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Abstract: Volatility break robust panel unit root tests (PURTs) recently proposed by Herwartz and
Siedenburg (Computational Statistics & Data Analysis 2008, 53, 137–150) and Demetrescu and Hanck
(Econometrics Letters 2012, 117, 10–13) have different performances under both the null and local
alternatives. Common practice in empirical research is to apply multiple tests if none is uniformly
superior. We show that this approach tends to produce contradictory evidence for the tests considered,
making it unclear whether to reject the null. To address this problem, we advocate a combined testing
procedure. Simulation evidence shows that the combined test has good size control and closely tracks
the more powerful test. An empirical application reinvestigates whether there is a unit root in OECD
inflation rates. We find evidence that inflation is stationary for long observation periods, but we
cannot reject nonstationarity in most subsets of countries for the last three decades.
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1. Introduction

Empirical applications of unit root testing procedures commonly face uncertainty as to which test
to use when there is a large battery of methods to choose from but no a priori information in favour of
one procedure is available. Often, there are unknown characteristics of the data generating process
(DGP) that favour some testing procedure(s). Examples include uncertainty about the initial condition
or about deterministic patterns. Both imply the risk of low power when applying an inferior testing
procedure; see Müller and Elliott (2003) and Elliott et al. (1996). It then is common practice to apply the
whole set of tests and to jointly interpret the results. Such an approach is, however, problematic when
not all/some tests reject the null, i.e., when there are “mixed signals”. This is a non-negligible issue in
(panel) cointegration testing, in particular when the tests under consideration are from distinct classes
(Gregory et al. 2004; Hanck 2012). This problem also occurs in empirical studies that employ multiple
panel unit roots tests (PURTs). For example, Hurlin (2010) studied stochastic trends in fourteen macro
and financial variables from the seminal paper by Nelson and Plosser (1982) using OECD panel data
and partly obtains ambiguous results. Mullineux et al. (2010) analysed financial integration in EU
economies using flows of funds data and found mixed results for the convergence of equity and
internal financing using a battery of PURTs.

Two nonstationary volatility robust PURTs proposed by Demetrescu and Hanck (2012a) and
Herwartz and Siedenburg (2008), tDH and tHS henceforth, may confront the researcher with a similar
situation. Simulation evidence shows that tDH has better size-control than tHS and that power of the
tests is different under various forms of cross-sectional dependence and heteroskedasticity. The extent
of these differences depends on the degree and type of both cross-sectional dependence and variance
breaks—characteristics which are generally unknown in applications. Moreover, although both
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statistics are nonstationary volatility robust versions of the test in Breitung and Das (2005), different size
and power characteristics suggest that mixed signals may occur.1 This might be especially problematic
under the alternative when the tests are applied in small to medium-sized panels because the power
differential may then be large.

As mixed signals imply imperfect correlation among tDH and tHS, a strategy to “reject at level α if
the most significant test outcome implies rejection” is invalid since the actual size of the strategy will
generally be larger than α. These considerations demand a joint test decision by means of a multiple
testing procedure which controls size.

The aim of this paper is to analyse the prevalence of mixed signals from tDH and tHS and to
suggest a simple but effective multiple testing method (cf. Simes 1986) which tackles the issues
outlined above. The test is a modification of the Bonferroni correction and has been shown to be more
powerful when the underlying test statistics are positively dependent under the null; see Sarkar (1998).
An empirical application investigates the trend behaviour of inflation rates of OECD countries by
means of the individual and the combined test. We thus reinvestigate some of the results presented in
Culver and Papell (1997) by using the original dataset from February 1957 to September 1994 as well
as for a longer observation period which also covers the recent three decades. Cross-dependence and
heteroskedasticity are marked features of the data, stressing the need to apply robust PURTs.

Section 2 introduces the econometric framework and briefly discusses both test statistics. Section 3
provides Monte Carlo results which investigate the prevalence of mixed signals among tDH and tHS.
We then present the multiple testing strategy and compare the performance of both tests with the
combined test. Section 4 discusses the application to inflation rates. Section 5 concludes.

2. Econometric Framework and Robust PURTs

2.1. Panel Model and Assumptions

We consider a first-order autoregressive panel model with time-varying second moments,

yt = µ + ρyt−1 + et, t = 1, . . . , T, (1)

where µ, yt, yt−1, and the errors et are N × 1 and et ∼ (0, Ωt). The PURTs (cf. Section 2.2) are designed
for testing the unit root null hypothesis H0 : ρ = 1 against the homogenous alternative H1 : |ρ| < 1
using a test statistic from a pooled regression.

Following Herwartz et al. (2016), we impose the following assumptions on et which basically
mirror the framework used in Breitung and Das (2005) but allow for the time-dependent variability of
Ωt in addition to weak cross-sectional dependence.

Assumption A

(i) The et are serially uncorrelated with E(et) = 0 and variance-covariance matrices Ωt for all t.
(ii) The Ωt are positive definite with positively bounded eigenvalues λ

(1)
t ≤ λ

(2)
t ≤ · · · ≤ λ

(N)
t

for all t.
(iii) E(uitujtuktult) < ∞ for all i, j, k, l where the u are elements of ut = (u1t, u2t, . . . , unt)′ = Ω−1/2

t et.

AssumptionA(i) implies that the innovations are uncorrelated over time. AssumptionA(ii) allows
for weak forms of cross-dependence between the series in Equation (1). Regarding heteroskedasticity,
A(ii) covers both discrete shifts and patterns of trending (co)variances which are consistent with the

1 See, e.g., Hanck and Czudaj (2015) for simulation evidence on the implications of heteroskedasticity for the PURT statistic
proposed in Breitung and Das (2005).
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assumption that Ωt has bounded eigenvalues.2 Assumption A(iii) is a common assumption in the
panel literature and demands finite fourth moments of the et (and thus the ut).

2.2. Volatility-Break Robust Panel Unit Root Tests

This section briefly reviews the two PURTs under study here.

2.2.1. The White-Type Test with Cauchy Instrumenting

The robust homogenous PURT proposed by Demetrescu and Hanck (2012a) builds on the work
of So and Shin (1999), who found that the “Cauchy” estimator of the autoregressive coefficient in
a univariate AR(1) model has a Gaussian limit even under the unit root null. The statistic

tIV = (NT)−1/2
T

∑
t=1

sign(
∼
yt−1)

′ε∗t (2)

is an adaption to dependent panels that has been proposed by Shin and Kang (2006). They account
for cross-dependence by using orthogonalised residuals ε∗t ;

∼
yt−1 denotes recursively mean-adjusted

lagged levels.3 Demetrescu and Hanck (2012b) show that tIV retains its asymptotic properties under
unconditional heteroskedasticity thanks the transformation of the information in the individual series
by the sign function sign(·). A shortcoming of tIV is the orthogonalisation procedure, as it requires
T � N for reasonable size (Demetrescu and Hanck 2012b). To circumvent this, Demetrescu and
Hanck (2012a) suggest a modification of the Shin and Kang (2006) test which involves a White (1980)
covariance estimator. The test statistic is computed as

tDH =
∑T

t=1 sign(yt−1)
′∆yt√

∑T
t=1 sign(yt−1)′ete′tsign(yt−1)

, (3)

where et = ∆yt = et. Motivated by the Gaussian limiting null distribution of tIV and Monte Carlo
evidence, tDH is used with standard normal critical values. The test is reported to perform well under
factor-type cross-dependence as well as nonstationary volatility.

2.2.2. The White-Type Test

Herwartz and Siedenburg (2008) proposed the test statistic

tHS =
∑T

t=1 y′t−1∆yt√
∑T

t=1 y′t−1ete′tyt−1

, (4)

related to tDH in also using a panel generalisation of the heteroskedasticity-consistent White (1980)
covariance estimator.

Herwartz and Siedenburg (2008) conjecture that the White correction renders tHS robust to general
forms of heteroskedasticity. Herwartz et al. (2016) indeed proved that tHS is asymptotically Gaussian
under variance shifts. They suggest that, hence, using Cauchy instruments in Equation (3) is not
necessary for asymptotic standard normality. This, however, does not render tDH superfluous as it
turns out that the tests have distinct characteristics both under the null and the alternative: Simulation
evidence in Section 3.3.1 confirms that tDH has more reliable size control and that the power of the

2 As pointed out in Herwartz et al. (2016), A(ii) does not require synchronous covariance switching and thus permits that,
e.g., only a fraction of the series exhibits distinct variance regimes.

