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Abstract: This paper introduces Quasi-Maximum Likelihood Estimation for Long Memory
Stock Transaction Data of unknown underlying distribution. The moments with conditional
heteroscedasticity have been discussed. In a Monte Carlo experiment, it was found that the
QML estimator performs as well as CLS and FGLS in terms of eliminating serial correlations, but the
estimator can be sensitive to start value. Hence, two-stage QML has been suggested. In empirical
estimation on two stock transaction data for Ericsson and AstraZeneca, the 2SQML turns out relatively
more efficient than CLS and FGLS. The empirical results suggest that both of the series have long
memory properties that imply that the impact of macroeconomic news or rumors in one point of time
has a persistence impact on future transactions.
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1. Introduction

Classical economic theory of price determination is a function of demand and supply. For example,
in the Walrasian auctioneer approach, demands and supplies of a good are aggregated to find
a market-clearing price. However, availability of high frequency data enables studying market
mechanisms or market microstructures. These studies depart from demand–supply function of
price determination under classical economics and takes into account other factors considered to be
influential in price determination. For instance, Working (1953) in matching demand and supply curves
in equilibrium expands focus on the underlying trading mechanism. Demsetz (1968) investigates effect
of transactions costs in price determination in securities market and incorporates the influence of time
factor of demand and supply in analyzing formation of market prices. Studies of market microstructure
concern, among others, the impact of transactions, bid–ask spreads (the difference between bid and
ask prices), volume of and time between transactions (duration) on price formation. The studies
also investigate trading behavior of actors in response to news, rumors, etc. In the securities market,
a transaction (or a trade) is completed by a buyer and a seller agreeing to exchange a specific volume
of stocks at certain price. These transactions and time elapsed between each transaction are correlated.
Fewer trades take place with increasing time lapse between successive transactions in a given time
interval. Therefore, trading intensity and duration can be considered to be inversely related. During
the past decades research on market microstructure to understand pricing processes has been centered
on the trading intensity and durations. Diamond and Verrecchia (1987) illustrate implications of bad
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news in low trading intensity. Easley and O’hara (1992) differ on level of implication demonstrating
that a low trading intensity implies no news. Besides, Engle (2000) finds that durations are associated
with price volatilities. Moreover, the stock transactions data are counts for a fixed interval of time and
Quoreshi (2014) explains that the time series of the data may also have long memory property.

The long memory phenomenon in time series has been first considered by Hurst (1951, 1956).
In these studies, he explains the long term storage requirements of the Nile River. He shows that the
cumulated water flows in a year depends not only on the water flows in recent years, but also on water
flows in years much prior to the present year. Mandelbrot and van Ness (1968) explain and advance
Hurst’s studies by employing fractional Brownian motion. In analogy with Mandelbrot and van Ness
(1968); Granger (1980); Granger and Joyeux (1980) and Hosking (1981) developed Autoregressive
Fractionally Integrated Moving Average (ARFIMA) models to account for the long memory in time
series data. Granger and Ding (1996) pointed out that a number of other processes can also have the
long memory property. An empirical study regarding the usefulness of ARFIMA models is conducted
by Bhardwaj and Swanson (2005), who find strong evidence in favor of ARFIMA in absolute, squared,
and log-squared stock index returns.

A time series of count data describes a non-negative sequence of count observations, which is
integer-valued and observed at equidistant intervals of time. The literature on different techniques to
model, estimate and exploit such data is ever growing. Jacobs and Lewis (1978a, 1978b, 1983) introduced
time dependence and developed discrete ARMA (DARMA) models. An important difference between
the continuous variable ARMA model and its corresponding Integer-valued ARMA (INARMA) version
is that the latter contains parameters that are interpreted as probabilities and then take on values in
narrower intervals than do the parameters of the ARMA model (e.g., McKenzie 1986; Al-Osh and Alzaid
1987; Al-Osh and Alzaid 1988). Brännäs and Quoreshi (2010) advance integer-valued moving average
model to model the number of transactions in intraday data of stocks. Quoreshi (2006, 2008, 2014,
2017) advances further the INMA model into bivariate, multivariate and long memory (INARFIMA)
framework. These papers consider Conditional Least Square (CLS), Feasible Generalized Least Square
(FGLS), and Generalized Methods of Moments (GMM). A large number of studies have considered the
modeling of bivariate or multivariate count data assuming an underlying Poisson distribution (e.g.,
Gourieroux et al. 1984). Heinen and Rengifo (2003) introduced multivariate time series count data
models based on the Poisson and the double Poisson distribution. Other extensions to traditional count
data regression models are considered by, e.g., Brännäs and Brännäs (2004) and Rydberg and Shephard
(1999). None of these papers consider maximum likelihood estimation since full density function of
underlying distribution is unknown. Sunecher et al. (2018) recently introduce a first-order bivariate
integer-valued moving average process (BINMA(1)) where they propose a generalized quasi-likelihood
(GQL) method of estimation. Ristic et al. (2018) introduces a new bivariate integer-valued moving
average of the first order (BINMA(1)) process with independent Negative Binomial (NB) innovations
under nonstationary moment conditions. They also employed a generalized quasi-likelihood (GQL)
method of estimation.

