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Abstract: The trend towards eliminating defined benefit (DB) pension plans in favour of defined
contribution (DC) plans implies that increasing numbers of pension plan participants will bear
the risk that final realized portfolio values may be insufficient to fund desired retirement cash
flows. We compare the outcomes of various asset allocation strategies for a typical DC plan investor.
The strategies considered include constant proportion, linear glide path, and optimal dynamic
(multi-period) time consistent quadratic shortfall approaches. The last of these is based on a double
exponential jump diffusion model. We determine the parameters of the model using monthly US data
over a 90-year sample period. We carry out tests in a synthetic market which is based on the same
jump diffusion model and also using bootstrap resampling of historical data. The probability that
portfolio values at retirement will be insufficient to provide adequate retirement incomes is relatively
high, unless DC investors adopt optimal allocation strategies and raise typical contribution rates.
This suggests there is a looming crisis in DC plans, which requires educating DC plan holders in
terms of realistic expectations, required contributions, and optimal asset allocation strategies.

Keywords: defined contribution plan; probability of shortfall; quadratic shortfall; dynamic asset
allocation; resampled backtests

JEL Classification: G11

1. Introduction

Defined benefit (DB) pension plans can be high risk liabilities for both private and public sector
organizations. To de-risk balance sheets, many employers have been gradually converting to defined
contribution (DC) plans. This trend has been particularly strong in Australia and the US: as of 2017,
87% of pension assets in Australia were in DC plans, while the corresponding figure for the US was
60%. In contrast, in countries such as the UK, Canada, and Japan, pension plan assets were still
predominantly in DB plans.1 Of course, considering just the percentage of assets in DC plans at a point
in time can hide the underlying trend. For example, about 95% of Canadian pension assets were in
DB plans as of 2017. However, Gougeon (2009) points out that the number of DC plan participants in
Canada almost doubled between 1991 and 2006, while the number of DB plan participants shrank by
about 4% over the same period.

1 Statistics from the Thinking Ahead Institute’s “Global Pension Assets Study 2018”. Available online: www.
thinkingaheadinstitute.org/-/media/Pdf/TAI/Research-Ideas/GPAS-2018.pdf.
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Under a DC plan, the employee and employer contribute to a retirement savings account, which
is usually tax-advantaged. In some cases, the employee is able to select from a list of investments
(e.g., stock and bond index funds) which have been approved by the employer. However, in terms of
the important decisions about asset allocation, the employee is typically left up to her own devices.

Although DC plans are desirable from the employers’ point of view, the retirement savings risk has
simply been transferred to those who are perhaps least able to manage it. Many studies have confirmed
that the average retail investor is very poor at managing investment portfolios (e.g., Barber and Odean
(2013)). A typical DC plan investor will accumulate savings for thirty or more years, followed by
a decumulation phase of perhaps twenty years. As a result, inefficiencies in asset allocation, even if
small in annual terms, can have very large cumulative effects over a typical long-term retirement
savings investment horizon.

Target date funds (TDFs) have become a popular means of providing an autopilot asset allocation
strategy. The prototypical TDF uses a high allocation to equities during the early years of DC savings.
The stock allocation is decreased, and the portfolio becomes more weighted towards bonds, as the
retirement date nears. The transition from high to low equity allocations is pre-determined by means
of a glide path strategy. In the US, TDFs are Qualified Default Investment Alternatives, implying that
the assets of employees enrolled in an employer-managed DC plan can be invested in a TDF by
default.2 Holt (2018) indicates that total assets in US TDFs at the end of September 2018 were almost
$1.19 trillion, and notes that “given their role as the default investment in many defined contribution
retirement plans, investors can expect to see assets in target-date funds continue to rise over the long
run”.3 This reflects the tendency of many DC plan participants to stick with the default option that is
presented to them. This has been noted in the US context by Madrian and Shea (2001) and Choi et al.
(2002) amongst several others, and by other authors in various other countries as well.4 An implication
of investors’ choosing default options is that default asset allocations will have a strong effect on the
accumulation of savings over time (Dobrescu et al., 2018). Choi et al. (2002) note that

Sophisticated employers should choose their plan defaults carefully, since these defaults
will strongly influence the retirement preparation of their employees. Policymakers should
also recognize the role of defaults, since policymakers can facilitate, with laws and
regulations, the socially optimal use of defaults (Choi et al. 2002, p. 104).

However, several studies have reported that TDFs do not appear to outperform simpler constant
proportion strategies (Arnott et al., 2013; Basu et al., 2011; Esch and Michaud, 2014; Estrada, 2014;
Forsyth and Vetzal, 2019). Clearly, constant proportion strategies which have a significant allocation
to equities could result in a wide range of terminal wealth at the end of the accumulation period.
The fact that TDFs are not superior to such strategies indicates that TDFs are not a panacea for DC
plan investors.

Our objective in this article is to describe realistic outcomes for a typical DC plan investor who
contributes a fixed (real) amount per year to an account containing two possible assets, a low risk
bond fund and an equity index fund, over a lengthy (30 year) accumulation period, and who follows
one of three different asset allocation strategies. The first two of these strategies are often available as
default options in US DC plans, these being a constant proportion strategy and a linear glide path,
which approximately mimics a prototypical TDF. These strategies are both deterministic since the
asset allocation between the bond and equity funds is pre-specified and does not change as a result
of realized investment returns. The third strategy is an optimal dynamic (multi-period) quadratic

2 In other words, the employee must explicitly decide to opt out of a TDF if she desires a different asset allocation strategy.
3 Although our focus in this article is on the US setting, we note that TDFs are now being marketed in various parts of Europe,

in part due to regulatory developments (Pielichata, 2018). Major US vendors such as Vanguard and Fidelity have launched
TDFs in Canada in recent years. In addition, some life-cycle products such as Time Pension which has been popular in
Denmark are similar in some respects to TDFs.

4 See, for example, Hedesström et al. (2004) (Sweden), O’Connell (2009) (New Zealand), and Dobrescu et al. (2018) (Australia).
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shortfall (QS) strategy. While such a strategy is not (to our knowledge) currently available for DC
plan investors, it is an interesting extension to consider since it is adaptive, i.e., the asset allocation is
a function of the prevailing state of the investment portfolio and the time remaining until anticipated
retirement. Our investigation of this strategy allows us to draw conclusions about the extent to
which adaptive strategies could potentially improve savings outcomes compared to the types of
strategies that are currently popular default options. Unlike the constant proportion and glide path
strategies, the QS strategy relies on a parametric model for the equity index. Our implementation
models the real (inflation-adjusted) stock index as following a double exponential jump diffusion
model (Kou and Wang, 2004), which incorporates the risk of sudden market crashes.5 The parameters
of the jump diffusion model are estimated by fitting to nine decades of US market data.

The QS strategy is computed by numerically solving a Hamilton–Jacobi–Bellman (HJB) equation
(Dang and Forsyth, 2014). It is interesting to note that the QS strategy, which is naturally time
consistent, is equivalent to the pre-commitment multi-period mean-variance (MV) strategy, in the
sense that both objective functions lead to the same optimal controls. This can be proven based on
the embedding technique (Li and Ng, 2000; Zhou and Li, 2000). Our numerical approach allows
us to impose realistic no-leverage constraints. This avoids the impractical situation of a highly
leveraged portfolio, which often results for unconstrained pre-commitment MV optimal strategies
(Lioui and Poncet, 2016)6.

As a benchmark case, we consider a constant proportion strategy involving the two assets listed
above: a risk-free bond index and a risky stock index. The portfolio is annually rebalanced. The weights
on the two assets are chosen to achieve a target expected level of real wealth at the end of the savings
period. We then compare this strategy with a glide path and an optimal QS strategy, both of which
are constrained to have the same expected value of final wealth as the constant proportion strategy.
The glide path and constant proportion asset allocation strategies can be considered to be typical of
many DC plan holders. The optimal QS strategy is effectively a best case scenario, in terms of reducing
the probability of shortfall (over a wide range of the terminal wealth distribution) compared to glide
path or constant proportion strategies (Forsyth and Vetzal, 2017b); Forsyth and Vetzal (2019).

We compare these strategies in a synthetic market, in which the equity price process is assumed to
follow a jump diffusion with constant parameters (i.e., the average historical parameters). We also
carry out tests using bootstrap resampling with actual historical data (Cogneau and Zakalmouline,
2013; Dichtl et al., 2016).

We make several assumptions which allow us to convert a desired final salary replacement ratio
into a target real portfolio value after a 30-year contribution period. Our base case example assumes
a target real final salary replacement ratio of 50%, a combined annual employee-employer contribution
of 20% of real salary, and investments in short-term risk-free government bonds and a value-weighted
equity index.