3 Here,
∼
y i,t−1 = yi,t−1 − (t− 1)−1 ∑t−1

j=1 yi,t−1; ε∗t = Γ̂′εt with Γ̂ from LU decomposing Σ̂−1 =
(

1/(T − 1)∑T
t=3 εtε

′
t

)−1
and

the εi,t are consistent residuals obtained from estimation under the null.
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tests is different in small to medium-sized panels under cross-dependence and various scenarios of
breaks in the innovation variance.

2.2.3. Data Preprocessing

In order for tHS and tDH to be valid in applications where Equation (1) is unlikely to hold given
(possibly distinct) patterns of short-run dynamics in the series, it is necessary to prewhiten the data.
This can be done as proposed in Breitung and Das (2005).

∆̂yi,t = ∆yi,t −
pi

∑
j=1

b̂i,j∆yi,t−j and ŷi,t = yi,t −
pi

∑
j=1

b̂i,jyi,t−j (5)

where the b̂i,j are ordinary least squares (OLS) estimates from individual regressions
∆yi,t = ∑

pi
j=1 bi,j∆yi,t−j + ei,t. The pi are chosen using a consistent order selection criterion.

Similarly, the test statistics are not pivotal if the data exhibit deterministic patterns such as nonzero
intercepts or linear time trends under the alternative. While it is nontrivial to account for the latter,
individual specific intercepts may be efficiently removed by recursive demeaning (So and Shin 2001,
see footnote 3) or by subtracting the first observations y0 from the level series (Breitung and Das 2005).4

Since Herwartz et al. (2016) reported tDH and tHS to be slightly less powerful when the data are
recursively demeaned, we use the latter approach and prewhiten the data beforehand as in Equation (5),
if necessary.

3. Mixed Signals and a Combined Testing Procedure

This section examines the prevalence of mixed signals when tDH and tHS are applied to the
same data for various scenarios of cross-sectional dependence and variance, described in Section 3.1.
Section 3.2 discusses the results. We then propose our alternative testing procedure based on the
multiple test by Simes (1986) and compare its performance with that of tDH and tHS in Section 3.3.

3.1. Simulation Setup

The setup follows the design in Herwartz et al. (2016), which considers the following DGPs:

DGP A : yt = (ι− ρ)� µ + ρ� yt−1 + et, (6)

DGP B : yt = (ι− ρ)� µ + ρ� yt−1 + νt, νt = θ� νt−1 + et, (7)

where bold symbols are N × 1, ι is a vector of ones, and � denotes elementwise products. DGP A
generates panels with uncorrelated errors. DGP B allows to investigate the performance under
serial correlation for θi ∼ iid U (0.2, 0.4) with U (a, b) denoting the uniform distribution on [a, b].
Under the null, ρ = ι so that both DGPs generate driftless panel random walks. UnderH1, ρ = γ with
γi ∼ iid U (0.9, 1), yielding processes with heterogenous degrees of persistence and individual effects
µi ∼ iid U (0, 0.02).

Under cross-sectional independence, we set Ωt = diag(σ2
t ). We further consider the three

following scenarios for simulating cross-sectional dependence.

1. Spatial Correlation: Contemporaneous correlation is introduced by a first-order spatial
autoregressive (SAR) process in the following innovations:

et = (IN −ΘWN)
−1εt, εt ∼ N (0, diag(σ2

t )) (8)

4 Detrending procedures as proposed by Chang (2002) lead to a nonzero expectation of the numerators in (3) and (4) under
forms of heteroskedasticity allowed by A(ii) such that approximations by a Gaussian distribution are invalid. See Herwartz
and Walle (2018) for a more detailed argument and an alternative bootstrap procedure.
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where the scalar spatial AR coefficient Θ governs strength of the dependence. WN is a symmetric
row-normalised N × N spatial weights matrix of the one-ahead-and-one-behind type. Elements
of WN one ahead and one behind the main diagonal are set to 0.5 and zeros elsewhere;
see Baltagi et al. (2007).5 Θ is set to 0.8 throughout.

2. Equicorrelation: Dependence between the series in each panel arises from equicorrelated innovations

et =Σ1/2εt, εt ∼ N (0, diag(σ2
t )) (9)

as in O’Connell (1998). Here, Σ = 1N + ω(IN − 1N) with 1N as the N × N identity and IN as the
N × N all-ones matrix such that (Σ)kl = ω 6= 0 ∀ k 6= l. We set ω = 0.5.

3. Single Common Factor: We let

et = vt · η+ εt, εt ∼ N (0, diag(σ2
t )) (10)

with common factor vt ∼ iid N (0, 1). η is a N × 1 vector of loadings such that ηi ∼ iid U (0, 0.02);
see Pesaran (2007).

Both a one-factor structure and equicorrelation imply strong cross-sectional dependence in the
terminology of Breitung and Pesaran (2008) and thus violate assumption A(ii).

6 They hence serve to
study the robustness properties of the tests considered here.

To incorporate unconditional heteroskedasticity, we introduce variance breaks. Breaks can occur
at time bτjTc, j = 1, . . . , k so that

Var(εi,t) =
k

∑
j=1

σ2
j I
{
bτj−1Tc ≤ t < bτjTc

}
(11)

where τ0 = 0, τk = 1, and I(·) is the indicator function. The setup allows for k different variance
regimes, where σ2

1 = 1 for convenience such that rj := σj/σ1 can be interpreted as the scaling factor
for the jth regime’s standard deviation relative to the first regime. We consider break scenarios from
Cavaliere and Taylor (2007) who found that in cases with two variance regimes, size and power of
common time series unit roots tests deteriorate considerably when there are early negative (τ1 = 0.2,
r1 = 1/3) or late positive (τ1 = 0.8, r1 = 3) volatility shifts. Thus, it is interesting to investigate the
performance of a combined test under these circumstances.

We consider all combinations of N ∈ {10, 50} and T ∈ {25, 50, 100, 250} and use a burn-in period
of 50 observations in order to avoid dependence on initial conditions under the alternative. If not
stated otherwise, we use M = 25,000 replications and test at the 5% level using the corresponding
Gaussian critical value. Size-adjusted critical values are used for power comparisons.

3.2. Evidence of Mixed Signals

As shown in Herwartz et al. (2016), tDH and tHS have distinct performances when applied in
small to medium-sized samples. While tDH has better size control, tHS is often but not uniformly more
powerful. The extent of these differences depends on both the type of cross-sectional dependence,
time or degree of a structural break in the unconditional variance, and serial dependence. As these
characteristics of the data are generally unknown, it is nontrivial to draw conclusions when one test
rejects the null while the other does not—a so-called “mixed signal”.

5 A spatial arrangement of economic entities that could be mapped by this choice of WN is when the correlation between
units depends on their economic distance.

6 Breitung and Pesaran (2008) distinguished between weak dependence, where λ
(N)
t = O(1) and strong dependence where,

λ
(N)
t = O(N), as N → ∞.
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Clearly, the relevance of this issue is linked to its likelihood of occurrence. Therefore, we conduct
a simulation study along the lines of Gregory et al. (2004).7 We first use the simulated tests statistics
to compute empirical p-values by taking rank order across the empirical distribution and dividing
by M. For these pairs of empirical significance levels, empirical correlations are computed in order
to gauge the degree of similarity in test outcomes under the null. Then, we investigate rejections
both under the null and the alternative when the tests are applied to the same data. More specifically,
we compute the proportions of joint rejection using size-adjusted critical values. At last, and probably
most interestingly, the proportion of cases where one test rejects and the other one retains the null is
assessed. This is our measure for the likelihood of obtaining ambiguous test outcomes.

