary third component is not different from that in the dominant state
of the first component while that in the second positive shock state is less than those in the first and
third components.

We also provide diagnostic test results for the best model in each stock with respect to the BIC in
Table 8. We describe the diagnostic test results in Table 8 only for the best model in each stock below.
The diagnostic test results show no serial correlation up to the twelfth-order in the squared normalized
residuals, no significance of the sign bias test except Johnson & Johnson, significance of the negative
size bias test except NASDAQ, and significance of the negative effect of the positive size bias test in
each stock which indicates the effect of previous positive residuals is negative, which is different from
the result of Engle and Ng (1993) for the Japanese stock index. The joint test for the three biases is
highly significant for all the stocks. The results of the sign bias test, negative size bias test, positive
sign bias test, and joint test are those applied to the normalized residuals.

Table 8. Diagnostic Test Results.

Name Model LB (12) Sign Bias − Size Bias + Size Bias Joint

GARCH-2 12.207 2.937 ** −7.248 ** −6.915 ** 53.312**
DOW GJR-1 16.524 2.142 * −3.017 ** −5.651 ** 19.328 **

AGARCH-2 15.988 1.698 −2.936 ** −3.430 ** 18.028 **

GARCH-2 7.582 3.054 ** −5.623 ** −7.323 ** 45.817 **
NASDAQ GJR-1 10.457 1.723 0.527 −5.631 ** 13.937 **

AGARCH-2 11.256 1.101 −1.165 −4.339 ** 14.438 **

GARCH-2 14.406 2.170* −7.164 ** −5.764 ** 48.664 **
JNJ GJR-1 13.615 1.830 −9.847 ** −6.345 ** 39.013 **

AGARCH-1 14.303 1.672 −6.182 ** −3.967 ** 28.309 **

GARCH-3 10.518 −0.612 −2.299 * −2.487 * 14.173 **
Amazon GJR-3 20.986 −1.461 0.309 −0.191 5.718

AGARCH-3 12.277 −2.990 ** −1.469 −1.500 7.800

GARCH-3 5.075 1.230 −3.303** −2.330 * 11.034 *
Microsoft GJR-3 7.123 1.075 −7.751 ** −0.302 13.327 **

AGARCH-3 7.158 1.504 −2.445 * −0.871 6.206

JNJ stands for Johnson & Johnson. One and two asterisks of * and ** indicate significance at the 5 and 1 percent
levels respectively.

Table 8 provides diagnostic test results for the best model in the three classes of GARCH(1,1)
families with respect to the BIC in the stock return data. LB (12) denotes Ljung-Box statisics, modified
by Diebold (1988), of serial correlation of the twelfth-order serial correlation in the squared normalized
residuals. Sign Bias, − Size Bias, + Size Bias, and Joint denote respectively the sign bias test statistic,
negative size bias test statistic, positive sign bias test statistic, and joint test statistic. These tests
are applied to the normalized residuals, i.e., residuals divided by the conditional standard deviation
estimate. In the table, GARCH-2,GJR-1,and AGARCH-2 in the DOW denote respectively a GARCH(1,1)
two components model, a GJR(1,1) one component model, and an AGARCH(1,1) two components
model. Other names of these models in the table are similarly defined.

We provide summary statistics of the conditional variance estimate of the best model with respect
to the BIC in the three classes of GARCH(1,1) families in each stock in Table 9. The variation of the
estimated conditional variance of the best model is a lot smaller than that of return data, which was
also true in Engle and Ng (1993). We remark that mean of the estimated conditional variance of the
best model for Amazon, i.e., a GARCH(1,1) three components model, is five times as large as that of
return data, which is exceptional in the conditional variance estimate of the best model.
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Table 9. Summary Statistics of the Conditional Variance Estimate.

Name Model mean s.d. min max Skewness Kurtosis

DOW ε2 1.491 5.344 0.000 122.774 12.860 239.113
GARCH-2 1.565 2.960 0.155 31.202 5.478 38.808

GJR-1 1.385 2.534 0.155 25.469 4.952 31.874
AGARCH-2 1.399 2.416 0.154 25.829 5.393 38.338

NASDAQ ε2 1.982 6.088 0.000 139.380 10.599 172.490
GARCH-2 1.970 3.051 0.278 29.339 4.569 28.106

GJR-1 1.826 2.938 0.253 27.901 4.553 27.263
AGARCH-2 1.835 2.613 0.225 28.340 4.631 29.988

JNJ ε2 1.114 4.406 0.000 149.554 20.575 602.706
GARCH-2 1.046 1.603 0.266 24.774 7.527 75.450

GJR-1 0.942 1.334 0.282 16.558 6.184 50.521
AGARCH-1 0.942 1.391 0.154 20.176 7.028 66.419

Amazon ε2 6.192 22.819 0.000 717.976 16.600 436.382
GARCH-3 30.580 20.555 12.878 200.709 3.238 15.634

GJR-3 4.770 4.992 0.852 58.587 4.105 26.815
AGARCH-3 6.410 8.290 1.019 151.917 6.106 68.334

Microsoft ε2 3.217 11.519 0.000 346.133 15.471 374.684
GARCH-3 10.154 5.588 5.070 80.412 3.832 24.191

GJR-3 2.785 3.327 0.510 35.401 3.998 22.861
AGARCH-3 3.114 4.142 0.501 67.928 5.768 55.125

JNJ stands for Johnson & Johnson.