Our two main findings are as follows:

1. With typical glide path or constant proportion strategies, there is an unacceptably large probability
of shortfall in terms of meeting the target final wealth goal.

2. Even with an optimal dynamic QS asset allocation strategy, there is still a fairly high probability
of shortfall. This shortfall probability can be reduced to what we view as a reasonable level by
increasing the total contribution rate or reducing the replacement ratio, compared to the base case.
Another possibility is to substitute an equal-weighted equity index for the value-weighted index,

5 An obvious extension would be a GARCH/stochastic volatility model. However, Ma and Forsyth (2016) document that
mean-reverting stochastic volatility effects for Heston-type stochastic volatility models are negligible for long-term investors.
Since multivariate GARCH/stochastic volatility models are typically mean-reverting, this suggests that stochastic volatility
may be unimportant for long-term investors under these models as well, but this has not been proven.

6 Recall the time consistent QS strategy has the same controls as the pre-commitment MV strategy.
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but this may not work in practice due to higher costs associated with equal-weighted indexes,
which are not recognized in our model.

Our results suggest that most DC plan holders are unlikely to be able to maintain their desired
standard of living upon retirement. In our opinion, the true risks of DC plans have not been
communicated in realistic terms to plan participants. It seems that this situation can be improved only
by simultaneously lowering expectations, increasing savings rates, and improving asset allocation
strategies. We emphasize that while, in principle, an optimal QS strategy could be offered as an option
to DC plan members by a financial intermediary, and this would give those who selected it improved
odds of achieving sufficient levels of retirement savings to maintain their desired living standards in
retirement, by itself this is unlikely to be enough. It will also be necessary to raise savings rates and
reduce expectations about living standards during retirement.

A possible criticism of our findings is based on the fact that our computations use the past 90 years
of US market data. Some would argue that real market returns going forward will be lower than
historically observed values. However, this would only lead to worse results, so it could be argued
that our conclusions should be even more pessimistic.

2. Formulation

We focus exclusively on a simple context with just two assets available in the financial market,
namely a risky asset and a risk-free asset. In practice, the risky asset would be a broad market index
fund. An investor saves for retirement at time T. The amounts that this investor’s portfolio contains
of the risky and risk-free assets at time t are denoted by St and Bt, respectively. The investor’s total
wealth from the portfolio (i.e., the total value of the portfolio) at t is Wt = St + Bt. The fraction of total
wealth invested in the risky asset is pt = St/Wt. The investment period runs from the inception time
t = 0 to the horizon date t = T. There is a set of M + 1 pre-determined action times denoted by T ,

T ≡ {t0 = 0 ≤ t1 ≤ · · · ≤ tM = T} . (1)

At the horizon date tM = T, the portfolio is liquidated. At each action time ti ∈ T1 = T \ {tM}
(i.e., each action time prior to T), (i) an amount of cash qi is contributed to the portfolio and then (ii) the
portfolio is rebalanced.7

Let the instant before action time ti be t−i = ti − ε, where ε→ 0+. Similarly, the instant after ti is
denoted by t+i = ti + ε. To simplify notation, let S+

i = St+i
, S−i = St−i

, B+
i = Bt+i

, B−i = Bt−i
, W+

i = Wt+i
,

and W−i = Wt−i
. Similarly, let pt+i

= pi.
Between action times (i.e., t /∈ T ), the value of the investor’s portfolio will fluctuate in accordance

with changes in the unit prices of the two assets. We assume a constant risk-free rate r, so that the
evolution of the amount invested in the risk-free asset is

dBt = rBt dt, t /∈ T . (2)

The dynamics of the changes in the amount invested in the risky asset between action times are
given by the jump diffusion process

dSt

St−
= (µ− λκ) dt + σ dZ + d

(
πt

∑
i=1

(ξi − 1)

)
, t /∈ T , (3)

where µ is the (uncompensated) drift rate, σ is the volatility, dZ is the increment of a Wiener process,
πt is a Poisson process with intensity λ, and ξ denotes the random jump multiplier. When a jump

7 As discussed below, in the case of an optimal QS strategy, the investor may also withdraw cash from the portfolio at an
action time.
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occurs, St = ξSt− , and κ = E[ξ − 1] where E[·] is the expectation operator. We assume that ξi are i.i.d.
positive random variables characterized by a double exponential distribution (Kou and Wang, 2004).
Given that a jump occurs, pup is the probability of an upward jump and

(
1− pup

)
is the probability of

a downward jump. The density function f (y = log ξ) is then

f (y) = pupη1e−η1y1y≥0 + (1− pup)η2eη2y1y<0. (4)

We do not permit short sales of the risky asset, and we impose an upper bound on the use of
leverage, i.e., borrowed funds obtained through short sales of the risk-free asset. This means that there
is an upper bound on the weight that the investor can place on the risky asset, which we denote by Lmax.
In other words, 0 ≤ pi ≤ Lmax for all action times ti ∈ T1. Generally, with a DC account, it is reasonable
to specify Lmax = 1, ruling out the use of any leverage. Since the value of the risky asset follows
the jump diffusion (3), if we allow leverage by setting Lmax > 1, the investor can become insolvent.8

We add the further constraint that, if the investor becomes insolvent at any time, then trading stops
and all positions in the risky asset are liquidated.9 In insolvency, debt accumulates until it is (possibly)
eliminated by cash contributions. We emphasize that insolvency can only occur if leverage is allowed,
i.e., Lmax > 1.

2.1. Deterministic Glide Paths

TDFs generally use a deterministic glide path, where the asset allocation depends only on time.
In our case, this would imply pi = p(t). One case is a linear glide path, with

pi = pmax +
ti × (pmin − pmax)

T
, (5)

where pmax and pmin are parameters. Note also that a constant proportion strategy can be viewed as
a deterministic glide path with p = const. for all action times ti ∈ T1.

Between action times, the amounts the investor has in the risk-free and risky assets follow the
processes (2) and (3), respectively. Recalling that qi is a cash contribution, at action times prior to the
horizon date (i.e., ti ∈ T1), we have

W+
i = S−i + B−i + qi,

S+
i = piW+

i ,

B+
i = (1− pi)W+

i . (6)

In the case of deterministic glide paths, closed form recursive expressions for the mean and
variance of terminal wealth WT are developed in Forsyth and Vetzal (2019). The cumulative distribution
function (CDF) for WT is computed using a Monte Carlo method. In our numerical tests below,
we compare all strategies by fixing expected terminal wealth. Since we have closed form expressions
for the mean, we determine the glide path parameters using a Newton iteration in order to enforce
this condition.10

8 Since the investor rebalances her portfolio discretely, insolvency could also occur if Lmax > 1 in the special case of the model
where jumps are ruled out (λ = 0), i.e., the value of the risky asset follows geometric Brownian motion.

9 More precisely, suppose that insolvency occurs at time t, i.e., St + Bt < 0. Letting t+ be the instant after t, then Bt+ = St + Bt
and St+ = 0.

10 For example, we can exogenously specify pmin and find the value of pmax which generates the desired expected terminal
wealth via Newton iteration. Alternatively, we can exogenously set pmax and numerically find the appropriate value of pmin.
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2.2. Adaptive Strategies

In contrast to deterministic strategies where the asset allocation depends only on time, adaptive
strategies allow the asset allocation to depend on the prevailing state of the investment portfolio.
Since we search for the optimal controls over all portfolios with the same wealth after cash injection
(W+

i ), this means that pi = pi(W+
i , t+i ). With an adaptive strategy, it can be optimal to withdraw cash

from the portfolio (Cui et al., 2014; Dang and Forsyth, 2016). We denote this optimal cash withdrawal
as ci ≡ c(W−i + qi, ti). Since we only allow cash withdrawals, ci ≥ 0. The control at action time ti now
consists of the pair (pi, ci), i.e., after withdrawing ci from the portfolio, rebalance so that the fraction
invested in the risky asset is pi.

For explanatory purposes, let us consider first consider a dynamic (multi-period) MV criterion
with a specified desired value of E[WT ] = Wd. The problem to be solved can be stated as

min
{(p0, c0), ... , (pM−1, cM−1)}

Var [WT ] = E
[
W2

T

]
−W2

d ,

subject to



At horizon T: E [WT = ST + BT ] = Wd,

Between action times t /∈ T : (Bt, St) follow processes (2), (3),

At action times t ∈ T1:

W+
i = S−i + B−i + qi − ci,

S+
i = piW+

i , B+
i = W+

i − S+
i ,

pi = pi
(
W+

i , t
)

, 0 ≤ pi ≤ Lmax,

ci = ci
(
W−i + qi, t

)
ci ≥ 0.