3.2.1. Results

Figure 1 gives indications for mixed signals under the null. It displays probits of empirical
p-values obtained for four scenarios of cross-dependence under an early variance break. While the
plots demonstrate positive correlation for tDH and tHS, we find evidence for ambiguous test decisions
in all four scenarios of cross-dependence. Table 1 presents empirical correlations of p-values and
proportions of joint rejections and mixed signals under the null and under the alternative.
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Figure 1. Pairs of probits for empirical p-values under an early negative variance break: N = 10 and
T = 100. M = 5000 replications. (a) Cross-sectional independence; (b) spatial correlation, Θ = 0.8;
(c) equicorrelation, ω = 0.5; and (d) single common factor, vt ∼ iid N (0, 1), ηi ∼ iid U (0, 0.02).

Under the null, we confirm moderate to high correlations of empirical p-values. Furthermore,
rates of joint rejections (mostly ranging below 3%) are uniformly smaller than rates of mixed outcomes,
i.e., the tests are likely to produce contradictory outcomes. These results show little variation across

7 Gregory et al. (2004) found that common time series cointegration tests tend to produce conflicting test decisions.
Hanck (2012) confirmed that the problem persists for panel cointegration tests and does not alleviate with growing
sample size.
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N and T for all scenarios of cross-dependence and variance regimes. This suggests that the findings
are relevant for datasets that are commonly used in empirical application and that the issue does not
alleviate quickly with larger panels.

Table 1. Analysis of mixed signals: Columns tDH and tHS report proportions of only that test rejecting.
γi ∼ iid U (0.9, 1), µi ∼ iid U (0, 0.02). SAR(1): Θ = 0.8. Equicorrelation: ω = 0.5; Common Factor:
vt ∼ N (0, 1); λi ∼ iid U (0, 0.02); 25,000 replications.

CS Independence SAR(1)

H0 H1 H0 H1

N T Ĉor Joint Mixed Joint tDH tHS Ĉor Joint Mixed Joint tDH tHS

Homoskedasticity
10 25 75.7 2.3 5.4 13.0 5.8 12.2 87.8 3.1 3.9 7.6 3.5 4.4
10 50 75.7 2.3 5.7 34.6 6.1 21.5 87.7 3.0 4.3 17.1 4.5 8.6
10 100 76.0 2.4 5.6 72.8 4.1 14.4 87.6 3.0 4.5 39.0 5.5 12.4
10 250 75.7 2.4 5.8 97.6 1.3 0.9 87.5 3.0 4.6 78.0 3.4 7.9
50 25 74.9 2.2 5.4 54.8 4.8 20.2 85.0 3.0 3.9 23.4 6.3 9.7
50 50 74.6 2.3 5.2 95.7 0.5 3.4 84.6 2.8 4.2 61.5 5.4 11.5
50 100 73.8 2.2 5.3 100 0 0 84.5 3.0 4.0 95.6 1.1 2.1
50 250 74.4 2.3 5.4 100 0 0 84.8 2.9 4.3 100 0 0
Early negative shift
10 25 76.0 2.3 5.3 4.3 3.4 4.6 89.2 3.1 3.8 3.7 2.3 2.2
10 50 75.7 2.4 5.3 10.5 5.0 10.7 88.5 3.2 4.1 6.6 3.1 4.6
10 100 75.7 2.4 5.5 30.6 5.8 22.7 87.6 2.9 4.8 16.2 4.0 9.0
10 250 75.9 2.4 5.8 77.0 2.4 16.1 87.6 2.9 5.0 44.7 4.2 14.5
50 25 75.4 2.3 5.2 8.7 5.5 7.7 85.6 3.0 3.9 5.5 3.2 3.4
50 50 74.4 2.3 5.3 41.2 5.8 21.7 85.5 3.0 4.3 19.0 5.4 9.9
50 100 74.2 2.2 5.5 92.8 0 0 85.0 3.1 4.1 58.2 4.3 15.2
50 250 73.5 2.3 5.4 100 0 0 84.6 2.9 4.4 97.4 0.1 2.1
Late positive shift
10 25 74.9 2.2 5.5 9.1 6.3 8.2 87.3 2.9 4.2 6.4 4.1 3.9
10 50 74.9 2.2 5.8 24.2 9.4 13.5 86.9 3.0 4.4 13.4 5.6 6.3
10 100 75.0 2.3 5.7 85.4 10.1 11.5 87.0 2.8 4.8 29.5 8.6 9.0
10 250 75.5 2.3 5.8 94.4 4.1 0.7 87.0 2.9 5.2 67.9 11.1 5.0
50 25 73.1 2.1 5.3 33.2 11.2 14.0 84.4 2.8 4.1 15.7 8.2 6.0
50 50 73.3 2.2 5.8 81.7 6.6 5.6 84.3 2.8 4.3 42.8 13.1 6.6
50 100 73.6 2.1 5.9 99.7 0.2 0.0 84.6 2.9 4.5 82.6 9.7 1.6
50 250 74.3 2.3 5.8 100 0 0 84.6 2.7 5.0 99.7 0.3 0

Equicorrelation Common Factor

H0 H1 H0 H1

N T Ĉor joint mixed joint tDH tHS Ĉor joint mixed joint tDH tHS

Homoskedasticity
10 25 86.5 2.8 4.5 9.7 3.9 6.2 76.1 2.3 5.4 13.6 6.3 11.6
10 50 86.1 2.7 5.0 21.4 4.5 10.7 75.7 2.4 5.6 35.6 6.5 20.2
10 100 85.6 2.7 5.3 45.8 4.5 11.9 75.1 2.4 5.6 73.6 4.5 13.4
10 250 85.8 2.6 5.4 79.8 2.9 7.5 75.7 2.3 5.6 97.9 1.2 0.8
50 25 91.7 3.0 4.1 16.5 3.7 5.3 74.7 2.3 5.4 55.1 5.4 19.3
50 50 91.6 3.0 4.5 33.7 4.3 6.8 74.0 2.2 5.5 95.8 0.5 3.2
50 100 91.2 3.0 4.8 59.8 3.8 6.0 74.2 2.3 5.5 100 0 0
50 250 91.2 2.8 5.2 87.8 1.1 4.6 74.2 2.2 5.5 100 0 0
Early negative shift
10 25 87.3 2.6 4.7 3.6 2.6 2.9 76.1 2.3 5.3 4.5 3.5 5.0
10 50 86.8 2.8 4.8 7.9 3.4 5.5 76.0 2.3 5.7 11.1 5.0 11.4
10 100 86.4 2.6 5.7 20.0 4.3 10.4 76.2 2.4 5.6 31.6 5.7 22.6
10 250 85.8 2.6 5.6 50.0 3.5 13.0 75.8 2.4 5.6 78.2 2.1 15.7
50 25 92.8 3.3 3.3 4.8 2.3 2.0 75.7 2.2 5.6 9.5 5.5 7.9
50 50 92.4 3.2 4.1 13.1 3.0 4.6 75.5 2.2 5.5 42.9 5.7 20.9
50 100 91.8 3.1 4.4 31.7 3.2 7.3 74.7 2.3 5.4 93.6 0.4 5.2
50 250 91.4 2.9 5.0 64.5 2.0 7.3 74.6 2.3 5.4 100 0 0
Late positive shift
10 25 85.2 2.7 4.6 7.5 4.4 5.0 74.9 2.2 5.6 9.8 6.7 7.8
10 50 85.3 2.5 5.1 15.9 5.9 8.2 75.2 2.4 5.5 23.9 9.8 12.9
10 100 85.6 2.6 5.7 34.9 8.5 9.0 75.0 2.4 5.6 58.2 11.0 10.9
10 250 85.7 2.6 5.8 71.5 9.4 4.3 75.5 2.4 5.9 94.4 4.2 0.6
50 25 90.8 2.9 4.3 12.2 4.8 4.3 73.5 2.2 5.6 34.0 11.9 13.1
50 50 90.7 2.9 4.7 26.2 6.5 5.9 73.6 2.1 5.9 81.8 7.0 5.3
50 100 90.7 3.0 4.9 48.2 8.7 4.9 74.2 2.1 5.9 99.6 0.3 0
50 250 90.8 3.0 5.2 80.2 8.9 1.8 74.2 2.3 5.7 100 0 0
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A somewhat different picture emerges under the alternative where joint rejection rates naturally
improve in N and T due to consistency of both tests. However, proportions of mixed outcomes differ:
They are linked to the difference in power between tDH and tHS, which it turn depends on N and T as
well as the time and the degree of variance breaks; see Herwartz et al. (2016).8 Our results indicate that
mixed signals occur in all scenarios of cross-dependence and heteroskedasticity where the pattern is
often similar: The probability of observing contradicting results is low to moderate when T is small
relative to N, increases for panels of moderate dimensions, and then decreases towards zero as N and
T get large. The proportion of mixed signals may be higher than 20%. An explanation is that one of
the tests is often more powerful than the other such that the dissimilarity between test outcomes may
be high. This is in contrast to larger panels where the additional amount of information against the
null drives both tests towards rejection, viz. coinciding results are more likely. Furthermore, Table 1
indicates that mixed signals under the alternative cannot always be attributed to the less powerful test
not rejecting. This is observed in all scenarios of cross-dependence under a late positive variance shift.