In this paper, we propose a quasi-maximum likelihood (QML) estimator for nonstationary
integer-valued long memory model for unknown underlying distribution and compare this estimator
with CLS and FGLS that have performed better than GMM in the previous studies. We employ the
QML estimator on stock transactions data for Ericsson and AstraZeneca. Both stock series demonstrate
long memory. Empirically it is also found that the QML estimator is more efficient compared to the
other estimators.

The paper is organized as follows. The INARFIMA (0, d, 0) model is presented in Section 2.
The conditional and unconditional moment properties of the INARFIMA (0, d, 0) models are obtained.
The estimation procedures, CLS and FGLS for unknown parameters are discussed and the QML
estimator is proposed in Section 3. The results from a Monte Carlo experiment are presented in
Section 4. A detailed description of the empirical data is given in Section 5. The empirical results for the
stock series are presented in Section 6, and the concluding comments are included in the final section.
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2. The Model

Quoreshi (2014) proposes the INARFIMA (p, d, q) long memory properties of stock transaction data.
The INMA (∞) representation of INARFIMA model, which is INARFIMA (0, d, 0), can be written as

yt = ut + d1·ut−1 + d2·ut−2 + d3·ut−3 . . .

or
yt = (1 + L•)−dut (1)

where L is a lag operator and the notation L• = (•L)i for i > 0. Here we assume that here is
no cross-lag dependence among ut. Note that yt has long memory in a sense that the variables
have slow decaying autocorrelation functions and the parameters d j = Γ( j + di)/[Γ( j + 1)Γ(di)],
j = 0, 1, 2, . . . where d0 = 1. Note that d j are considered thinning probabilities and hence d j ∈ [0, 1].
The macroeconomic news or rumors are assumed to be captured by {ut} and filtered by {d j} through
the system. The binomial thinning operator is used to account for the integer-valued property of count
data. This operator can be written as

α·u =
u∑
j

z j (2)

with
{
z j
}u

j=1
an iid sequence of 0–1 random variables, such that Pr

(
z j = 1

)
= α = 1 − Pr(z j = 0).

Conditionally on the integer-valued u, α·u is binomially distributed with E(α·u|u) = αu and V(α·u|u) =
α(1− α)u. Unconditionally it holds that E(α·u) = αλ and V(λ·u) = α2σ2 + α(1− α)λ, where E(u) = λ
and V(u) = σ2. Obviously, α·u ∈ {0, 1, . . . , u}. Many authors accentuate exact distributional results
for yt, while Brännäs and Quoreshi (2010) stress only the first- and second-order moment conditions.
In analogy with Brännäs and Quoreshi (2010), we construct the Quasi-Maximum Likelihood Estimation
based on the first and second-order moment condition.

Assuming independence between and within the thinning operations and {ut} an iid sequence
with mean λ and variance σ2 = vλ where υ > 0, the unconditional first and second-order moments can
be given as

E(yt) = λ

1 +
∞∑

i=1

di

 (3)

V(yt) = λ


v +

∞∑
i=1

di

+ (v− 1)

1 +
∞∑
i

d2
i


 (4)

γk = σ2

dk +
∞∑

i=1

didk+1

, k ≥ 1 (5)

where γk denotes the autocovariance function at lag k. It is obvious from (3)–(5) that the mean, variance,
and autocovariance take only positive values since λ, σ2, and di are all positive and that

∑
∞

i=1 di < ∞ is
required for

{
yt
}

to be a stationary process. Note also that the variance may be larger than the mean
(overdispersion), smaller than the mean (underdispersion), or equal to the mean (equidispersion)
depending on whether v > 1, v ∈ (0, 1) or v = 1, respectively. When lag length q is finite, summing to
infinite is replaced to summing to q. The conditional mean, variance, and covariance for the INARFIMA
(0, d, 0) are in an analogous way:

E(yt
∣∣∣Yt−1) = Et−1 = λ

1 +
∞∑

i=1

diut−i

 (6)

V(yt
∣∣∣Yt−1) = Vt−1 = λv +

∞∑
i=1

di(1− di)ut−i (7)
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where Yt−1 is the information set available at time t − 1. The conditional mean and variance vary
with ut−i. Since the conditional variance varies with ut−i, there is a conditional heteroscedasticity
or nonstationary property of moving average type that Brännäs and Hall (2001) called MACH(q).
The effect of ut−i on the mean is greater than on the variance. Note also, that like the unconditional
variance, the conditional variance could be overdispersed, underdispersed, or equidispersed depending
on whether v > 1 +

∑
∞

i
d
λ , v < (1 +

∑
∞

i
di
λ ) or vi = 1 +

∑
∞

i
di
λ , respectively.

3. Estimation

If we do not assume a full density function, we may estimate the Quasi Maximum Likelihood
(QML) Estimator as discussed by Weiss (1986) instead of Maximum Likelihood (ML) Estimator.
Conditional Least Square (CLS), Feasible Generalized Least Square (FGLS) are Generalized Methods of
Moments discussed in INMA model (Brännäs and Quoreshi 2010). In the previous studies, FGLS is the
best estimator among the three in terms of eliminating serial correlation (Brännäs and Quoreshi 2010).
The CLS is second, which is almost as good as FGLS. Here, we only construct the QML and FGLS for
INARFIMA (0, d, 0) model and compare the results with CLS.

The Conditional least square (CLS) estimator for INARFIMA (0, d, 0) representation model has
the following residual.

et = yt − Et−1 = yt − λ

1 +
∞∑

i=1

diut−i

 (8)

The criterion function SCLS =
∑T

i=m+1 e2
t is minimized with respect to unknown parameters, i.e.,

ψ = (λ and δ′) where δ′ is vector of parameters with elements di. The Et−1 is the conditional expected
value of yt defined in Equation (6). Using a finite maximum lag m in (8) instead of infinite lags may
cause biasing effects. Due to omitted variables, i.e., ut−m−1, . . . , ut−∞, we may expect a positive bias on
the parameters λ and δ′ (Brännäs and Quoreshi 2010). These moment conditions correspond to the
normal equations of the CLS estimator that focuses on the unknown parameters of the conditional
mean function. Alternatively and equivalently, the properties E(et) = 0 and E(etet− j) = 0, j ≥ 1 could be
used. The FGLS estimator minimizes

SFGLS =
T∑

t=m+1

etV̂−1 (9)

with V̂−1 as given. The variance of error from CLS estimates may be used for approximation of V̂−1 in
equation (9). Alternatively, V̂−1 can be estimated as specified in (7) by employing estimates from CLS.
The covariance matrix estimators for CLS and FGLS are

Cov
(
ψ̂CLS

)
=

 T∑
t=m+1

∂et

∂ψ
∂et

∂ψ′


−1

Cov
(
ψ̂FGLS

)
=

 T∑
t=m+1

V̂−1 ∂et

∂ψ
∂et

∂ψ′


−1

The QML estimator for INARFIMA (0, d, 0) representation model has the same residual as in
Equation (9), and we propose the following criterion function to maximize

f (y1, y2 . . . , yT
∣∣∣Yt−1,λand δ′) =

T∏
t=1

f (yt
∣∣∣Yt−1,ψi) =

(
1

2πVt−1

)T/2

exp

−
∑T

i=m+1 e2
t

2Vt−1

 (10)
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where ψi = (λand δ′) and Vt−1 is as in Equation (7). This specification may be motivated by the
central limit theorem since yt are counts but not the Et−1. According to the central limit theorem,
the standardized expected value of a sample is normally distributed with mean zero and variance one if
the sample size is large enough. A relevant empirical study of distribution properties on high-frequency
intraday transaction prices are conducted by Andersen et al. (2001). Taking the logarithm of Equation
(10), we may simply use the criterion function and minimize the function as

Ln f
(
y1, y2 . . . , yT

∣∣∣Yt−1,λ, δ′andV̂t−1
)
= −

T
2

ln (V̂t−1) − ln(2π) −


∑T

t=m+1 e2
t

2V̂t−1

 (11)

where V̂t−1 is an estimate for Vt−1 that is to be estimated. Since T, 2, and π are constants, we can
equivalently minimize the following criterion function

Ln f ( y1, y2 . . . , yT
∣∣∣Yt−1,λ, δ′andV̂t−1 ) = − ln (V̂t−1) −


∑T

t=m+1 e2
t

V̂t−1

. (12)