Table 9 provides summary statistics of the conditional variance estimate of the best model of the
three classes of GARCH(1,1) families in each stock with respect to the BIC. In the table, ε2 denotes
the squared stock return. In the table, s.d., min, and max stand for respectively standard deviation,
a minimum value, and a maximum value. In the table, GARCH-2, GJR-1, and AGARCH-2 in the DOW
denote respectively a GARCH(1,1) two components model, a GJR(1,1) one component model, and an
AGARCH(1,1) two components model. Other names of these models in the table are similarly defined.

Before we show the AS performance index for multi-period gambles, we first show the Sharpe
ratio obtained from return data and the AS performance index for one-period gambles. The Sharpe
ratio scores are the same as those in Hodoshima (2019) who estimated the same data. This is reproduced
in Table 10. The Sharpe ratio is larger in NASDAQ than in DOW. The highest Sharpe ratio score 0.051 is
for Amazon while the second highest one 0.041 is for Johnson & Johnson. Hodoshima (2019) estimated
a performance index named inner rate of risk aversion (IRRA) proposed by Miyahara (2010, 2014),
which is equivalent to the AS performance index for one-period gambles (see also Hodoshima and
Miyahara, 2020 for the relationship between utility indifference pricing and the AS performance
index for one-period gambles when the investor is risk averse as well as risk loving), assuming the
underlying stochastic process of return data follows the normal mixture process with time-invariant
volatility. Hodoshima (2019) estimated the AS performance index for one-period gambles by
the MLE using the E-M algorithm. We reproduce the estimate of the AS performance index for
one-period gambles in Table 11. We remark that the MLE of the AS performance index for one-period
gambles in the parametric normal mixture model with time-invariant volatility is little different
from the nonparametric generalized method of moments (GMM) estimate, which was employed in
Kadan and Liu (2014). The estimates of the AS performance index for one-period gambles in the two
indexes, DOW and NASDAQ, are both larger than the Sharpe ratio scores. That is also true in other
individual stocks of Johnson & Johnson and Microsoft. On the other hand, Amazon is a stock with its
AS performance index less than the Sharpe ratio. Johnson & Johnson and Amazon are two contrasting
stocks in Hodoshima (2019). Johnson & Johnson is rated fairly well by the Sharpe ratio but rated the
best by the AS performance index. On the other hand, Amazon is rated the best by the Sharpe ratio
but rated mediocre by the AS performance index. This is because Amazon is the stock with the highest
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mean and highest risk, which causes it to take negative values often, which makes its AS performance
score low. On the other hand, stable stocks such as Johnson & Johnson perform fairly well, which are
rated highly by the AS performance index (cf. Hodoshima 2019).

Table 10. The Sharpe Ratio in Ascending Order for the Stock Returns.

Name Sharpe Ratio

DOW 0.021
Microsoft 0.024
NASDAQ 0.031

JNJ 0.041
Amazon 0.051

JNJ stands for Johnson & Johnson.

Table 11. The AS Performance Index for One-period Gambles in Ascending Order for the Stock Returns.
Table 11 presents the AS performance index for one-period gambles assuming the underlying stochastic
process to be a normal mixture process with time-invariant volatility.

Name AS Index

Microsoft 0.027
DOW 0.037

Amazon 0.042
NASDAQ 0.046

JNJ 0.079

JNJ stands for Johnson & Johnson.

To compare the fitness of the best model in the models for one-period gambles and multi-period
gambles, we provide scores of the BIC in the best model of the normal mixture process with
time-invariant volatility in Table 12. When we compare scores of the best BIC in the models for
one-period gambles with those for multi-period gambles, given in Tables 3–7, we can see the best
models for multi-period gambles dominate those for one-period gambles. Hence, the model selection
criterion of the BIC uniformly chooses the model for multi-period gambles as compared to the model
for one-period gambles in all the stocks we consider.

Table 12. The BIC of the Best Model of One-period Gambles for the Stock Returns.

Name BIC

DOW 6822.029
NASDAQ 7667.211

JNJ 6379.585
Amazon 10308.100
Microsoft 8805.842

JNJ stands for Johnson & Johnson.