In summary, the results show that, despite the similar design of tDH and tHS, a researcher is likely
to encounter mixed signals when both tests are applied to the same data.

3.3. A Combined Testing Procedure

Consider the p-values p1, . . . , pn obtained from suitably testing the individual null hypotheses
H0,1, . . . ,H0,n such that pj ∼ U (0, 1) under H0,j. The so-called Bonferroni correction for testing the
global or intersection null hypothesisH0 =

⋂n
j=1H0,j rejectsH0 when

pj ≤ α/n for at least one j = 1, . . . , n. (12)

Equation (12) allows to test the global null, controlling the family-wise error rate at α. A particular
merit of Equation (12) is that it does not require assumptions about the joint distribution of the
underlying test statistics or their dependence. However, the procedure may be quite conservative and
may have low power.

As an alternative, we consider the following modified Bonferroni procedure proposed
by Simes (1986).

Simes’ Test

1. Obtain ordered p-values p(1) ≤ · · · ≤ p(n) of n tests
2. Reject the global null if

p(j) < jα/n for at least one j = 1, . . . , n. (13)

Consider the case n = 2. Simes’ test rejects H0 = H0,1 ∩ H0,2 at α = 0.05 if p(1) ≤ 0.025 or
p(2) ≤ 0.05.

Simes (1986) proves that Equation (13) yields a conservative test provided the test statistics
are independent. Simulation evidence in Simes (1986) also suggests that Equation (13) dominates
the classical Bonferroni procedure if the individual tests statistics are highly positively correlated.
Sarkar (1998) established conservativeness of Equation (13) for test statistics of which the joint null
distribution is “multivariate totally positive of order 2” (MTP2), a substantially weaker assumption
than that of independence which covers a rather large family of multivariate distributions.

Given the various positive correlations of tDH and tHS in the scenarios of cross-dependence
and variance breaks, the simplicity and robustness to (certain forms of) positive dependence render

8 See Tables A1–A4 for a comparison of empirical size and size-adjusted power of tDH and tHS in various scenarios of
cross-dependence and variance breaks.
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Equation (13), henceforth S, a promising candidate for a combined test.9 It is unclear whether the joint
distribution of the tests is MTP2, and we do not give a proof. It has, however, been shown that the
MTP2 condition can be relaxed even further; see Sarkar (2008). To what extent S is of use in our setting
is discussed by means of the simulation results discussed next.

3.3.1. Results

Tables A1–A4 report empirical rejection frequencies. The left panels correspond to DGP A while
the right panels refer to DGP B. We confirm the finite sample results for tDH and tHS presented
in Herwartz et al. (2016), i.e., distinct small-sample properties both under the null and under the
alternative. Performance is also mostly satisfying under serial correlation. However, tDH then is
somewhat conservative for small T. Both tests have lower power than under uncorrelated disturbances.
The results do not deteriorate much when weak-form cross-dependence imposed by Assumption A(ii)
is violated as is the case under equicorrelation and the common factor structure.

Turning to the S test, we find it does well in combining information from tDH and tHS. Under the
null, S is often closer to the nominal level of 5% than tHS and does compete well with the empirical
size of tDH . Under independence and spatial correlation, the size of S is best when N and T are large
and when T is large relative to N. This is also the case under serially correlated disturbances, a setting
that highlights a slight downside of S’s property to track the performance of tDH under the null:
S is undersized when tDH produces too few rejections. While this behaviour is not overly pronounced,
it stresses the need for larger samples when adjusting the data for short-run dynamics in applications.
Largely, the same conclusions are obtained for equicorrelated panels and under a common factor,
except that S is slightly conservative.

In terms of power, S typically tracks the more powerful of the individual tests. Nonetheless,
S seems superior to simultaneously applying both tests, let alone application of only one test.
S is especially beneficial in small to medium-sized panels where tHS is often more powerful than tDH
as mixed signals are more likely; see Section 3.2 and Table 1.

We conclude that combining information from tHS and tDH may be beneficial for the following
reasons: First, S avoids the choice either to risk size-distortions or low power in applications of only
one test. Second, S circumvents the risk of mixed signals when using both tests. Both scenarios have
been confirmed to be relevant in our simulation studies. Third, application of S is attractive in terms of
simplicity because it comes with virtually no additional expense in computation. This is in contrast
to other prominent methods used in meta-analysis such as, e.g., the p-value combination tests in
Fisher (1932) and Stouffer et al. (1949) and modifications thereof as in Hartung (1999) and more recent
contributions to the unit root literature like the union of rejections tests in Harvey et al. (2009). All these
depend on the particular correlation structure of the test statistics and therefore require, e.g., use of
resampling techniques.

4. Application to Inflation Rates

Since, at least, Nelson and Plosser (1982), it has been argued that inflation may follow a stochastic
trend. The persistence of inflation has far-reaching implications for the analysis and interpretation of
fundamental economic relationships. This includes structural models of, e.g., different Phillips curve
concepts and numerous models that rely upon price rigidities or the trending behaviour of the real
interest rate, a major determinant of savings and investment (Culver and Papell 1997; Rose 1988).
Further, the behaviour of inflation is important for central banks’ monetary policy rules.

9 Other applications to panel unit root testing we are aware of are Hanck (2013), who suggested a PURT based on combining
the significance of augmented Dickey-Fuller (ADF) tests by Equation (13) and provides simulation evidence for the procedure
to work well in cross-dependent panels and extensions by Hanck and Czudaj (2015) which additionally accommodate for
nonstationary volatility.
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Empirical research arrives at different conclusions. There is pioneering work reporting stationarity,
for example, Rose (1988), who investigated the stability of the U.S. real interest rate, and Barsky (1987),
who analysed U.S. inflation and reported stationarity for subperiods. On the other hand, some authors
found evidence that inflation is I(1), e.g., Johansen (1992), Ball and Cecchetti (1990), and Johansen and
Juselius (2001).

More recent contributions reinvestigate the issue, e.g., Culver and Papell (1997), who studied
monthly panel data for thirteen OECD countries ranging from February 1957 to September
1994. They found evidence for nonstationarity using ADF and KPSS tests but acknowledged the
shortcomings of these tests and thus resorted to PURTs.10 Their panel approach is based on the test
by Levin et al. (2002) and rejects the unit root null even for various 4-element subsets of countries.
A follow-up contribution by Basher and Westerlund (2008) revisits these conclusions as the employed
testing procedure is not robust to cross-dependence and heteroskedasticity. Hence, one should be
cautious in attributing different outcomes of time series and panel approaches to potential power
gains from exploiting the additional variation in the cross-section dimension. As noted by Basher and
Westerlund (2008), this is problematic as structural changes such as variance breaks tend to be more
likely in macro series when long data spans are considered and comovements are strong. Basher and
Westerlund (2008) reported results from second-generation PURTs which suggest that stationarity of
inflation holds after accounting for general forms of cross-sectional dependence and structural breaks.

Next, we reconsider some of the conclusions in Culver and Papell (1997) by applying tDH , tHS, and
S to several panels of OECD inflation rates.11 We consider two datasets and a total of four observation
periods. First, the original monthly consumer price index (CPI) data from Culver and Papell (1997)
from February 1957 to September 1994. Second, we use a larger set of monthly CPI data from April 1961
to March 2019 obtained from the OECD database for which we also consider two subperiods of roughly
30 years for robustness checks. These range from April 1961 to December 1989 and from January 1990
to March 2019. It is interesting to study evidence for these subsamples as they reflect different patterns
of macroeconomic activities that led to structural shifts in volatility. This is particularly the case for the
significantly less volatile last three decades which are marked by the advent of inflation targeting.