. (7)

A criticism of the pre-commitment MV problem (7) is that it is time inconsistent. In other words,
the investor has an incentive to deviate from the strategy computed at time zero (Basak and Chabakauri,
2010). However, in order to solve problem (7), we can use the embedding technique (Li and Ng, 2000;
Zhou and Li, 2000). Consider a control set

P =
{(

pi
(
W+

i , t+i
)

, ci
(
W−i + qi,ti

))
, i = 0, . . . ,M− 1

}
.

Informally, if P∗ is an optimal control for problem (7), then there exists a W∗ such that P∗ is also
the optimal control for the following problem:

min
{(p0, c0), ... , (pM−1, cM−1)}

E
[
(W∗ −WT)

2
]

,

subject to



At horizon T: E [WT = ST + BT ] = Wd,

Between action times t /∈ T : (Bt, St) follow processes (2), (3),

At action times t ∈ T1:

W+
i = S−i + B−i + qi − ci,

S+
i = piW+

i , B+
i = W+

i − S+
i ,

pi = pi
(
W+

i , t
)

, 0 ≤ pi ≤ Lmax,

ci = ci
(
W−i + qi, t

)
ci ≥ 0.

. (8)

Problem (8) can be solved using dynamic programming methods.11

11 If problem (7) is not convex, there may be solutions to problem (8) that are not solutions to problem (7). However,
these spurious solutions can be eliminated in a straightforward way (Dang et al., 2016; Tse et al., 2014).
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As noted above, it is optimal to withdraw cash from the portfolio under some conditions
(Cui et al., 2012; Dang and Forsyth, 2016). Let

Q` =
j=M−1

∑
j=`+1

e−r(tj−t`)qj (9)

be the discounted planned future contributions to the DC account at time t`. If(
W−i + qi

)
> W∗e−r(T−ti) −Qi, (10)

then the optimal strategy is to

(i) withdraw cash ci = W−i + qi −
(

W∗e−r(T−ti) −Qi

)
from the portfolio; and

(ii) invest the remainder
(

W∗e−r(T−ti) −Qi

)
in the risk-free asset.

This is optimal because in this case E
[
(W∗ −WT)

2
]
= 0, which is the minimum of problem (8).

We refer to any cash withdrawn from the portfolio as surplus cash in the following. For the sake of
discussion, we will assume that surplus cash is invested in the risk-free asset, but does not contribute
to the calculation of the mean and variance of terminal wealth.

Allowing cash withdrawals prevents penalization of wealth paths such that WT > W∗, which can
result in forcing the optimal strategy to lose money if market gains are good, which is clearly
an undesirable outcome (Cui et al., 2012; Dang and Forsyth, 2016). We remark that in practice,
this withdrawal can be virtual, i.e., any amount of wealth satisfying equation (10) is simply invested
in the risk-free asset, and and the surplus cash is not taken into account when computing the
optimal fraction to invest in equities. See Dang and Forsyth (2016) for more detail on this. In fact,
if we use continuous rebalancing, then the optimal strategy is such that Equation (10) is never
satisfied (Vigna, 2014). In the discrete rebalancing case, the generation of surplus cash is a low
probability event.

This target-based approach of problem (8) provides a reasonable objective on its own
(Menoncin and Vigna, 2017; Vigna, 2014, 2017). Solving (8) minimizes quadratic shortfall (QS) with
respect to W∗, so we will refer to the resulting strategy as the QS optimal strategy below. However,
this becomes even more compelling when we recall that the solution is also pre-commitment MV
efficient. The solution then simultaneously minimizes two risk measures: variance around the desired
E [WT ] and QS with respect to W∗, as seen at time zero.

We emphasize that the fact that the pre-commitment MV policy is time inconsistent is irrelevant
since we take the point of view that we are seeking the QS optimal control, from problem (8). Since the
QS problem (8) can be solved using dynamic programming, the controls are trivially time consistent.
The fact that the QS problem gives rise to time consistent controls, whereas the MV problem (7) is time
inconsistent, is due to the fact that we fix W∗ for the QS problem, for all time. At time zero, the MV
problem controls and the QS problem controls are the same for W∗ computed at time zero. At later times,
this correspondence holds only if we allow W∗ to change as a function of time. However, using a fixed
W∗ is intuitively reasonable for DC pension plan saving (Menoncin and Vigna, 2017; Vigna, 2014).

We note that there are techniques for forcing a time consistent constraint for the MV problem (7)
(Bjork and Murgoci, 2010, 2014; Bjork et al., 2014; Wang and Forsyth, 2011). However, we prefer
the target based QS approach since it is relatively easy to communicate to end user investors
(Menoncin and Vigna, 2017; Vigna, 2014). In addition, forcing the time consistent constraint can have
result in non-intuitive strategies with strange features (Bensoussan et al., 2019; Wang and Forsyth, 2011).

We formulate problem (8) as the solution of a nonlinear Hamilton–Jacobi–Bellman (HJB) partial
integro differential equation. See Dang and Forsyth (2014) for details concerning the numerical solution.
Given an arbitrary value of W∗, we can solve problem (8) for the optimal control, which we denote by
P∗(W∗). Given the optimal control, cumulative distribution functions are easily found using Monte
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Carlo simulation. However, we seek the solution to problem (7), which is expressed in terms of
a specified expected value E[WT ] = Wd. We determine the value of W∗ for problem (8) which satisfies
the constraint E[WT ] = Wd. We enforce this by a Newton iteration, whereby each function evaluation
requires a solution of an HJB equation.

3. Data and Parameter Estimates

The underlying stochastic model outlined above in Equations (2), (3), and (4) involved a constant
risk-free rate r for the bond component and a double exponential jump-diffusion for the equity
component. Estimation of the parameters of these equations follows the methods described in
Forsyth and Vetzal (2019). These procedures are summarized briefly here for convenience. Readers
interested in additional details are referred to Forsyth and Vetzal (2019).

We use monthly US data obtained from the Center for Research in Security Prices (CRSP) for
the period 1926:1 through 2015:12.12 Our base case uses the CRSP value-weighted total return index
(which includes all distributions for all domestic equities trading on major US exchanges), along with
the CRSP 3-month Treasury bill (T-bill) index. The original data are in nominal terms, but we convert
them to real terms using the US CPI, also obtained from CRSP. We use real indexes since investors
with long-term savings objectives such as funding retirement should concentrate on real (not nominal)
wealth goals. For some tests, we use alternative underlying assets: the CRSP equal-weighted total
return index (which invests the same amount in each component security, rather than weighting by
market capitalization) and a 10-year US Treasury bond (T-bond) index.

Figure 1 provides plots of monthly real returns for the 3-month T-bill, 10-year T-bond, value-weighted
total return, and equal-weighted total return indexes. For comparability, all four indexes are plotted
with the same vertical axis scale. As expected, the two equity indexes exhibit much higher volatility,
with occasional months having returns of large magnitude. This provides a measure of support to our
modelling assumptions which assume a constant interest rate but a jump diffusion specification for
the equity index. It is also interesting to observe that there was extremely high equity market volatility
during the 1930s. By contrast, volatility during the period following the financial crisis that began in
2007 was comparatively mild.

Figure 2 graphs cumulative real returns for the four investment indexes. The vertical axis uses
a logarithmic scale. This enhances visibility over time, as otherwise the dramatic growth in the equity
indexes over the latter part of the sample obscures the behaviour of those indexes during the earlier
periods and renders the behaviour of the two Treasury indexes all but invisible. All four indexes
begin at a value of 100 at the start of 1926. The equal-weighted index ends up with the highest value.
The historical outperformance of equal-weighting has been attributed to such portfolios having higher
exposure to value, size, and market factors (Plyakha et al., 2014). It is also interesting to observe
that the 10-year T-bond index had higher cumulative returns than the 3-month T-bill index, but that
was entirely due to the post-1980 period: prior to then, the longer maturity T-bond index offered no
cumulative advantage over the T-bill index.