Note that the V̂t−1 is to be estimated at the same time as the other parameters. If the estimation is
sensitive to the start value of V̂t−1, we can obviously estimate CLS at the first stage and calculate the
V̂t−1 which can be used as the start value for QML. We call this estimation procedure Two-Stage Quasi
Maximum Likelihood (2SQML) Estimation. The covariance matrix estimators for QML and 2SQML are

Cov
(
ψ̂QML

)
=

 T∑
t=m+1

V̂−1 ∂et

∂ψ
∂et

∂ψ′


−1

Cov
(
ψ̂2SQML

)
=

 T∑
t=m+1

V̂−1
CLS

∂et

∂ψ
∂et

∂ψ′


−1

.

Note that we call an estimator relatively efficient if we have a smaller standard deviation (error)
for the parameters of interest compared to the other estimator. The covariance matrices mentioned
above calculate the standard error for the estimates in respective estimator. The criteria that are used
to choose best model fitting are, e.g., Adjusted-R2, mean square error (MSE), Akaike Information
Criteria (AIC), and Schwarz Bayesian Information Criterion (SBIC). The Adjusted-R2 explains the
degree of variation in the dependent variable explained by the independent variables, while MSE
explains to what extend the regression models are unable to explain the variation of independent
variable. Hence, this implies that the higher Adjusted-R2 the smaller MSE. The SCLS is the MSE for
Equation (8), while the corresponding Adjusted-R2 is (1 − SCLS/var(yt)), where var(yt) is the variance of
the independent variable. The ACI and SBIC are similar to MSE. Instead of MSE, the AIC and SBIC use
a function that incorporate the value from the likelihood function used in estimation, as in Equation
(11). In the first step, these criteria may be used for model selection.

In time series, Ljung–Box statistics and Box–Pierce test are widely used to check the serial
correlations between the residuals. These criteria can be used to evaluate estimators given a model.
The null hypothesis is that the residuals et are independently distributed while the alternative hypothesis
is that the residuals are not independently distributed; there are serial correlations between the residuals.
The Ljung–Box statistics for residuals can be written

QLB = n(n + 2)
h∑

k=1

ρ̂2
k

n− k

where n is the number of observations and k is the number of lags used for estimation (Ljung and Box
1978). The ρ̂k is the autocorrelations of residuals at lag k. The null hypothesis is rejected if
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QLB > χ
2
1−α,h

where χ2
1−α,h is chi-squared distribution with significance level α and degree of freedom h. Similarly,

the Box–Pierce test can be written as

QBP = n
h∑

k=1

ρ̂2
k

where n, k, are ρ̂k as described above (Box and Pierce 1970). The difference between these two statistics
emerges from the term (n + 2) and (n− k) used in Ljung–Box statistics and QLB > QBP and hence QLB

is more restrictive to reject the null hypothesis.