4.1. Preliminary Analysis

Figure 2 plots year-on-year inflation rates of all countries for the longest observation span.
Two characteristics shared by most of the series which are crucial for conducting inference based on
PURTs are rather obvious: Eyeballing shows considerable comovement suggesting cross-dependence
to be accounted for. Additionally, the moderate period up to the mid-1970s lapses into a highly
volatile period which is then followed by a marked downward shift in volatility at the beginning
of the 1990s. Reduced volatility persists for the following decades up to a kink situated around the
financial crisis in 2008. These findings are supported by means of Figure 3 displaying quartiles for
the sample distribution of inflation rates across the economies. The distribution’s spread corresponds
to previously identified regimes, i.e., moderate variance at the beginning of the sample, followed by
a quickly extending interquartile range which diminishes again beyond 1990 and emerges into a more
stable period characterised by low volatility. The findings thus suggest three distinct variance regimes.

10 ADF and KPSS tests struggle to distinguish between a unit root and stationarity for highly persistent but stationary time
series. See, e.g., Maddala and Kim (1999) or Caner and Kilian (2001).

11 See the notes in Table 2 for groupings.
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Figure 2. Inflation rates of OECD countries: Inflation rates are computed as year-on-year differences in
the logarithm of monthly CPIs. The CPI base year is 2015. Data are obtained from the OECD database.
The observation period is April 1961 to March 2019.
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Figure 3. Summary statistics of OECD inflation rates: Inflation rates are computed as year-on-year
differences in the logarithm of monthly CPIs. The CPI base year is 2015. Data are obtained from the
OECD database. The observation period is April 1961 to March 2019.

We may further assess second moment variability via estimated variance profiles, i.e.,

η̂i(s) :=
∑
bsTc
t=1 ê2

i,t + (sT − bsTc)ê2
i,bsTc+1

∑T
t=1 ê2

i,t
, 0 < s < 1 (14)

as proposed by Cavaliere and Taylor (2007).12 Figure 4 shows that, for all four subsamples, none of the
estimated variance profiles are close to the dashed red line, the theoretical profile of a homoskedastic
series. The profiles display patterns suggesting that the volatility of most series experienced a positive
break followed by a downward trend. Consider, e.g., Spanish inflation, which shows a sharp upward
shift after about 20% and 30% of the sample that is followed by a moderation. Further, the profiles of
some economies show very similar patterns, for instance, those of Italy and the United Kingdom. In this
regard, the profiles for the recent three decades are particularly interesting as they display a global
decrease in volatility and a considerable degree of convergence at the beginning of the recent financial
crisis. This tendency of synchronous variance regime switching may also be seen as an indicator for
economic comovement.

Culver and Papell (1997) used a simple dynamic panel approach allowing for country-specific
fixed effects. The autoregressive coefficients are restricted to be equal for all cross sections.
Thus, inflation πi,t is modelled by a panel autoregressive process

∆πi,t = µi + ρπi,t−1 +
pi

∑
j=1

θi,j∆πi,t−j + ei,t. (15)

Since it is plausible that the data exhibits short-run dynamics as well as nonzero fixed effects,
the individual tests are conducted on prewhitened data that are subsequently centered by means of
first observations as we expect inflation rates to have nonzero means under stationarity. The Schwarz
information criterion (SIC) is used to determine the maximum optimal lag order pi which is then used
for the prewhitening procedure of Section 2.2.3.

12 The êi,t are OLS residuals from fitting AR(1) models to the series.
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Figure 4. Estimated variance profiles for year-on-year inflation rates of selected OECD countries:
(a) February 1957–September 1994, monthly CPI data from Culver and Papell (1997). Other panels:
monthly CPI data from the OECD database for (b) April 1961–March 2019 (c) April 1961–December
1989 (d) January 1990–March 2019.

4.2. Results from Robust PURTs

Table 2 presents the results of the analysis for eleven groups of countries. We first compare results
for the data from Culver and Papell (1997). We find that tDH , tHS, and S coincide and strongly reject
the null of a panel unit root at the 1% level, except for the group of G7 countries where S rejects only at
5%. Virtually the same results are obtained for year-on-year inflation rates from April 1961 to March
2019 where all tests find strong evidence against the null with the exception of S, which rejects only at
5% for the group of non-G7 economies.

For the subsample from April 1961 to Dec. 1989, we find weaker evidence against the null as S
rejects mostly at 5%. A distinctive feature here is that tDH and tHS produce mixed signals at 5% for all
groupings except the G7 and the “unit root seven” where S retains the null at 10%.

Turning to the less volatile period from January 1990 to March 2019, mixed signals are found
for all groups since tDH does not reject once but tHS finds evidence at 10%, except for group k.
However, combining significance by S does not reject the null even at 10% as p-values for tHS do
not fall below the lower cutoff of 0.05 for any of the groupings. This is a rather peculiar finding as
nonstationarity of inflation rates implies no mean reversion which we presume to be an effect of
inflation targeting, alongside reduced volatility. A possible explanation is that structural change due
to increased integration of monetary policy implies the downward shift in volatility and stronger
cross-dependence. Both are observed characteristics of the subsample which were shown to result in
lower power of the tests.

Culver and Papell (1997) further assess how much cross-section variation is required for rejection
of the unit root null by computing all possible combinations of countries in panels of sizes k = 2, . . . , 13.
They report that, strikingly, any combination of five countries is already sufficient for rejection at
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5% in all (13
5 ) = 1287 panels. We reinvestigate this issue for both datasets using S and also report

rejection rates for tDH and tHS to gauge for the potential of observing mixed evidence. Table 3 presents
the results.

Table 2. Robust testing for unit roots in inflation panels of OECD countries. The groupings are as in
Culver and Papell (1997): (a) Belgium, Canada, Germany, Spain, Finland, France, the United Kingdom,
Italy, Japan, Luxemburg, the Netherlands, Norway, and the United States; (b) excludes France;
(c) excludes Japan (d); excludes the Netherlands; (e) excludes France and Japan; (f) excludes France
and the Netherlands; (g) excludes Japan and the Netherlands; (h) excludes France, Japan, and the
Netherlands; (i) G7: Canada, France, Germany, Italy, Japan, the United Kingdom, and the United
States; (j) the other six: Finland, Japan, Luxemburg, the Netherlands, Norway, and Spain; and (k)
“Unit Root Seven”: Canada, Finland, Germany, Italy, Luxemburg, the Netherlands, and the United
States. a Rejection at the 1% level. b Rejection at the 5% level. c Rejection at the 10% level. Entries for
the S test are “1” when the underlying p-values imply mixed signals and are “0” for all else.

Culver & Papell OECD Database

1957-02–1994-09 1961-04–2019-03 1961-04–1989-12 1990-01–2019-03

Grouping tDH tHS S tDH tHS S tDH tHS S tDH tHS S

(a) −3.39 a −3.44 a 0 a −3.63 a −3.16 a 0 a −1.43 c −2.31 a 1 b −0.49 −1.62 c 1
(0.0003) (0.0003) (0.0004) (0.0008) (0.0764) (0.0104) (0.3121) (0.0526)

(b) −3.46 a −3.43 a 0 a −3.50 a −3.15 a 0 a −1.40 c −2.30 b 1 b −0.51 −1.62 c 1
(0.0003) (0.0003) (0.0002) (0.0008) (0.0808) (0.0107) (0.3050) (0.0526)

(c) −3.48 a −3.46 a 0 a −3.51 a −3.08 a 0 a −1.20 −2.19 b 1 b −0.55 −1.54 c 1
(0.0003) (0.0003) (0.0004) (0.0010) (0.1151) (0.0143) (0.2912) (0.0618)

(d) −3.17 a −3.19 a 0 a −3.68 a −2.99 a 0 a −1.48 c −2.14 b 1 b −0.26 −1.54 c 1
(0.0008) (0.0007) (0.0004) (0.0014) (0.0694) (0.0162) (0.3974) (0.0618)