Table 1 presents parameter estimates. A threshold method (Cont and Mancini, 2011) was used for
the jump diffusion model. These parameter estimates were originally provided in Forsyth and Vetzal
(2019), and are reproduced here for convenience. The estimates using the value-weighted equity market
index imply an expected real annual return of close to 9%, about 3% lower than the corresponding
value for the equal-weighted index. Of course, the price to be paid for this difference is higher risk.
The equal-weighted index shows higher diffusive volatility (σ). Since jumps are expected to occur on
average every 1/λ years, the equal-weighted index tends to have jumps a bit more often. Conditional

12 More precisely, our calculations are based on data from Historical Indexes, c©2015 Center for Research in Security Prices
(CSRP), The University of Chicago Booth School of Business. Wharton Research Data Services (WRDS) was used in preparing
this work. This service and the data available thereon constitute valuable intellectual property and trade secrets of WRDS
and/or its third-party suppliers.
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on a jump occurring, it is much more likely to be a downward jump in each case. Average jump
magnitudes are 1/η1 for upward jumps and 1/η2 for downward jumps, and these are both larger for
the equal-weighted index. A similar comment applies to the standard deviation of the jump size since
this is equal to the mean for the exponential distribution. Turning to the bond market indexes, Table 1
shows that the long run average real annual return for the 10-year T-bond index was just over 2%,
while that for the shorter maturity index was around 80 basis points. Of course, these higher returns
are accompanied by higher volatility, as indicated by the top two plots of Figure 1.
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Figure 1. Monthly real returns for US investment indexes, 1926–2015.
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Table 1. Annualized parameter estimates based on real monthly data from 1926:1 to 2015:12.
These values originally appeared in Forsyth and Vetzal (2019) and are reproduced here for
convenience. Parameters for the equity market indexes were estimated using the threshold
technique of Cont and Mancini (2011). The average returns for the bond indexes were calculated
as log[B(T)/B(0)]/T, where B(t) denotes the index level at the time t.

Equity Market Index µ σ λ pup η1 η2

Value-weighted 0.0889 0.1477 0.3222 0.2759 4.4273 5.2613
Equal-weighted 0.1183 0.1663 0.4000 0.3333 3.6912 4.5409

Bond Market Index Average Return

3-month T-bill 0.00827
10-year T-bond 0.02160

3.1. Robustness to Parameter Estimation

Our main purpose for calibrating the parameters for the stochastic processes (3) is to determine
a control strategy (i.e., fraction in risky asset at rebalancing dates). Consequently, our concern is
with the effect of calibration errors on the computed strategy, rather than minimizing fit errors in an
econometric sense. In Forsyth and Vetzal (2017a) and in Dang and Forsyth (2016), an extensive study of
the effect of parameter ambiguity is carried out. In particular, the parameters for stochastic process (3)
were determined using maximum likelihood, and threshold techniques with various parameters.
Robustness of the strategy (in the synthetic market) was tested by using Monte Carlo simulations with
different parameters than were used in computing the optimal strategy. For example, the strategy was
computed and stored, assuming parameters determined from the threshold strategy. Then, this strategy
was tested using Monte Carlo simulations, in a synthetic market driven by a stochastic process with
parameters determined using maximum likelihood. In other words, the parameters used to compute
the strategy were misspecified. In all combinations of methods, the results were robust to this type of
parameter misspecification.

However, the real test of our strategies is their performance on bootstrapped resampled tests.
In the bootstrap tests, we make no assumptions about the stochastic process followed in the historical
market. However, in all our bootstrap tests, the adaptive quadratic shortfall strategy (computed using
the estimated market parameters) outperforms the glide path and constant proportion strategies.

4. Base Case Scenario

We consider an example where a DC plan member wants to generate retirement income (in real
terms) of a specified fraction R of final salary. Studies have shown that earnings for a typical
employee increase rapidly until the age of 35, then increase slowly thereafter, until a few years
before retirement, and then decrease as fewer hours are worked in the transition to retirement
(Cocco et al., 2005; Ruppert and Zanella, 2015). Given an initial real annual salary I0, we assume that
real annual income in year t before retirement is given by It = eµI t I0. In other words, salary is expected
to grow in real terms at a constant annual rate µI . Upon retirement at time T, real annual salary
is eµI T I0. Our assumptions would be relevant to a 35 year old employee with stable employment,
who intends to work full-time until the age of 65.

To determine the amount of real wealth required to fund this replacement income during
retirement, we use the well-known 4% rule of Bengen (1994). Bengen examined historical data to
determine the maximum real withdrawal rate that a retiree could safely use without exhausting her
assets over a 35 year period. Bengen assumed that accumulated pension wealth was invested in
a portfolio having half invested in stocks and half invested in intermediate-term US Treasury securities,
and concluded that a 4% withdrawal rate (escalated by the rate of inflation) was quite safe.

Dang et al. (2017) recently revisited this rule. The problem was posed somewhat differently:
the idea was to determine a real withdrawal rate such that half of the real wealth at the start of
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retirement remained after 20 years, with high probability. Rather than using fixed portfolio weights as
in Bengen (1994), the portfolio was invested in stocks and bonds according to the QS optimal strategy
described above. Dang et al. concluded that the 4% rule still held up well under the revised assumptions.

An obvious alternative way to generate retirement cash flows is to buy a lifetime annuity. However,
in practice most retirees are not willing to do this, for a variety of reasons (MacDonald et al., 2013).
In the current environment of low real interest rates, annuities provide rather low income, so the
reluctance of retirees to use them is particularly unsurprising.

Consequently, we pose the pension accumulation problem as follows. The desired expected
accumulated real wealth at retirement Wd is

E[WT ] = Wd =
ReµI T I0

wr
, (11)

where R is the replacement ratio, I0 is the initial salary, µI is the real salary escalation rate, T is the
end of the accumulation period, and wr is the safe withdrawal rate. Recall that above we denoted
the set of action times prior to T as T1. We assume that cash is contributed into the portfolio at
time ti ∈ T1. The initial cash contribution at t0 is Fc I0, where Fc is the real contribution fraction.
This contribution fraction represents the total amount contributed by both the employee and the
employer to all retirement savings accounts, but excludes any government sponsored universal
schemes (e.g., CPP in Canada, Social Security in the US). We also assume that these accounts are
tax-advantaged, i.e., no tax is paid during the accumulation phase. At subsequent action times ti ∈ T1

(i.e., after the initial contribution), the amount contributed is assumed to be Fc I0eµiti .
Table 2 summarizes the data for this base case scenario. As indicated in the table, we assume

a replacement fraction of 50%, an initial salary of $50,000, and a real escalation rate of 1.27%.13

Combined contributions by the employee and employer to the retirement savings portfolio are 20% of
real salary each year. For simplicity, these contributions are assumed to be made at the start of each
year during a 30 year accumulation period. The safe withdrawal rate is assumed to be 4%, in line with
Bengen (1994) and Dang et al. (2017). Applying these parameters to Equation (11), we find that the
expected (real) desired terminal wealth Wd is

E[WT ] = Wd =
0.50
0.04
× $50,000e.0127×30 ' $915,000. (12)

Note that the specification given in Equation (11) implies that decreasing the withdrawal rate wr

has the same effect as increasing the replacement fraction R or the salary escalation rate µI .

Table 2. Data for base case scenario. Cash is injected into the portfolio at times t = 0, 1, . . . , 29. Market
parameters for the equity and bond indexes are provided in Table 1.

Initial salary I0 $50,000
Salary escalation rate µI 0.0127 (Bloom et al., 2014)
Contribution fraction Fc 0.20
Accumulation period T 30 years
Safe withdrawal rate wr 0.04
Equity index Value-weighted
Bond index 3-month T-bill
Investment strategies Constant proportion, glide path, QS optimal
Rebalancing interval 1 year
Maximum leverage indicator Lmax 1.0
If insolvent Trading stops

13 As noted by Bloom et al. (2014), this rate has been used by the US Congressional Budget Office in its long-term projections.
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As indicated in Table 2, the retirement savings portfolio is invested in the value-weighted index
and the 3-month T-bill index. Relevant parameters for these indexes are given in Table 1. We consider
three alternative investment strategies:

• Constant proportion, i.e., p = const.
• Linear glide path, as in Equation (5).
• Time consistent QS optimal strategy, as described in Section 2.2. Recall that this strategy is also

multi-period pre-commitment MV optimal.

Each of these strategies is rebalanced annually. We start with the constant proportion strategy, and
determine the equity weight such that E[WT ] = $915,000, assuming the market parameters given in
Table 1 for the value-weighted equity index and the 3-month T-bill index. This turns out to be 0.5788.14

We then turn to the linear glide path strategy. In this case, we specify pmax = 1.0, and then determine
that the value of pmin = 0.3066 is needed to have E[WT ] = $915,000. We proceed similarly for the QS
optimal strategy given by the solution to problem (8). Imposing the leverage constraint Lmax = 1.0,
we find by Newton iteration that the value of W∗ which results in E[WT ] = $915,000 is $1,106,200.
We compute and store the optimal control associated with this value of W∗ in order to test this strategy.
Note that:

• When we change input parameters (e.g., invest in different assets, allow Lmax > 1, etc.), we may
need to recompute the expected wealth target E[WT ] = Wd, the equity weight for the constant
proportion strategy, the glide path parameters (pmax, pmin), and the quadratic wealth target W∗

(along with the associated optimal control) in order to meet this target.
• The quadratic wealth target W∗ exceeds the target expected real terminal wealth Wd = E[WT ].