We then show the AS performance index for multi-period gambles in Table 13. We set the discount
factor ρ to be 0.01, 0.05, 0.10 in annual rate. We show the AS performance index for the best model
by the BIC as well as the second best model by the BIC to see how the result changes as the model
changes in all the stocks we consider. The results show the AS performance index for multi-period
gambles tends to be larger than that for one-period gambles when the AS performance index for
one-period gambles is larger than the Sharpe ratio. The AS performance index for one-period gambles
is larger than the Sharpe ratio in four stocks out of the five stocks we examine in this paper, i.e., DOW,
NASDAQ, Johnson & Johnson, and Microsoft. One exception of the above property, i.e., the AS
performance index for multi-period gambles tends to be larger than that for one-period gambles when
the AS performance index for one-period gambles is larger than the Sharpe ratio, is Johnson & Johnson
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where the AS performance index for multi-period gambles is similar to that for one-period gambles
in the best model of the GARCH two components model. However, the AS performance index for
multi-period gambles is distinctively larger than that for one-period gambles in the second-best model
of the GJR one component model in Johnson & Johnson. We remark the same is true in the third-best
model of the AGARCH one component model in Johnson & Johnson where the AS performance
index for multi-period gambles is 0.101, 0.098, and 0.093 respectively when ρ = 0.01, 0.05, and 0.10.
The AS performance index for one-period gambles is smaller than the Shape ratio only in Amazon
among the five stocks we examine in this paper. The AS performance index for multi-period gambles
is even smaller than that for one-period gambles when the AS performance index for one-period
gambles is smaller than the Sharpe ratio. This occurs in the case of Amazon. When we compare the AS
performance index with the Sharpe ratio, a favorable evaluation score tends to become even better
in multi-period gambles than in one-period gambles while an unfavorable evaluation score tends
to become even worse in multi-period gambles than in one-period gambles. This property is new,
although our results are limited since we only examine a handful of stocks. Whether this property
is only empirical or an intrinsic property of the relationship between the AS performance index and
Sharpe ratio is beyond the scope of the present study and is left as a future research topic to be studied.

Table 13. The AS Performance Index for Multi-Period Gambles for the Stock Returns.

Name ρ = 0.01 ρ = 0.05 ρ = 0.1

DOW MinBIC AGARCH-2 0.051 0.048 0.044
2ndMinBIC GJR-1 0.068 0.063 0.058

NASDAQ MinBIC AGARCH-2 0.070 0.066 0.062
2ndMinBIC GJR-1 0.089 0.084 0.078

JNJ MinBIC GARCH-2 0.080 0.078 0.074
2ndMinBIC GJR-1 0.100 0.096 0.092

Amazon MinBIC GARCH-3 0.025 0.025 0.024
2ndMinBIC AGARCH-3 0.036 0.034 0.032

Microsof MinBIC GARCH-3 0.047 0.046 0.044
2ndMinBIC AGARCH-3 0.031 0.029 0.028

JNJ stands for Johnson & Johnson.

Table 13 presents the AS performance index for multi-period gambles in the best model and
second best model with respect to the BIC of the three classes of GARCH(1,1) families. MinBIC and
2ndMinBIC stand for respectively the best model and second best model with respect to the BIC. In the
table, AGARCH-2 and GJR-1 in the DOW denote respectively an AGARCH(1,1) two components
model and a GJR(1,1) one component model. Other names of these models in the table are similarly
defined.

5. Concluding Comments

In this paper, we presented an empirical study of the AS performance index for multi-period
gambles under the setup given by Kadan and Liu (2014) where the utility function of multi-period
gambles is time-separable with a discount factor. We obtained the parametric estimates of the AS
performance index for multi-period gambles assuming the underlying stochastic process of returns to
follow the normal mixture process with time-varying volatility of GARCH families. Our empirical
study of the AS performance index is the first empirical study of the AS performance index for
multi-period gambles. We compared the AS performance index for multi-period gambles with that for
one-period gambles as well as the Sharpe ratio obtained from data. Estimates of the AS performance
index for one-period gambles are obtained assuming the underlying stochastic process of returns to
follow the normal mixture process with time-invariant volatility.
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Our results show the following property of the estimates of the AS performance index for
multi-period gambles. Stocks with higher AS performance index scores for one-period gambles than
the Sharpe ratio are evaluated even better in the AS performance index for multi-period gambles.
On the other hand, stocks with lower AS performance index scores for one-period gambles than
the Sharpe ratio are evaluated even worse in the AS performance index for multi-period gambles.
Our results are obtained using a selection of U.S. stocks and show obtaining the AS performance index
for multi-period gambles is not difficult under a reasonable and tractable assumption of the normal
mixture process with time-varying volatility of GARCH families. Therefore, the AS performance index
for multi-period gambles is a practical tool for evaluation of multi-period gambles, which opens up
a new way of evaluating various dynamic gambles. Obtaining appropriate performance measures
is essential to investors, financial managers, and regulators, we believe our approach of the AS
performance index for multi-period gambles is widely useful to these audiences. Exploring the AS
performance index for multi-period gambles with the different class of assets, projects, cash flows, etc.
is important and interesting and left as a future research topic.
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