4. Monte Carlo Experiment

Quoreshi (2014) studies, in a brief Monte Carlo experiment, the bias, MSE, Ljung–Box statistics
(LB), AIC, and SBIC properties of the CLS estimators for finite-lag specifications; data is generated
according to INARFIMA (0, d, 0). Here, we study employing QML, 2SQML, and FGLS estimators
and compare the results with CLS. Initially, we found that QML is highly sensitive to start values
and produces large biased estimates. Hence, we only focus the result on 2SQML, FGLS, and CLS.
This study generates data from Poisson distribution to study the bias properties under 2SQML and FGLS
estimation procedure. Smith et al. (1996) and Quoreshi (2014) studied the bias and misspecification in
ARFIMA and INARFIMA models, respectively. Drost et al. (2009) investigate finite sample behavior
of semiparametric integer-valued AR(p) models, while Brännäs and Quoreshi (2010) study finite
lag misspecification when the data is generated according to an infinite-lag INMA model. In this
Monte Carlo experiment we study the bias, MSE, Ljung–Box statistics, AIC, and SBIC properties
of the FGLS and 2SQML estimators for finite-lag specifications when data is generated according
to INARFIMA (0, d, 0).The data generating process is as in (1), with d j = Γ( j + d)/[Γ( j + 1)Γ(d)],
j = 0, 1, 2, . . . where d0 = 1 and where ut is drawn according to Equation (2). The values for
d,d = 0.1, 0.25 and 0.4 are used and lag length m = 70 is chosen. The ut sequence is generated as
Poisson with parameter λ = 5 so that λ = σ2 in the conditional variance equation in (7). Six time series
with length T = 2000 and T = 10, 000 are generated. The first 500 observations are discarded to avoid
the start-up effect. The results for the Monte Carlo experiment are given in Tables 1–3. In Table 1,
we see that the estimates for d decreases as lag length (M) increases from 10 to 70 and approaches to
the theoretical value d = 0.1. This implies that the biasness of the estimates decreases from 0.071 to
0.004 for T = 2000 as the lag length approaches the theoretical lag length 70 (see d̂ corresponding to
M10–M70 in Table 1). The parameter estimated with lag length 90 (M90) is d < 0.1, which implies
negative biasness. Like Brännäs and Quoreshi (2010), we conclude that we may expect a positive
biasing effect on the parameters due to omitted variables. The results for MSE, AIC, and SBIC for all
the three estimators are same up to three decimals (Table 1). Depending on the size of d, the standard
AIC and SBIC may need to be corrected. The result indicates that 2SQML, FGLS and CLS estimators
perform equally well in terms of eliminating serial correlation (see QLB100 and QLB100 in Tables 1–3).
However, standard error (see s.e. for M70 in Tables 1–3) for d varies slightly between the estimator.
Taking this into account, we may conclude that CLS performs best while 2SQML estimator performs
better than FGLS. It is to be noted that both QML and FGLS are sensitive to start values. In this case
2SQML should be used.
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Table 1. The properties of the Conditional Least Square (CLS), Feasible Generalized Least Square
(FGLS), and Two-Stage Quasi Maximum Likelihood (2SQML) estimators for finite-lag specifications,
when data is generated according to Integer-valued Autoregressive Fractionally Integrated Moving
Average (INARFIMA) (0,d,0) models with d = 0.1 and lag (M) = 70.

Lag Parameters
T = 2000 and d = 0.1 T = 10,000 and d = 0.1

CLS FGLS ML CLS FGLS ML

M10

d̂ 0.171 0.171 0.171 0.167 0.167 0.167
(s.e.) 0.001 0.003 0.003 0.000 0.001 0.001
BIAS 0.071 0.071 0.071 0.067 0.067 0.067
MSE 8.286 8.286 8.286 8.117 8.117 8.117

QLB100 135.447 135.447 135.447 207.628 207.628 207.628
QLB200 210.680 210.680 210.680 302.137 302.137 302.137

AIC 4239.785 4239.785 4239.785 20,943.299 20,943.299 20,943.299
SBIC 4312.395 4312.395 4312.395 21,033.613 21,033.613 21,033.613

M30

d̂ 0.126 0.126 0.126 0.123 0.123 0.123
(s.e.) 0.001 0.002 0.002 0.000 0.001 0.001
BIAS 0.026 0.026 0.026 0.023 0.023 0.023
MSE 8.226 8.226 8.226 8.034 8.034 8.034

QLB100 127.753 127.753 127.753 129.387 129.387 129.387
QLB200 200.223 200.223 200.223 220.119 220.119 220.119

AIC 4246.408 4246.408 4246.408 20,867.821 20,867.821 20,867.821
SBIC 4451.036 4451.036 4451.036 21,122.341 21,122.341 21,122.341

M50

d̂ 0.112 0.112 0.112 0.109 0.109 0.109
(s.e.) 0.001 0.002 0.002 0.000 0.001 0.001
BIAS 0.012 0.012 0.012 0.009 0.009 0.009
MSE 8.188 8.188 8.188 8.018 8.018 8.018

QLB100 124.244 124.244 124.244 110.770 110.770 110.770
QLB200 197.235 197.235 197.235 199.517 199.517 199.517

AIC 4257.168 4257.168 4257.168 20,868.726 20,868.726 20,868.726
SBIC 4593.814 4593.814 4593.814 21,287.453 21,287.453 21,287.453

M70

d̂ 0.104 0.104 0.104 0.101 0.101 0.101
(s.e.) 0.001 0.002 0.002 0.000 0.001 0.001
BIAS 0.004 0.004 0.004 0.001 0.001 0.001
MSE 8.190 8.190 8.190 8.016 8.016 8.016

QLB100 122.988 122.988 122.988 104.384 104.384 104.384
QLB200 195.961 195.961 195.961 193.215 193.215 193.215

AIC 4277.888 4277.888 4277.888 20,886.425 20,886.425 20,886.425
SBIC 4746.552 4746.552 4746.552 21,469.359 21,469.359 21,469.359

M90

d̂ 0.099 0.099 0.099 0.096 0.096 0.096
(s.e.) 0.001 0.002 0.002 0.000 0.001 0.001
BIAS −0.001 −0.001 −0.001 −0.004 −0.004 −0.004
MSE 8.168 8.168 8.168 8.021 8.021 8.021