This is because the QS optimal strategy will de-risk if W∗ is attainable by investing only in the
risk-free asset, so there is not much chance of exceeding this quadratic target by a significant
amount. This implies that the average terminal wealth, factoring in paths where the accumulated
savings does not ever reach W∗, must be lower than W∗.

We compare these three strategies using two different types of simulation tests. As an initial
test, we assume that the stochastic environment described in Table 1 holds exactly. In other words,
the level of the equity market index follows a double exponential jump diffusion with the parameters
given in Table 1 and the bond market index is non-stochastic, with a constant risk-free interest rate as
indicated in that table. We refer to this as a synthetic market. In such a market, we draw 160,000 Monte
Carlo simulated paths and compute performance statistics. Note that these comparisons are based
on a simulated environment that corresponds exactly to the environment used to formulate the
strategies. As a second and more stringent test, we draw simulated paths by bootstrap resampling
of the historical return data and compute the same performance statistics. We refer to this type of
backtest as a historical market. This is a stricter test since it does not assume that the equity market
follows a jump diffusion process or that the risk-free interest rate is constant over time, although
those assumptions are still used to generate the strategies that are followed. A single resampled
path is constructed by pasting together enough blocks of monthly historical return data to cover
the investment horizon of 30 years. The sampling is done in blocks to account for possible serial
dependence. The blocks are selected simultaneously from both the historical stock and bond market
indexes, to incorporate possible correlations. The blocks are chosen randomly, with replacement.
To avoid end issues, the historical data is wrapped around.15 To reduce the impact of a fixed blocksize
and mitigate edge effects at each block end, we use the stationary block bootstrap (Patton et al., 2009;

14 This is a bit more aggressive in terms of taking on equity market risk than the strategy considered by Bengen (1994) which
involved equal weights between the equity and bond markets. Keep in mind that here we are investing in a 3-month T-bill
index, whereas Bengen used intermediate maturity Treasury bonds which offer somewhat higher average returns.

15 In other words, if the size of a block extends past the end of the sample in 2015:12, the return data resumes at the start of the
sample in 1926:1 for the duration of the block.
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Politis and White, 2004) where the blocksize is sampled randomly from a geometric distribution
with an expected value of b̂. In principle, the optimal expected blocksize can be estimated using
an algorithm provided by Patton et al. (2009). As discussed in Forsyth and Vetzal (2019), this approach
is not easily applied in our context. This is because the estimated optimal blocksizes for the different
market indexes we consider (i.e., the value-weighted and equal-weighted US equity market indexes
and the 3-month T-bill and 10-year T-bond indexes) vary considerably, ranging from about two months
for the value-weighted stock index to more than four years for the T-bill index. Recall that we sample
simultaneously from both a stock index and a bond index, so we must use the same blocksize for both
indexes, and our strategies involve weighted combinations of two of these indexes that can change
deterministically (glide path) and also randomly (QS optimal) along a simulation path. As a result,
we report results for a range of expected blocksizes b̂, acknowledging that the choice of b̂ for our
application is open to debate.

Table 3 gives the results for the base case input data from Table 2. Consider first the synthetic
market. By construction, all three strategies have the same expected value of real terminal wealth at
the retirement date of 915 (units in the table are in thousands of dollars). The constant proportion and
glide path strategies are effectively indistinguishable, having the same standard deviation of terminal
wealth and the same probability of ending up with wealth below 700 or below 800. By contrast,
the QS optimal strategy has much lower standard deviation or shortfall probability for those two levels
of terminal wealth, by a factor of around two in each case. In addition, this strategy offers a small
amount of expected surplus cash (this surplus is not applicable for the other two strategies). Turning
to the historical market results for expected blocksizes of 1, 2, and 5 years, we reach generally similar
conclusions. Of course, the expected values no longer are exactly equal to the target of 915, but the
difference from this target is much lower for the QS optimal strategy. The constant proportion and
glide path strategies are again quite comparable to each other, with the glide path having slightly
lower expected value and standard deviation, but a bit higher shortfall probability (for the two values
of WT considered). In all cases, the QS optimal strategy offers the best performance, with higher mean,
lower standard deviation, and lower shortfall probability, as well as a modest amount of expected
surplus cash.

Table 3. Base case scenario results. Wealth units: thousands of dollars. Input data provided in Tables 1
and 2. Synthetic market results computed using Monte Carlo simulations with 160,000 sample paths.
Historical market results based on 10,000 bootstrap resampled paths using data from 1926:1 to 2015:12.

Strategy Expected Standard Pr(WT < 700) Pr(WT < 800) Expected
Value Deviation Surplus Cash

Synthetic Market
Constant proportion 915 519 0.39 0.51 NA
Glide path 915 519 0.39 0.51 NA
QS optimal 915 244 0.19 0 .24 21

Historical Market (Expected blocksize b̂ = 1 year)
Constant proportion 876 402 0.38 0.51 NA
Glide path 872 398 0.39 0.52 NA
QS optimal 904 232 0.18 0.24 26

Historical Market (Expected blocksize b̂ = 2 years)
Constant proportion 869 376 0.38 0.51 NA
Glide path 866 372 0.39 0.52 NA
QS optimal 911 221 0.17 0.23 31

Historical Market (Expected blocksize b̂ = 5 years)
Constant proportion 862 349 0.37 0.50 NA
Glide path 861 347 0.38 0.51 NA
QS optimal 924 213 0.16 0.21 38
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Figure 3a shows the cumulative distributions for all three strategies in the historical market
(expected blocksize of two years). The distributions for the constant proportion and glide path strategies
are practically identical. Over the bulk of the distribution, the QS optimal strategy exhibits clearly
better performance than the others. However, the QS optimal strategy performs a little worse than the
alternatives in the extreme left tail.16 This happens because there can be paths where the equity market
trends downward for a very large portion of the investment horizon. In such cases, all strategies do
poorly, but the QS optimal strategy will remain fully invested in the equity market in an attempt to
recover and meet the quadratic wealth target. The QS optimal strategy also underperforms in the
extreme right tail of the distribution. This is because there are paths where the equity market trends
strongly upward over most of the investment period. Once the quadratic wealth target is reached,
however, the QS optimal strategy de-risks, shifting all investment into the low return bond market.
It does not capitalize on the continued strong equity market performance. The other two strategies,
by comparison, retain a large equity market exposure, leading to higher terminal wealth. However,
we reiterate that, over most of the distribution, the QS optimal strategy provides better results.

Figure 3b depicts properties of the optimal control for the QS optimal strategy. This strategy
invests entirely in the equity market for the first several years. The percentage invested in the risky
asset subsequently trends downward on average over time. However, there is considerable variation:
the standard deviation of the optimal control rises strongly over time, indicating that the allocation to
equities is quite sensitive to realized investment returns.17
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Figure 3. Base case scenario results in the historical market. Input data provided in Tables 1 and 2.
Results based on 10,000 bootstrap resampled paths using data from 1926:1 to 2015:12 with expected
blocksize b̂ = 2 years. (a) cumulative distributions of real terminal wealth for various strategies. Wealth
units: thousands of dollars; surplus cash included for the QS optimal case; (b) mean and standard
deviation of the fraction allocated to the equity market for the QS optimal strategy.

The historical market results given in Table 3 are somewhat encouraging for the QS optimal
strategy. To formulate this strategy, recall that we assumed a double exponential jump diffusion model
with known parameters for the equity market index and a constant risk-free interest rate. Our bootstrap
resampled historical market tests make no such assumptions, yet deliver results that are fairly close to

16 In other words, the QS optimal strategy will appear riskier than the constant proportion or glide path strategies according
to tail risk measures such as value-at-risk or conditional value-at-risk, provided that the risk measure is calculated using
sufficiently low cumulative probabilities.

17 Of course, the equity allocation for the constant proportion and glide path cases is fixed in advance, being at most
time-dependent and not varying at all in response to realized returns.
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those observed in the synthetic market tests which maintain these assumptions. This indicates that the
QS optimal strategy is quite robust to departures from these assumptions.

As an additional test of the robustness of the QS optimal strategy, we explore the effect of
computing and storing the optimal control based on constant parameters from Table 1 but then
allowing the synthetic equity market parameters to vary randomly in simulation tests. To be specific,
we carry out Monte Carlo simulations where at each action time ti ∈ T1 and along each stochastic
path we select (µ, σ) from a uniform distribution having mean equal to the corresponding values from
Table 1. This set of (µ, σ) is then used for the interval (ti, ti+1).