(e) −3.58 a −3.46 a 0 a −3.35 a −3.04 a 0 a −1.15 −2.16 b 1 b −0.57 −1.53 c 1
(0.0002) (0.0003) (0.0004) (0.0012) (0.1251) (0.0154) (0.2843) (0.063)

(f) −3.24 a −3.18 a 0 a −3.53 a −2.98 a 0 a −1.45 c −2.12 b 1 b −0.26 −1.53 c 1
(0.0001) (0.0023) (0.0004) (0.0014) (0.0735) (0.017) (0.3974) (0.063)

(g) −3.27 a −3.19 a 0 a −3.56 a −2.89 a 0 a −1.25 −1.99 b 1 b −0.31 −1.45 c 1
(0.0005) (0.0007) (0.0002) (0.0019) (0.1056) (0.0233) (0.3783) (0.0735)

(h) −3.37 a −3.19 a 0 a −3.39 a −2.85 a 0 a −1.20 −1.95 b 1 c −0.31 −1.44 c 1
(0.0004) (0.0007) (0.0003) (0.0022) (0.1151) (0.0256) (0.3783) (0.0749)

(i) −1.87 b −1.76 b 0 b −3.85 a −2.44 a 0 a −1.67 b −1.71 b 0 b −0.02 −1.41 c 1
(0.0307) (0.0392) (0.0001) (0.0073) (0.0475) (0.0436) (0.4920) (0.0793)

(j) −3.00 a −3.13 a 0 a −2.09 b −2.60 a 1 b −0.62 −1.92 b 1 c −0.93 −1.54 c 1
(0.0013) (0.0009) (0.0183) (0.0047) (0.2676) (0.0274) (0.1762) (0.0618)

(k) −2.99 a −2.82 a 0 a −2.97 a −2.28 b 0 a −0.67 −1.50 c 0 0.14 −1.07 1
(0.0014) (0.0024) (0.0015) (0.0113) (0.2514) (0.0668) (0.5557) (0.1423)

As expected, our results for the original data are somewhat weaker but confirm that the null
is rarely accepted in panels of five economies. Evidence against the null increases markedly as we
turn to combinations of six and more countries. S rejects nonstationarity at 1% in almost 80% of
all combinations of seven economies. We find similar results for the extended observation period
of year-on-year inflation rates where S rejects at 1% in 87.1% of all possible combinations for k = 7.
The results for April 1961 to Dec. 1989 also show considerable evidence against the null for k ≥ 6,
although the proportion of strong rejections is noticeably lower and most rejections occur at 5%. Finally,
the results presented in the bottom panel underline that the recent three decades provide conspicuously
little evidence in favour of the alternative since the proportion of combinations in which the null is
not rejected ranges above 75%, even in panels of five or more economies. Another result is that the
tendency for mixed signals is high, especially when testing at 5% based on year-on-year rates from
April 1961 to Dec. 1989. For this subsample, tHS retains the null far more often than tDH , such that it
appears worthwhile to rely on the combined evidence of S.
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Table 3. Robust testing for unit roots in inflation rates of OECD countries—all combinations. Economies: Belgium, Canada, Germany, Spain, Finland, France,
the United Kingdom, Italy, Japan, Luxemburg, the Netherlands, Norway, and the United States. Inflation rates are computed as differences in logarithms of CPIs.
Entries are proportions of rejection of m = (13

k ) subsets of k countries. For prewhitening, the maximum optimal lag order is determined using the SIC.

k = 1, m = 13 k = 2, m = 78 k = 3, m = 286 k = 4, m = 715 k = 5, m = 1287 k = 6, m = 1716 k = 7, m = 1716

Level tDH tHS S tDH tHS S tDH tHS S tDH tHS S tDH tHS S tDH tHS S tDH tHS S

Culver & Pappel (1997) data

1% 23.1 30.8 23.1 11.5 28.2 23.1 26.9 30.1 26.6 42.1 30.8 36.4 57.9 40.6 48.3 72.8 57.6 64.9 83.9 74.7 79.7
5% 15.4 30.8 30.8 47.4 32.1 35.9 41.6 43.4 42.7 39.2 55.0 43.8 33.3 54.8 44 23.5 41.4 31.8 15.3 25.3 19.9
10% 23.1 7.7 7.7 12.8 19.2 15.4 13.3 17.1 14.3 11.9 11.9 14.4 6 4.6 6.1 3.5 1 3.3 0.8 0 0.4
> 10% (no rej.) 38.5 30.8 38.5 28.2 20.5 25.6 18.2 9.4 16.4 6.9 2.4 5.5 2.8 0 1.6 0.2 0 0 0 0 0

1961-04 to 2019-03

1% 7.7 0 0 0.3 6.4 6.4 22.7 19.9 17.5 37.1 38.9 33.8 52.1 62.3 53.6 69.4 79.8 72.6 83.7 92.5 87.1
5% 15.4 38.5 30.8 30.8 48.7 33.3 40.6 59.4 49.3 44.1 55.9 52.6 40.4 36.8 42.4 28.4 20.2 26.6 16.0 7.5 12.9
10% 7.7 15.4 15.4 20.5 26.9 25.6 20.3 19.2 22.7 14.1 5.2 11.9 6.5 0.9 3.8 2.2 0 0.8 0.3 0 0
> 10% (no rej.) 69.2 46.2 53.8 38.5 17.9 34.6 16.4 1.4 10.5 4.8 0 1.7 1.0 0 0.2 0.1 0 0 0 0 0

1961-04 to 1989-12

1% 7.7 0 0 7.7 0 3.8 11.9 0.3 6.6 19.3 1.8 10.6 27.3 6.3 16.3 37.3 18.9 25.0 48.3 38.7 37.4
5% 15.4 7.7 15.4 20.5 17.9 19.2 32.9 37.4 29.0 40.6 66.4 44.3 45.3 80.8 56.3 46.7 76.6 62.6 43.5 60.4 58.0
10% 7.7 23.1 7.7 19.2 38.5 17.9 19.9 44.1 28.0 20.6 27.1 30.6 18.3 12.2 23.9 12.3 4.5 11.7 7.3 0.9 4.6
> 10% (no rej.) 100 84.6 92.3 52.6 43.6 59.0 35.3 18.2 36.4 19.6 4.6 14.4 9.1 0.7 3.5 3.7 0 0.8 1.0 0 0

1990-01 to 2019-03

1% 0 0 0 0 3.8 1.3 0.3 4.9 2.4 0.1 4.8 1.7 0 3.9 1.2 0 3.1 0.6 0 2.0 0.3
5% 0 7.7 0 13.8 12.8 9.0 4.5 14.7 9.4 2.9 18.3 10.8 2.5 20.0 11.9 1.3 20.5 10.8 0.7 20.6 9.5
10% 0 7.7 7.7 3.8 12.8 6.4 5.9 16.1 9.1 6.2 15.5 11.0 4.8 18.9 11.2 4.5 22.0 12.6 3.4 27.0 13.0
> 10% (no rej.) 100 84.6 92.3 92.3 70.5 83.3 89.2 64.3 79.0 90.8 61.4 76.5 92.7 57.3 75.8 94.1 54.4 75.9 95.9 50.3 77.2
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Altogether, evidence from the S test suggests robustness of the finding of stationarity of inflation
in Culver and Papell (1997) when we account for variance breaks and weak cross-dependence for both
the original dataset and the extended sample of year-on-year inflation rates. The results for the recent
three decades point towards nonstationarity, which contradicts the notion that inflation targeting
establishes a stable regime of low inflation rates. This finding should be considered with caution as it
might be due to structural breaks in the intercept which may not be well-handled by the tests.