QLB100 121.982 121.982 121.982 99.539 99.539 99.539
QLB200 192.315 192.315 192.315 188.162 188.162 188.162

AIC 4292.417 4292.417 4292.417 20,911.714 20,911.714 20,911.714
SBIC 4893.099 4893.099 4893.099 21,658.855 21,658.855 21,658.855
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Table 2. The properties of the CLS, FGLS, and 2SQML estimators for finite-lag specifications, when data
is generated according to INARFIMA (0, d, 0) models with d = 0.25 and lag (m) = 70.

Lag Parameters
T = 2000 and d = 0.25 T = 10,000 and d = 0.25

CLS FGLS ML CLS FGLS ML

M10

d̂ 0.397 0.397 0.397 0.404 0.404 0.404
(s.e.) 0.001 0.004 0.005 0.000 0.002 0.002
BIAS 0.147 0.147 0.147 0.154 0.154 0.154
MSE 17.428 17.428 17.428 17.469 17.469 17.469

QLB100 252.360 252.360 252.360 861.417 861.418 861.418
QLB200 330.591 330.592 330.591 951.603 951.604 951.603

AIC 5705.874 5705.875 5705.874 28,504.208 28,504.210 28,504.209
SBIC 5778.484 5778.485 5778.484 28,594.522 28,594.523 28,594.523

M30

d̂ 0.292 0.292 0.292 0.298 0.298 0.298
(s.e.) 0.001 0.003 0.003 0.000 0.001 0.001
BIAS 0.042 0.042 0.042 0.048 0.048 0.048
MSE 16.219 16.219 16.219 16.202 16.202 16.202

QLB100 173.555 173.555 173.555 434.016 434.016 434.016
QLB200 246.801 246.801 246.801 511.413 511.413 511.413

AIC 5599.729 5599.729 5599.729 27,861.795 27,861.795 27,861.795
SBIC 5804.357 5804.357 5804.357 28,116.315 28,116.316 28,116.315

M50

d̂ 0.260 0.260 0.260 0.264 0.264 0.264
(s.e.) 0.001 0.003 0.003 0.000 0.001 0.001
BIAS 0.010 0.010 0.010 0.014 0.014 0.014
MSE 15.951 15.951 15.951 15.956 15.956 15.956

QLB100 152.446 152.446 152.446 343.686 343.686 343.686
QLB200 222.466 222.466 222.466 418.824 418.824 418.824

AIC 5588.694 5588.694 5588.694 27,738.271 27,738.271 27,738.271
SBIC 5925.340 5925.340 5925.340 28,156.998 28,156.998 28,156.998

M70

d̂ 0.242 0.242 0.242 0.245 0.245 0.245
(s.e.) 0.001 0.003 0.003 0.000 0.001 0.001
BIAS −0.008 −0.008 −0.008 −0.005 −0.005 −0.005
MSE 15.845 15.845 15.845 15.848 15.848 15.848

QLB100 136.373 136.373 136.373 294.513 294.513 294.513
QLB200 212.107 212.107 212.107 370.136 370.136 370.136

AIC 5596.148 5596.148 5596.148 27,694.288 27,694.288 27,694.288
SBIC 6064.812 6064.812 6064.812 28,277.222 28,277.222 28,277.223

M90

d̂ 0.230 0.230 0.230 0.233 0.233 0.233
(s.e.) 0.001 0.003 0.003 0.000 0.001 0.001
BIAS −0.020 −0.020 −0.020 −0.017 −0.017 −0.017
MSE 15.909 15.909 15.909 15.809 15.809 15.809

QLB100 132.433 132.433 132.433 268.457 268.457 268.457
QLB200 210.826 210.826 210.826 343.640 343.640 343.640

AIC 5624.678 5624.678 5624.678 27,691.884 27,691.884 27,691.884
SBIC 6225.360 6225.360 6225.360 28,439.025 28,439.025 28,439.025

Table 3. The properties of the CLS, FGLS, and 2SQML estimators for finite-lag specifications, when data
is generated according to INARFIMA (0, d, 0) models with d = 0.4 and lag (m) = 70.