Table 4 shows the results. The first row reproduces the values reported in Table 3 for this strategy in
the synthetic market, while the remaining two rows provide results when µ and σ are varied randomly
within the given range. Table 4 indicates that only an estimate of the mean of the distribution of the
market parameters µ and σ is needed to compute an effective control strategy. This is consistent with
the results in Ma and Forsyth (2016), where it is shown that including stochastic volatility effects results
in negligible improvements in results for long-term (i.e., greater than ten years) investors.

Table 4. Base case scenario results for the QS optimal strategy with random variation of market
parameters µ and σ, Wealth units: thousands of dollars. Input data provided in Tables 1 and 2, except
as noted. Monte Carlo simulations with (µ, σ) drawn from a uniform distribution with the indicated
limits along each of 160,000 paths.

Market Parameters Expected Standard Pr(WT < 700) Pr(WT < 800) Expected
Value Deviation Surplus Cash

Synthetic market 915 244 0.19 0.24 21
µ ∈ [0.04889, 0.01289] 916 245 0.19 0.24 21
σ ∈ [0.1077, 0.1877] 915 245 0.19 0.24 21

Overall, then, for the base case data in Table 2, the QS optimal strategy appears to be fairly robust
to parameter and model mis-specification. Moreover, this strategy clearly outperforms the constant
proportion and glide path alternatives over most of the terminal wealth distribution. It provides
about the same mean terminal wealth, but has considerably lower standard deviation and shortfall
probability (for the two wealth levels considered in Table 3). However, even the QS optimal strategy
delivers somewhat disappointing results in absolute terms. Recall that we are trying to achieve average
real terminal wealth of $915,000. In the idealized synthetic market which conforms exactly to the
modelling assumptions used to generate the controls for the QS optimal strategy, Table 3 shows that
there is almost a 20% chance of ending up with real terminal wealth below $700,000, and about a 25%
chance of ending up with less than $800,000. These shortfall probabilities do not change much under
the conditions of the historical market backtests. Of course, these rather pessimistic results so far have
only considered the base case data. In the following section, we investigate whether more promising
results can be achieved under different assumptions.

5. Alternative Assumptions

The base case results in Section 4 relied on the input parameters given in Tables 1 and 2, for the
value-weighted equity and 3-month T-bill indexes. We now explore the effects of altering our
assumptions about factors such as the contribution fraction, the salary escalation rate, the maximum
amount of leverage permitted, the underlying indexes to be used, and the salary replacement ratio.
We consider each of these in turn. For the most part, we only use the QS optimal strategy since it has
been shown above to be generally superior to the constant proportion and glide path strategies.

5.1. Effect of Contribution Fraction

Our base case described by Table 2 assumed a total combined contribution by the employee and
employer of Fc = 20% of salary. Table 5 reports the effects of dropping this to 15% or increasing it to 25%
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for the QS optimal strategy. As is to be expected, the table shows that risk (measured either in terms of
standard deviation or the reported shortfall probabilities) decreases significantly as Fc rises. However,
even in the case where 25% of the employee’s salary is contributed to the retirement savings plan,
there is still almost a 15% chance that real terminal wealth is less than $800,000, considerably lower
than the target of $915,000. A broader comparison of these cases is provided in Figure 4, which depicts
the cumulative distributions of real terminal wealth. The cases where Fc = 20% and Fc = 25% appear
quite comparable for values of WT ≥ $915,000 over the plotted range, but the higher contribution
fraction case appears to be much safer over a wide range below the target. The high savings rate
leads to a notably increased amount of expected surplus cash. Along paths with strong equity market
returns, the target can be reached relatively early, but the model assumes that savings continue each
year (in this case at a high rate), so surplus cash can build up. The case where Fc = 15% exhibits poor
performance on the downside, but is somewhat better on the upside. With a low amount of money
saved, more risk must be taken on in order to reach the target. Doing so works out very well if realized
returns are strong, and quite poorly if they are not.

Table 5. Effect of varying contribution fraction Fc for the QS optimal strategy. Wealth units: thousands
of dollars. Input data provided in Tables 1 and 2, except as noted. Synthetic market results computed
using Monte Carlo simulations with 160,000 sample paths. Historical market results based on 10,000
bootstrap resampled paths using data from 1926:1 to 2015:12.

Fc
Expected Standard Pr(WT < 700) Pr(WT < 800) Expected

Value Deviation Surplus Cash

Synthetic Market
0.15 915 440 0.36 0.42 18
0.20 915 244 0.19 0.24 21
0.25 915 150 0.09 0.13 21

Historical Market (Expected blocksize b̂ = 2 years)
0.15 916 380 0.34 0.41 12
0.20 911 221 0.17 0.23 31
0.25 909 126 0.07 0.14 67
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Figure 4. Cumulative distributions of real terminal wealth for various contribution fractions Fc for the
QS optimal strategy. Wealth units: thousands of dollars. Input data provided in Tables 1 and 2, except
as noted. Historical market results based on 10,000 bootstrap resampled paths using data from 1926:1
to 2015:12 with expected blocksize b̂ = 2 years; surplus cash included.
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5.2. Effect of Salary Escalation Rate

We now examine the effect of changing the salary escalation rate µI from the base case value of
1.27% given in Table 2. Note that this will result in a different expected real wealth target Wd, based on
Equation (11). Table 6 summarizes the results for both the synthetic market and the historical market,
using the QS optimal control. For comparability, the table expresses the results in terms of WT/Wd,
i.e., real terminal wealth as a fraction of the expected wealth target. Obviously, a higher escalation
rate leads to a higher final salary. Given a fixed salary replacement ratio, this translates into a higher
expected value of terminal wealth Wd. For example, with µI = 1.75%, we have Wd = $1,056,000 instead
of $915,000 as in the base case. The results in Table 6 are quite similar in the synthetic and historical
markets, on a case by case basis. For each set of tests, the standard deviation and shortfall probabilities
show an increase with µI . With a higher salary and a fixed contribution fraction, there will obviously
be a higher amount of saving. Despite this, the associated higher real terminal wealth target results in
a higher level of risk. This is borne out in Figure 5, which plots the cumulative distribution functions of
normalized real terminal wealth WT/Wd for the various values of µI . The highest salary escalation rate
has the worst performance for low WT/Wd, and the best performance for high WT/Wd. Taking on more
risk to reach the higher wealth target works out well if investment returns are favourable, and poorly
if they are not. Conversely, the lowest value of µI results in the best performance if investment returns
are weak, and the worst performance if they are not.

Table 6. Effect of varying salary escalation rate µI for the QS optimal strategy. Units for Wd: thousands
of dollars. Remaining wealth values are normalized by Wd for each case. Input data provided in
Tables 1 and 2, except as noted. Synthetic market results computed using Monte Carlo simulations
with 160,000 sample paths. Historical market results based on 10,000 bootstrap resampled paths using
data from 1926:1 to 2015:12.

µI

Wealth Expected Standard
Pr(WT /Wd < 0.8) Pr(WT /Wd < 0.9)

Expected
Target Value Deviation Surplus Cash

Wd (WT /Wd) (WT /Wd) (/Wd)

Synthetic Market
0.0175 1056 1.0 0.31 0.25 0.30 0.02
0.0127 915 1.0 0.27 0.20 0.25 0.02
0.0075 783 1.0 0.22 0.15 0.21 0.02

Historical Market (Expected blocksize b̂ = 2 years)
0.0175 1056 0.99 0.29 0.23 0.29 0.03
0.0127 915 0.97 0.24 0.18 0.25 0.03
0.0075 783 0.99 0.19 0.14 0.21 0.04

5.3. Effect of Leverage

All of the results presented thus far have specified Lmax = 1, as indicated in Table 2. We now
consider increasing this to Lmax = 1.5, thereby allowing the use of 50% leverage. Table 7 documents the
results for the QS optimal strategy. It is interesting to observe that the risk measures shown (standard
deviation of WT and the two shortfall probabilities) each indicate somewhat lower risk when the use
of leverage is permitted. In one sense, this is obvious: relaxing a constraint cannot lead to worse
performance. On the other hand, leverage is often not allowed since it is perceived to be “risky”.
The issue here is what is meant by risk. We have defined it on the basis of the value of terminal wealth.
Leverage constraints, however, are typically motivated by concerns that portfolio values during the
accumulation period (not at the end of the period) will fluctuate excessively.
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Figure 5. Cumulative distributions of normalized real terminal wealth for various salary escalation
rates µI for the QS optimal strategy. Input data provided in Tables 1 and 2, except as noted. Historical
market results based on 10,000 bootstrap resampled paths using data from 1926:1 to 2015:12 with
expected blocksize b̂ = 2 years; surplus cash included.