5. Conclusions

This article investigates the performance of two recently proposed homogenous panel unit
root tests, the White-type tests proposed by Herwartz and Siedenburg (2008) and its Cauchy
counterpart suggested by Demetrescu and Hanck (2012a). Both are tailored for applications to weakly
cross-dependent data that exhibit nonstationary volatility such as breaks in the unconditional variance.
Our Monte Carlo studies confirm that the Cauchy counterpart has better size-control but is less
powerful than the White-type test when applied in small to medium-sized samples. A common
practice in such a situation is to apply both tests and to interpret the results jointly. This is shown to be
problematic: We find that the tests are imperfectly correlated under the null and have a tendency to
produce contradicting test outcomes which are not straightforward to interpret. The extent of this issue
is found to depend on the type and degree of the cross-sectional dependence in the data. Prevalence of
mixed signals is shown to be most pronounced under the alternative in small to medium-sized samples
when the power differential of the tests is large. This is problematic for the applied researcher, as it is
inadmissible to simply follow the decision of the rejecting test or some related rejection rule which
ignores the multiple testing nature of the problem. As a remedy, we suggest combining information
from both tests using the improved Benferroni procedure proposed by Simes (1986). Simulation
evidence reveals that this simple approach does well in controlling size and has power close to the
more powerful individual test.

An empirical application reinvestigates whether there is a unit root in year-on-year inflation rates
using panels of monthly data for selected OECD countries. Our findings are twofold. We establish
robustness of the results by Culver and Papell (1997), who reported stationarity for monthly inflation
rates. The combined test also rejects the null for year-on-year inflation rates observed over an extended
sample span which also covers the recent three decades. On the other hand, we find little evidence for
stationarity when applying the combined test to a subsample of the last thirty years—a result which
may be attributed to ongoing structural change and thus should be treated with caution as the tests
may lack power under such conditions. This issue could be investigated using PURTs that allow for
breaks both in the variance and in the mean which is, however, beyond the scope of this paper.

Future research could extend the multiple testing procedure towards models that include a linear
trend under the alternative. It could also be worthwhile to investigate the benefits of applying
the procedure to other PURTs as it is not restricted to the volatility-break robust tests considered
here. Furthermore, it would be interesting to systematically compare the performance of Simes’ test
with other meta tests that are less reliable if the information to be combined is not independent.
A feasible path to be followed is resampling, e.g., using the wild bootstrap procedure suggested by
Herwartz and Walle (2018).
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ADF augmented Dickey-Fuller
CPI consumer price index
DGP data generating process
I(1) integrated of order one
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KPSS Kwiatkowski–Phillips–Schmidt–Shin
MTP2 multivariate totally positive of order 2
OECD Organisation for Economic Co-operation and Development
PURT panel unit root test
SIC Schwarz information criterion

Appendix A

Table A1. Rejection frequencies in cross-sectionally independent panels. γi ∼ iid U (0.9, 1),
µi ∼ iid U (0, 0.02). DGP B: θi ∼ iid U (0.2, 0.4). Power is computed using size-adjusted 5% critical
values; 25,000 replications were used.

DGP A DGP B

Size Power Size Power

N T tDH tHS S tDH tHS S tDH tHS S tDH tHS S

Homoskedasticity

10 25 5.1 6.4 4.9 18.9 25.2 23.1 3.5 6.2 4.0 15.0 18.0 17.6

10 50 5.4 6.6 5.2 39.8 54.4 51.5 4.0 6.4 4.4 35.4 47.0 45.0

10 100 5.2 7.0 5.3 76.7 85.6 86.6 4.4 6.6 4.6 72.1 82.3 83.2

10 250 5.2 7.2 5.6 98.8 98.2 99.5 4.5 6.6 4.7 98.7 98.2 99.5

50 25 5.2 5.5 4.5 59.0 77.0 73.8 3.1 8.8 4.9 44.5 55.5 55.5

50 50 4.9 5.8 4.8 96.5 99.1 99.1 3.7 7.0 4.5 91.8 97.4 97.5

50 100 4.9 5.5 4.6 100.0 100.0 100.0 4.3 6.3 4.6 100.0 100.0 100.0

50 250 5.0 6.0 4.9 100.0 100.0 100.0 4.3 5.6 4.3 100.0 100.0 100.0

Early negative shift

10 25 5.0 6.0 4.3 7.7 8.9 8.7 3.7 6.7 4.1 5.9 6.0 6.0

10 50 4.8 6.4 4.8 15.7 20.2 18.8 3.1 6.3 3.8 13.2 15.4 14.8

10 100 5.1 6.5 4.9 36.0 50.8 48.2 3.6 6.4 4.1 32.3 43.6 42.6

10 250 5.1 6.9 5.3 79.0 91.7 91.4 4.1 6.5 4.7 76.2 89.8 89.6

50 25 5.1 5.3 4.3 13.8 18.0 16.7 3.9 10.5 6.1 6.2 3.7 4.4

50 50 5.0 5.4 4.4 46.9 64.8 61.2 2.6 9.1 5.0 35.0 34.5 35.9

50 100 5.0 5.5 4.5 93.2 98.9 98.7 3.0 7.4 4.5 89.2 95.8 96.7

50 250 4.9 5.8 4.7 100.0 100.0 100.0 3.9 6.5 4.6 100.0 100.0 100.0

Late positive shift

10 25 5.2 5.4 4.0 15.7 17.3 17.0 4.1 4.8 3.4 11.3 13.1 12.5

10 50 5.1 5.8 4.5 32.9 35.9 34.8 4.3 5.8 4.0 26.5 27.8 29.3

10 100 4.9 6.3 4.7 69.6 66.9 71.8 4.9 6.5 4.9 59.1 58.8 62.8

10 250 4.8 6.6 5.0 98.7 94.2 98.5 4.9 6.4 4.9 97.7 92.9 97.7

50 25 4.8 4.9 3.7 46.2 49.4 50.0 4.0 6.6 3.8 27.9 29.9 31.7

50 50 5.2 5.6 4.4 88.4 87.1 90.1 5.2 7.8 5.2 72.8 75.3 78.8

50 100 5.1 5.6 4.6 100.0 99.6 100.0 5.1 6.9 5.1 99.6 99.2 99.8

50 250 5.3 5.9 5.1 100.0 100.0 100.0 5.5 6.8 5.2 100.0 100.0 100.0
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Table A2. Rejection frequencies in cross-dependent panels—spatial correlation. γi ∼ iid U (0.9, 1),
µi ∼ iid U (0, 0.02), Θ = 0.8. DGP B: θi ∼ iid U (0.2, 0.4). Power is computed using size-adjusted 5%
critical values; 25,000 replications were used.