Lag Parameters
T = 2000 and d = 0.4 T = 10,000 and d = 0.4

CLS FGLS ML CLS FGLS ML

M10

d̂ 0.598 0.598 0.598 0.605 0.605 0.605
(s.e.) 0.001 0.004 0.005 0.000 0.002 0.002
BIAS 0.198 0.198 0.198 0.205 0.205 0.205
MSE 41.798 41.798 41.798 40.197 40.197 40.197

QLB100 549.235 549.235 549.235 1949.879 1949.878 1949.877
QLB200 665.178 665.177 665.177 2136.378 2136.377 2136.375

AIC 7349.147 7349.147 7349.146 36,337.152 36,337.151 36,337.149
SBIC 7421.757 7421.757 7421.756 36,427.466 36,427.465 36,427.463
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Table 3. Cont.

Lag Parameters
T = 2000 and d = 0.4 T = 10,000 and d = 0.4

CLS FGLS ML CLS FGLS ML

M30

d̂ 0.461 0.461 0.461 0.463 0.463 33.105
(s.e.) 0.001 0.004 0.004 0.000 0.002 0.331
BIAS 0.061 0.061 0.061 0.063 0.063 0.063
MSE 34.030 34.030 34.030 33.105 33.105 33.105

QLB100 340.270 340.270 340.270 964.972 964.973 964.972
QLB200 436.152 436.152 436.152 1108.871 1108.872 1108.871

AIC 7064.123 7064.124 7064.123 34,917.597 34,917.598 34,917.597
SBIC 7268.751 7268.752 7268.751 35,172.117 35,172.119 35,172.117

M50

d̂ 0.410 0.410 0.410 0.412 0.412 0.412
(s.e.) 0.001 0.004 0.004 0.000 0.002 0.002
BIAS 0.010 0.010 0.010 0.012 0.012 0.012
MSE 32.758 32.758 32.758 31.692 31.692 31.692

QLB100 301.374 301.375 301.374 742.921 742.922 742.921
QLB200 393.018 393.018 393.018 878.651 878.652 878.651

AIC 7017.857 7017.858 7017.857 34,553.008 34,553.010 34,553.008
SBIC 7354.503 7354.504 7354.503 34,971.736 34,971.737 34,971.736

M70

d̂ 0.382 0.382 0.382 0.384 0.384 0.384
(s.e.) 0.001 0.004 0.003 0.000 0.002 0.002
BIAS −0.018 −0.018 −0.018 −0.016 −0.016 −0.016
MSE 31.907 31.907 31.907 31.152 31.152 31.152

QLB100 275.290 275.291 275.290 657.154 657.154 657.154
QLB200 365.202 365.202 365.202 789.378 789.379 789.378

AIC 6988.464 6988.464 6988.464 34,418.475 34,418.476 34,418.475
SBIC 7457.128 7457.128 7457.128 35,001.409 35,001.410 35,001.409

M90

d̂ 0.364 0.364 0.364 0.364 0.364 0.364
(s.e.) 0.001 0.003 0.004 0.000 0.002 0.001
BIAS −0.036 −0.036 −0.036 −0.036 −0.036 −0.036
MSE 31.430 31.430 31.430 30.826 30.826 30.826

QLB100 255.701 255.701 255.701 602.208 602.208 602.208
QLB200 346.677 346.677 346.677 733.237 733.238 733.237

AIC 6980.709 6980.709 6980.709 34,340.862 34,340.862 34,340.862
SBIC 7581.391 7581.391 7581.391 35,088.002 35,088.003 35,088.002

5. Data and Descriptive

In this paper, we use the same data set used by Quoreshi (2014). The reason for this is that we
introduce Quasi-Maximum Likelihood Method, which has not been considered in the study and the
studies on count data earlier due to unknown underlying distribution. We intend to employ this method
on the same data set and replicate the previous study to compare with results emerged from employing
this method. Quoreshi (2014) has downloaded the tick-by-tick data for Ericsson B and AstraZeneca
from the Ecovision system and the data are later filtered to generate transaction data which are counts.
The stocks are frequently traded and have the highest turnovers at the Stockholmsbörsen. The two
stock series are collected for the period 5 November–12 December 2002. Due to a technical problem in
downloading data there are no data for 12 November in the time series and the first captured minutes
of 5 December is 1037. Since we are interested in capturing the number of ordinary transactions, we
have deleted all trading before 0935 (trading opens at 0930) and after 1714 (order book closes at 1720).
The transactions in the first few minutes are subject to a different trading mechanism while there is
practically no trading after 1714. The data are aggregated into one minute intervals of time. For high
frequency data, researchers usually use one, two, five, or ten minute intervals of time and the choice is
rather arbitrary. There are altogether 11,960 observations for both the Ericsson B and AstraZeneca series.
The series together with their autocorrelation and partial-autocorrelation functions and histograms are
exhibited in Figure 1. There are frequent zero frequencies in both series, especially in the AstraZeneca
series, and hence the application of count data modeling is called for. The counts in both series fluctuate
around their means which is an indication of mean reverting processes. The autocorrelation functions
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for both series suggest fractional integration which implies long memory. The histograms exhibit
the distribution of counts and the possible empirical densities of the counts. Even with relatively
large sample size, the distributions appear far from being normally distributed. On the other hand,
the distributions appear to be similar to Poisson distribution; both variances are greater than their
respective means (Figure 1). Hence, there is no scope for employing known distributions.J. Risk Financial Manag. 2019, 12, x FOR PEER REVIEW 10 of 13 
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Figure 1. The time series of Ericsson B (mean 11.73 and variance 84.86) and AstraZeneca (mean 1.33
and variance 3.75) and their autocorrelation and partial-autocorrelation functions.
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6. Empirical Results