Table 7. Effect of varying maximum leverage indicator Lmax for the QS optimal strategy. Wealth units:
thousands of dollars. Input data provided in Tables 1 and 2, except as noted. Synthetic market results
computed using Monte Carlo simulations with 160,000 sample paths. Historical market results based
on 10,000 bootstrap resampled paths using data from 1926:1 to 2015:12.

Lmax
Expected Standard Pr(WT < 700) Pr(WT < 800) Expected

Value Deviation Surplus Cash

Synthetic Market
1.0 915 244 0.19 0.24 21
1.5 915 205 0.12 0.17 24

Historical Market (Expected blocksize b̂ = 2 years)
1.0 911 221 0.17 0.23 31
1.5 904 186 0.11 0.18 46

Figure 6a shows the cumulative distributions of real terminal wealth when leverage is allowed
and when it is not. The cumulative distributions are fairly similar for high levels of terminal wealth.
Over a wide range of wealth levels below the target of $915,000, the strategy which permits leverage
performs better. However, in the extreme left tail of the distribution, it turns out to be worse to allow
leverage. These very low wealth levels occur as a result of very poor equity market returns over most
of the investment horizon. The QS optimal strategy continues to try to reach the quadratic wealth
target, so it invests completely in the equity market to the extent possible. With continued poor returns,
leverage in this case amounts to doubling down on a losing bet.
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Figure 6. Results for cases allowing and excluding leverage. Input data provided in Tables 1 and 2,
except as noted. Historical market results based on 10,000 bootstrap resampled paths using data from
1926:1 to 2015:12 with expected blocksize b̂ = 2 years. (a) cumulative distribution function of real
terminal wealth for cases allowing leverage (Lmax = 1.5) and excluding it (Lmax = 1). Wealth units:
thousands of dollars; surplus cash included; (b) mean and standard deviation of the fraction allocated
to the equity market for the case where leverage (Lmax = 1.5) is allowed.

5.4. Long-Term Bond Index

All of the results presented thus far were based on the value-weighted equity index and the
3-month T-bill index. In this section, we explore the effects of substituting the 10-year T-bond index
for the T-bill index. Recall from Table 1 that the long-term bond index had average annual real
returns of 2.16%, about 1.3% higher than the T-bill index. Of course, these higher average returns are
accompanied by higher volatility (Figure 1), but that is ignored when we formulate the QS optimal
strategy since we assume constant interest rates. Table 8 shows results for the constant proportion,
linear glide path, and QS optimal strategies when the 10-year T-bond index is used in lieu of the
3-month T-bill index. The general pattern in Table 8 is similar to that seen earlier in Table 3. The QS
optimal approach achieves roughly the same expected real terminal wealth, but takes on considerably
lower risk compared to the other two strategies, as measured by standard deviation of WT or either of
the two shortfall probabilities considered. Comparing the results from Tables 3 and 8, we observe that
the standard deviation and shortfall probabilities for each strategy are a little lower in the synthetic
market when the 10-year T-bond index is used. This also holds in the historical market for the constant
proportion and glide path strategies, but is not the case for the QS optimal strategy in terms of the
shortfall probabilities. For example, the probability of real terminal wealth being lower than $800,000
is 23% if the 3-month T-bill index is used, but 26% when the 10-year T-bond index is used. The overall
conclusion, however, is that replacing the 3-month T-bill index by the 10-year T-bond index does not
make much difference. This picture is reinforced by comparing the cumulative distributions of real
terminal wealth shown in Figure 7 based on the 10-year T-bond index with those shown previously in
Figure 3a for the 3-month T-bill index.
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Table 8. Results for the optimal QS strategy when the 10-year T-bond index is used instead of the
3-month T-bill index. Wealth units: thousands of dollars. Input data provided in Tables 1 and 2, except
as noted. Synthetic market results computed using Monte Carlo simulations with 160,000 sample paths.
Historical market results based on 10,000 bootstrap resampled paths using data from 1926:1 to 2015:12.

Strategy Expected Standard Pr(WT < 700) Pr(WT < 800) Expected
Value Deviation Surplus Cash

Synthetic Market
Constant proportion 915 437 0.34 0.47 NA
Glide path 915 438 0.34 0.48 NA
QS optimal 915 222 0.16 0.21 19

Historical Market (Expected blocksize b̂ = 2 years)
Constant proportion 900 374 0.34 0.47 NA
Glide path 897 376 0.34 0.48 NA
QS optimal 881 201 0.17 0.26 67
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Figure 7. Cumulative distribution of real terminal wealth for QS optimal, glide path, and constant
proportion strategies when the 10-year T-bond index is used. Wealth units: thousands of dollars.
Input data provided in Tables 1 and 2, except as noted; surplus cash included for the QS optimal
strategy. Historical market results based on 10,000 bootstrap resampled paths using data from 1926:1
to 2015:12. Expected blocksize b̂ = 2 years.

5.5. Equal-Weighted Equity Index

As shown above in Figure 2, an equal-weighted equity index has historically outperformed the
value-weighted equity index that has been used for all results to this point. We now consider the impact
of replacing the value-weighted index by its equal-weighted counterpart. Note that the bond index
used here is the 3-month T-bill index. Table 9 provides the results. Whether in the idealized synthetic
market or the backtest historical market, the QS optimal strategy clearly outperforms the constant
proportion and glide path alternatives by the criteria given in the table. In the synthetic market, the QS
optimal strategy achieves the same E[WT ] with dramatically lower standard deviation of WT and
shortfall probability, along with the possibility of a modest amount of surplus cash. The same general
conclusions apply in the historical market, although it is worth noting that the average real terminal
wealth for the other strategies is somewhat lower for all expected blocksizes considered. Comparing
the results in Table 9 for the equal-weighted equity index with those reported above in Table 3 for the
value-weighted index, it can be seen that the shortfall probabilities are now considerably lower for
the QS optimal strategy, but almost unchanged for the other strategies. The standard deviation of WT ,
however, is substantially lower for all of the strategies.
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Table 9. Results when the equal-weighted equity index is used instead of the value-weighted equity
index. Wealth units: thousands of dollars. Input data provided in Tables 1 and 2, except as noted.
Synthetic market results computed using Monte Carlo simulations with 160,000 sample paths. Historical
market results based on 10,000 bootstrap resampled paths using data from 1926:1 to 2015:12.

Strategy Expected Standard Pr(WT < 700) Pr(WT < 800) Expected
Value Deviation Surplus Cash

Synthetic Market
Constant proportion 915 546 0.38 0.51 NA
Glide path 915 553 0.39 0.52 NA
QS optimal 915 185 0.11 0.16 44

Historical Market (Expected blocksize b̂ = 1 year)
Constant proportion 837 327 0.39 0.54 NA
Glide path 831 319 0.39 0.55 NA
QS optimal 904 162 0.10 0.16 49

Historical Market (Expected blocksize b̂ = 2 years)
Constant proportion 827 293 0.38 .54 NA
Glide path 820 283 0.38 0.55 NA
QS optimal 915 139 0.07 0.13 51

Historical Market (Expected blocksize b̂ = 5 years)
Constant proportion 815 248 0.36 0.53 NA
Glide path 808 242 0.37 0.55 NA
QS optimal 932 115 0.04 0.10 54

Figure 8 plots the cumulative distributions of real terminal wealth in both the synthetic and
the historical markets. In both cases, the distributions for the glide path and constant proportion
strategies are virtually indistinguishable. Figure 8a indicates that the QS optimal strategy outperforms
over a wide range of terminal wealth values in the synthetic market, although it does perform worse
in the tails of the distribution. As mentioned earlier, this is due to two features of the strategy:
(i) it automatically de-risks once the quadratic wealth target is achievable by investing only in the bond
index (so it does not take advantage of continued strong equity market performance afterwards on
paths where that happens); and (ii) it continually tries to reach the quadratic wealth target by using
maximum equity market exposure (and this gamble for resurrection fails on paths where the equity
market has persistently poor performance). The same comments apply to the historical market shown
in Figure 8b, but it is worth noting that the underperformance of the QS optimal strategy in the tails is
considerably reduced here compared to the synthetic market.