DGP A DGP B

Size Power Size Power

N T tDH tHS S tDH tHS S tDH tHS S tDH tHS S

Homoskedasticity

10 25 5.5 7.3 5.1 11.1 12.0 11.7 3.3 5.4 3.1 10.6 11.2 11.5

10 50 5.8 7.8 5.6 20.8 23.8 23.2 4.3 6.6 4.3 19.2 22.0 21.4

10 100 5.8 8.1 5.9 43.2 48.2 47.4 5.2 7.7 5.4 39.2 44.2 43.4

10 250 5.9 8.4 6.0 80.6 83.6 84.8 5.3 8.0 5.5 78.5 81.7 82.6

50 25 5.4 6.1 4.6 30.3 36.3 34.8 3.2 6.3 3.6 24.1 26.6 26.7

50 50 5.4 6.4 5.0 67.3 74.4 73.5 3.9 6.3 4.2 60.2 67.1 66.4

50 100 5.3 6.5 5.0 96.8 97.8 98.2 4.5 6.7 4.6 94.9 96.4 96.9

50 250 5.5 6.9 5.2 100 100 100 4.8 6.5 4.9 100 100 100

Early negative shift

10 25 5.1 6.3 4.5 6.0 5.9 5.9 3.4 5.4 3.2 5.0 4.7 4.9

10 50 5.6 7.1 5.0 8.6 9.6 9.4 3.3 5.4 3.1 8.6 9.2 9.2

10 100 5.5 7.7 5.5 18.8 21.1 20.5 4.0 6.6 4.2 17.7 19.5 19.3

10 250 5.5 7.9 5.6 47.3 53.5 52.4 4.6 7.5 5.0 44.9 50.3 50.0

50 25 5.1 5.9 4.4 8.8 9.3 9.3 3.4 7.1 4.1 5.7 4.5 4.8

50 50 5.2 6.4 4.8 23.8 28.0 26.8 2.8 6.6 3.6 20.0 19.3 19.5

50 100 5.3 6.5 5.0 61.5 72.2 69.5 3.3 6.2 3.8 57.0 65.0 64.4

50 250 5.3 6.5 4.9 97.4 99.5 99.3 4.2 6.5 4.5 96.3 99.2 99.1

Late positive shift

10 25 5.3 6.1 4.4 10.5 10.3 10.5 3.4 4.0 2.6 8.3 9.0 8.8

10 50 5.4 6.6 4.9 18.8 18.4 18.8 4.5 5.4 3.8 14.6 15.8 15.7

10 100 5.5 7.3 5.2 37.3 34.1 37.4 4.9 6.4 4.5 32.5 31.3 33.3

10 250 5.7 8.1 5.8 78.0 67.5 76.2 5.6 7.7 5.4 72.6 64.0 71.5

50 25 5.0 5.6 4.2 24.8 22.6 24.6 3.7 4.9 3.0 16.9 17.4 17.8

50 50 5.1 6.0 4.4 56.7 49.1 55.9 4.6 6.2 4.3 43.0 39.6 43.1

50 100 5.4 6.4 5.0 92.0 82.9 90.6 5.2 6.6 4.9 86.1 77.8 84.8

50 250 5.5 6.8 5.1 100 99.6 100 5.4 6.6 5.0 100 99.5 100
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Table A3. Rejection frequencies in cross-dependent panels—equicorrelation. γi ∼ iid U (0.9, 1),
µi ∼ iid U (0, 0.02), ω = 0.5. DGP B: θi ∼ iid U (0.2, 0.4). Power is computed using size-adjusted
5% critical values; 25,000 replications were used.

DGP A DGP B

Size Power Size Power

N T tDH tHS S tDH tHS S tDH tHS S tDH tHS S

Homoskedasticity

10 25 5.4 6.6 4.9 13.6 15.9 15.1 3.3 5.1 3.0 11.6 13.3 13.2

10 50 5.7 7.4 5.3 25.2 30.4 28.9 4.4 6.4 4.3 23.1 27.1 26.4

10 100 5.8 7.7 5.8 48.9 54.0 53.2 4.8 7.3 5.0 46.1 50.6 50.3

10 250 5.9 7.8 5.8 81.8 85.3 85.5 5.3 7.4 5.3 80.3 83.7 84.3

50 25 6.1 6.9 5.1 18.7 21.0 20.6 3.3 5.5 3.2 16.1 17.5 17.2

50 50 6.4 7.8 5.8 35.3 37.4 37.4 4.6 6.7 4.2 32.8 35.4 34.9

50 100 6.8 8.0 6.2 60.4 62.3 61.8 5.3 7.4 5.0 58.1 59.6 60.0

50 250 7.0 8.5 6.5 87.2 90.5 89.8 6.4 8.2 6.1 85.9 89.3 88.4

Early negative shift

10 25 5.1 6.3 4.4 6.2 6.6 6.6 3.4 5.6 3.3 5.3 4.8 5.1

10 50 5.4 6.7 4.9 10.7 12.3 11.9 3.3 5.3 3.3 9.7 10.8 10.5

10 100 5.8 7.6 5.6 22.5 26.6 26.0 3.8 6.2 3.9 20.7 24.3 24.4

10 250 5.7 7.6 5.6 51.8 58.7 57.9 4.7 7.1 4.8 50.3 57.5 56.4

50 25 5.1 5.9 4.2 7.2 7.2 7.3 3.3 5.6 3.2 4.7 3.8 4.1

50 50 5.8 7.0 5.0 14.4 16.5 16.0 2.8 5.5 3.0 13.3 12.5 13.0

50 100 6.3 7.3 5.6 31.5 35.7 34.4 3.8 6.6 3.9 31.0 32.6 32.7

50 250 6.4 7.9 5.7 63.4 68.0 67.1 5.3 7.7 5.2 61.2 65.1 64.0

Late positive shift

10 25 5.3 5.7 4.3 11.8 12.5 12.6 3.6 3.7 2.6 8.9 10.5 10.1

10 50 5.3 6.2 4.5 21.9 22.7 23.4 4.4 5.4 3.8 17.1 18.2 18.2

10 100 5.8 7.3 5.4 42.0 38.7 42.3 5.1 6.5 4.6 36.1 36.0 38.1

10 250 5.9 7.6 5.8 79.8 71.1 78.3 5.7 7.3 5.4 76.2 68.4 75.2

50 25 5.7 5.6 4.2 16.3 16.9 17.0 3.5 4.2 2.7 11.9 13.1 12.7

50 50 6.3 6.5 5.0 30.1 30.1 31.0 4.6 5.5 3.8 24.3 25.6 25.6

50 100 6.4 7.3 5.6 53.6 48.5 52.6 5.7 6.7 4.9 47.4 44.5 47.5

50 250 6.8 8.0 6.2 87.5 78.0 85.5 6.4 7.4 5.6 84.2 75.8 82.8
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Table A4. Rejection frequencies in cross-dependent panels—common factor. γi ∼ iid U (0.9, 1),
µi ∼ iid U (0, 0.02), vt ∼ N (0, 1), λi ∼ iid U (0, 0.02). DGP B: θi ∼ iid U (0.2, 0.4). Power is computed
using size-adjusted 5% critical values; 25,000 replications were used.

DGP A DGP B

Size Power Size Power

N T tDH tHS S tDH tHS S tDH tHS S tDH tHS S

Homoskedasticity

10 25 4.8 6.3 4.6 20.0 25.2 24.1 3.4 6.3 3.8 15.2 18.0 18.2

10 50 5.0 6.8 5.1 41.2 53.6 52.0 4.0 6.4 4.3 36.1 46.5 45.2

10 100 4.9 6.7 5.1 77.7 85.9 86.9 4.3 6.4 4.7 72.9 83.1 83.5

10 250 5.1 6.8 5.3 99.0 98.5 99.6 4.7 6.9 5.2 98.6 98.2 99.5

50 25 5.1 5.6 4.5 59.5 76.4 73.4 3.1 8.9 5.1 45.2 54.3 54.2

50 50 5.0 5.8 4.5 96.2 99.1 99.2 3.8 7.1 4.5 91.8 97.5 97.5

50 100 5.2 5.8 4.8 100 100 100 3.9 6.1 4.2 100 100 100

50 250 4.8 6.0 4.9 100 100 100 4.7 6.2 4.8 100 100 100

Early negative shift

10 25 5.0 6.0 4.4 8.0 9.5 9.1 3.5 6.7 3.8 6.5 6.1 6.4

10 50 5.1 6.6 4.9 15.8 20.7 19.5 3.2 6.5 3.9 13.6 15.4 15.9

10 100 4.9 6.4 4.8 37.6 52.4 49.4 3.7 6.4 4.2 32.7 45.0 43.0

10 250 4.8 6.7 5.1 81.0 92.8 92.8 4.4 6.8 4.8 77.5 90.3 90.4

50 25 5.1 5.6 4.3 14.7 18.0 17.5 3.7 10.6 5.9 7.2 4.4 5.3

50 50 5.0 5.7 4.6 48.7 64.3 61.6 2.9 8.8 5.1 35.1 37.0 38.1

50 100 5.0 5.7 4.7 94.0 98.9 98.7 3.2 7.5 4.6 89.1 95.8 96.0

50 250 4.9 5.8 4.8 100 100 100 3.9 6.7 4.6 100 100 100

Late positive shift

10 25 4.9 5.5 4.0 16.5 17.6 18.3 3.7 4.6 3.1 11.9 13.2 13.1

10 50 4.9 6.0 4.6 33.9 35.4 37.0 4.6 5.9 4.3 24.8 27.7 28.5

10 100 4.9 6.1 4.7 69.5 67.0 72.5 4.6 6.1 4.5 60.7 60.4 64.7

10 250 5.0 6.9 5.1 98.6 94.0 98.6 4.9 6.8 5.1 97.6 93.1 97.7

50 25 5.0 5.2 3.9 45.7 48.4 51.0 4.3 6.4 4.0 26.2 30.9 30.8

50 50 5.1 5.5 4.4 88.4 87.0 90.9 4.9 7.5 5.1 74.2 76.1 79.3

50 100 5.1 5.7 4.7 99.9 99.7 100 4.9 6.9 4.9 99.6 99.2 99.8

50 250 5.1 5.8 4.8 100 100 100 5.2 6.7 5.3 100 100 100
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