CLS, FGLS, and 2SQML are employed for estimation with lag length of 70 following the suggestions
of Brännäs and Quoreshi (2010). It is to be noted that the AIC and SBIC criteria are not applicable in
the context of long memory (Brännäs and Quoreshi 2010; Quoreshi 2014), which is also supported by
the Monte Carlo Experiment. The results of the empirical studies are presented in Table 4. Empirically,
we find evidence for long memory property (d̂ < 0.5) for both Ericsson B and AstraZeneca series
(see Table 4). The series for both AstraZeneca and Ericsson has mean reversion property and is
covariance stationary. The findings suggest that the impact of macroeconomic news or rumors in one
point of time has a persistence impact on future transactions. It may be recalled that news disseminated
through formal channels which may have impact on overall stock markets and specifically on a
particular stock is termed macroeconomic news, such as news on interest rates or unemployment
statistics for a country which may influence all stocks. Rumors are information that spread through
unofficial channels yet is related to macroeconomic news or a particular stock. For AstraZeneca,
we find that CLS perform best while 2SQML performs better than FGLS in terms of eliminating serial
correlation. Considering the standard error of the parameters (λ̂, d̂), we find that 2SQML performs
best among the three estimators, while CLS performs better than FGLS. For Ericsson B, we find that
2SQML performs best in terms of both eliminating serial correlations and minimum standard error for
the parameters. All other corresponding estimates turn out equal up to 3 decimals estimated by the
three estimators.

Table 4. CLS, FGLS, and 2SQML estimates for Ericsson and AstraZeneca.

Ericsson AstraZeneca

CLS FGLS ML CLS FGLS ML

d̂ 0.324 0.324 0.324 0.204 0.204 0.204
(s.e) 0.008 0.008 0.008 0.012 0.012 0.011
λ̂ 2.625 2.625 2.625 0.507 0.507 0.507

(s.e) 0.091 0.092 0.088 0.027 0.027 0.026
Var - - 54.722 - - 3.303

(s.e.) - - 1.809 - - 0.151
AIC 48,010.160 48,010.160 48,010.160 14,433.565 14,433.565 14,433.565
SBIC 48,534.802 48,534.802 48,534.802 14,958.207 14,958.207 14,958.207

QLB100 335.111 335.111 335.111 235.586 235.586 235.587
QLB200 422.191 422.191 422.191 352.309 352.309 352.309
MSE 54.722 54.722 54.722 3.303 3.303 3.303

7. Concluding Remarks

This paper introduces Quasi-Maximum Likelihood Estimation of Integer-Valued Long Memory
Model for unknown underlying distribution and the estimation procedures for QML have been
discussed. The paper compares the 2SQML estimator with FGLS and CLS. In a Monte Carlo
experiment, it is found that the 2SQML, FGLS, and CLS estimators perform equally well in terms of
eliminating serial correlation. The empirical study suggests that CLS performs best for AstraZeneca,
while 2SQML performs best for Ericsson B in terms of eliminating serial correlations. However,
the 2SQML estimator performs better than both the CLS and FGLS in terms of minimum standard
error for estimates of the parameters for both Ericsson B and AstraZeneca, although CLS perform best
followed by 2SQML in the simulation study. Note that the data in the simulation study is equidispersed
since the data is generated from the Poisson distribution, while the data for the empirical study is
overdispersed. The results of the study collectively may indicate that 2SQML estimator is relatively
more efficient compared to CLS and FGLS for overdispersed data. The empirical results suggest that
both series have long memory properties, which implies that the impact of macroeconomic news or
rumors in one point of time has a persistence impact on future transactions.
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