5.6. Effect of Replacement Ratio

All of the results provided to here assume a replacement ratio R = 50% of final real salary,
in accordance with Table 2. We now explore the effects of lowering this to 40% and increasing it to
60%. For each case, we determine the desired expected real wealth target by using Equation (11).
Table 10 shows the results. Decreasing R to 40% reduces the expected wealth target Wd to $732,000
from $915,000, while raising R to 60% increases Wd to $1,098,000. The remaining wealth values in the
table are normalized by Wd. Whether we consider the synthetic or the historical market, it is clear that
increasing R requires taking on more risk, as measured by either the standard deviation or the shortfall
probabilities. This is borne out in the cumulative distribution plots of normalized terminal real wealth
provided in Figure 9. The synthetic market results in Figure 9a clearly indicate that the QS optimal
strategy performs better for the lowest value of R. Recall that the strategy attempts to come as close as
possible to Wd (normalized to 1 for this plot), and the cumulative distribution when R = 40% shows
relatively low probability of normalized real wealth being much above or below 1. For the highest
replacement ratio (R = 60%), there is a substantial chance of being either significantly below or above
1. This is because the strategy must take on more risk in order to attain the higher expected wealth
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target. Of course, the base case with R = 50% lies in between these other two cases. The results for the
historical market shown in Figure 9b are generally similar, though the differences across the range of
values of R are somewhat less pronounced.
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Figure 8. Cumulative distribution of real terminal wealth when the equal-weighted equity index is used.
Wealth units: thousands of dollars. Input data provided in Tables 1 and 2, except as noted. Synthetic
market results computed using Monte Carlo simulations with 160,000 sample paths. Historical market
results based on 10,000 bootstrap resampled paths using data from 1926:1 to 2015:12 with expected
blocksize b̂ = 2 years; surplus cash flow included for the QS optimal strategy. (a) synthetic market;
(b) historical market.

Table 10. QS optimal results with varying salary replacement ratios R. Units for Wd: thousands of
dollars. Remaining wealth values are normalized by Wd for each case. Input data provided in Tables 1
and 2, except as noted. Synthetic market results computed using Monte Carlo simulations with 160,000
sample paths. Historical market results based on 10,000 bootstrap resampled paths using data from
1926:1 to 2015:12.

R
Wealth Expected Standard

Pr(WT /Wd < 0.8) Pr(WT /Wd < 0.9)
Expected

Target Value Deviation Surplus Cash
Wd (WT /Wd) (WT /Wd) (/Wd)

Synthetic Market
0.4 732 1.0 0.16 0.10 0.15 0.02
0.5 915 1.0 0.27 0.20 0.25 0.02
0.6 1098 1.0 0.37 0.31 0.36 0.02

Historical Market (Expected blocksize b̂ = 2 years)
0.4 732 .99 0.15 0.09 0.17 0.0
0.5 915 .97 0.24 0.18 0.25 0.03
0.6 1098 1.0 0.35 0.30 0.35 0.02
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Figure 9. Cumulative distributions of real terminal wealth with different salary replacement ratios R
for the QS optimal strategy. Input data provided in Tables 1 and 2, except as noted. Synthetic market
results computed using Monte Carlo simulations with 160,000 sample paths. Historical market results
based on 10,000 bootstrap resampled paths using historical data from 1926:1 to 2015:12 with expected
blocksize b̂ = 2 years; surplus cash included. (a) synthetic market; b) historical market.

5.7. Summary Regarding Alternative Assumptions

Sections 5.1–5.6 above provided detailed results concerning the effects of

• varying the accumulation fraction Fc, i.e., the investor saves Fc I0eµI ti at each rebalancing date;
• varying the real salary escalation rate µI ;
• use of leverage;
• alternative bond index: use of a 10 year T-bond index instead of a 3 month T-bill index;
• alternative stock index: use of an equal-weighted equity index instead of a value-weighted index; and
• varying the replacement ratio R.

Table 11 summarizes the results of various strategies in terms of probability of shortfall with
respect to the desired wealth goal Wd. These results were all obtained using bootstrap resampling
(i.e., for the historical market) with an expected blocksize of two years.

It is interesting to note that the results for the Base Case, constant proportion strategy (contribution
rate 20%) are worse than the results for the QS optimal strategy, Fc = 0.15 (contribution rate 15%),
at least in terms of the two points of the cumulative distribution function listed in the table. In other
words, the shortfall increase with a constant proportion strategy compared to the quadratic shortfall
strategy can be interpreted as losing 5% of lifetime salary, which is very significant. However, this
comparison does not take into account the entire cumulative distribution function. In general,
constant proportion strategies are superior to quadratic shortfall policies in the extreme left tail
of the distribution. However, the improvement over quadratic shortfall is very small, with a very
low probability.

As a filter to determine an acceptable combination of DC plan parameters and investment
strategies, suppose we specify that there should be at least a 90% probability of achieving at least 80%
of the desired expected wealth goal Wd. Based on attempting to achieve the final target expected real
wealth for the base case (see Table 2) and applying this filter, we can see that the shortfall probabilities
using standard strategies (constant proportion or glide path) are unacceptably high. Using the QS
optimal strategy leads to a substantial reduction in these shortfall probabilities, but still not to the
desirable range of less than 10%.

From Equation (11), it is clear that the case with R = 0.6 and wr = 4% leads to the same expected
wealth target as specifying R = 0.5 and wr = 3.3%. Table 11 therefore indicates that, if we assume that
the safe (real) withdrawal rate is 3.3% and the replacement ratio is 50%, the probability of shortfall is
quite high even if the QS optimal strategy is followed.
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Table 11. Comparison of shortfall probabilities. Results are normalized by Wd for each case. Input
data provided in Tables 1 and 2, except as noted. Historical market results based on 10,000 bootstrap
resampled paths using data from 1926:1 to 2015:12 with expected blocksize b̂ = 2 years.

Case Pr(WT /Wd < 0.8) Pr(WT /Wd < 0.9)

Base Case, Table 2

Constant proportion 0.43 0.54
Glide path 0.43 0.54
QS optimal 0.18 0.25

QS Optimal

Contribution Fraction
Fc = 0.25 0.09 0.17
Fc = 0.15 0.37 0.43

Salary Escalation Rate
µI = 0.0175 0.23 0.29
µI = 0.0075 0.14 0.21

Leverage
Lmax = 1.5 0.13 0.19

Alternative Bond Index
10-year T-bond 0.19 0.28

Alternative Stock Index
Equal-weighted 0.09 0.16

Replacement Ratio
R = 0.4 0.09 0.17
R = 0.6 0.30 0.35

Assuming we use the QS optimal allocation strategy, we are then forced to take other actions to
attempt to reduce the shortfall probability. Increasing the contribution rate to 25% of annual salary
meets our criterion, but this might be difficult to implement in terms of agreement from employees
and employers. Decreasing the replacement ratio (40% of final salary) also achieves the shortfall
objective. We note that many institutions effectively do this by targeting a final career average salary
replacement ratio (instead of a final salary replacement ratio).

Finally, the use of the alternative equal-weighted equity index also achieves the shortfall
probability target. As noted earlier, this type of index has historically outperformed its value-weighted
counterpart owing to higher exposure to value, size, and market factors (Plyakha et al., 2014). In effect,
the equal-weighted portfolio is a smart beta portfolio, with a long track record. However, equal-weighted
portfolios have higher costs, which have not been factored in to our analysis. This suggests that there
may be a market opportunity for a low cost synthetic ETF which tracks the equal-weighted index.

6. Conclusions

Typical default strategies available to DC plan members include target date funds (i.e., glide path)
and balanced funds (constant proportion). Both of these strategies have high probabilities of shortfall
and large standard deviations of real terminal wealth.

We define an acceptable probability of success as a 90% probability of achieving 80% of
the real desired terminal wealth goal. QS optimal strategies reduce the probability of shortfall
significantly, compared to the ubiquitous glide path and balanced portfolio strategies, but not to
within an acceptable range.

Assuming an optimal QS strategy, acceptable probabilities of shortfall can be obtained by

• reducing the final salary target replacement ratio (40% or less);
• increasing the total (employee and employer) contribution rate to 25% per year;
• using alternative stock investment indices, such as an equal-weighted index. The backtests of

an equal-weighted index perform well, but it is not clear that this will persist in the future.
In addition, we have not factored in the additional costs of this type of index.
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Our main conclusion is that current practices in DC plans with typical target benefits and default
investment strategies have unacceptably high probabilities of shortfall. This has major ramifications
for the many organizations which are shifting to DC plans.

Our results are based on the past 90 years of US market data. It is possible to argue that future
market returns will be lower than observed in the past. The implication of such an assumption is that
the probability of success for a DC investor would be even lower than we have reported here. In this
case, the situation for DC plan investors would be even more dire than we suggest.
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