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Abstract: This paper develops a fully-fledged statistical arbitrage strategy based on a mean-reverting
jump–diffusion model and applies it to high-frequency data of the S&P 500 constituents from January
1998–December 2015. In particular, the established stock selection and trading framework identifies
overnight price gaps based on an advanced jump test procedure and exploits temporary market
anomalies during the first minutes of a trading day. The existence of the assumed mean-reverting
property is confirmed by a preliminary analysis of the S&P 500 index; this characteristic is particularly
significant 120 min after market opening. In the empirical back-testing study, the strategy delivers
statistically- and economically-significant returns of 51.47 percent p.a.and an annualized Sharpe ratio
of 2.38 after transaction costs. We benchmarked our trading algorithm against existing quantitative
strategies from the same research area and found its performance superior in a multitude of risk-return
characteristics. Finally, a deep dive analysis shows that our results are consistently profitable and
robust against drawdowns, even in recent years.

Keywords: computational finance; asset pricing models; overnight price gaps; financial econometrics;
mean-reversion; statistical arbitrage; high-frequency data; jump-diffusion model

1. Introduction

Statistical arbitrage is a market-neutral strategy developed by a quantitative group at Morgan
Stanley in the mid-1980s (Pole 2011). Following Hogan et al. (2004), the self-financing strategy describes
a long-term trading opportunity that exploits persistent capital market anomalies to draw positive
expected profits with a Sharpe ratio that increases steadily over time. Arbitrage situations are identified
with the aid of data-driven techniques ranging from plain vanilla approaches to state-of-the-art models.
In the event of a temporary anomaly, an arbitrageur goes long in the undervalued stock and short
in the overvalued stock (see Vidyamurthy (2004), Gatev et al. (2006)). If history repeats itself, prices
converge to their long-term equilibrium and an investor makes a profit. Key contributions are provided
by Vidyamurthy (2004), Gatev et al. (2006), Avellaneda and Lee (2010), Bertram (2010), Do and Faff
(2012), and Chen et al. (2017).

The available literature divides statistical arbitrage into five sub-streams, including the time-series
approach, which concentrates on mean-reverting price dynamics. Since financial data are exposed to
more than one source of uncertainty, it is surprising that there exist only a few academic studies that use
a jump-diffusion model (see Larsson et al. (2013), Göncü and Akyildirim (2016), Stübinger and Endres
(2018), Endres and Stübinger (2019ab)). In addition to mean-reversion, volatility clusters, and drifts,
this general and flexible stochastic model is able to capture jumps and fat tails. First, Larsson et al.
(2013) used jump-diffusion models to formulate an optimal stopping theory. Göncü and Akyildirim
(2016) presented a stochastic model for the daily trading of commodity pairs in which the noise-term is
driven by a Lévy process. Stübinger and Endres (2018) introduce a holistic pair selection and trading
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strategy based on a jump-diffusion model. Recently, Endres and Stübinger (2019ab) derived an optimal
pairs trading framework based on a flexible Lévy-driven Ornstein–Uhlenbeck process and applied it
to high-frequency data. All these studies deal with intraday price dynamics and are therefore not in a
position to take into account the impact of overnight price changes, an apparent deficit as information
is published in media platforms 24 h a day, seven days a week.

This paper enhances the existing research in several aspects. First, our manuscript contributes to
the literature by developing a fully-fledged statistical arbitrage framework based on a jump–diffusion
model, which is able to capture intraday and overnight high-frequency price dynamics. Specifically,
we detect overnight price gaps based on the jump test of Barndorff-Nielsen and Shephard (2004) and
Andersen et al. (2010) and exploit temporary market anomalies during the first minutes of a trading
day. The existence of the assumed mean-reverting property is confirmed by a preliminary analysis
on the S&P 500 index; this characteristic is particularly significant 120 min after market opening.
Second, the value-add of the proposed trading framework is evaluated by benchmarking it against
well-known quantitative strategies in the same research area. In particular, we consider the naive
S&P 500 buy-and-hold strategy, fixed threshold strategy, general volatility strategy, as well as reverting
volatility strategy. Third, we perform a large-scale empirical study on the sophisticated back-testing
framework of high-frequency data of the S&P 500 constituents from January 1998–December 2015. Our
jump-based strategy produces statistically- and economically-significant returns of 51.47 percent p.a.
appropriate after transaction costs. The results outperform the benchmarks ranging from−6.56 percent
for the fixed threshold strategy to 38.85 percent for the reverting volatility strategy; complexity
pays off. Fourth, a deep-dive analysis shows that our results are consistently profitable and robust
against drawdowns even in the last part of our sample period, which is noteworthy as almost all
statistical arbitrage strategies have suffered from negative returns in recent years (see Do and Faff
(2010), Stübinger and Endres (2018)). The results pose a major challenge to the semi-strong form of
market efficiency.

The remainder of this research study is structured as follows. Section 2 provides the theoretical
framework applied in this study. In Section 3, we discuss the event study of the S&P 500 index. After
describing the empirical back-testing framework in Section 4, we analyze our results and present key
findings in Section 5. Finally, Section 6 gives final remarks and an outlook on future work.

2. Methodology

This section provides the theoretical construct of our statistical arbitrage strategy. Therefore,
Section 2.1 describes the Barndorff–Nielsen and Shephard jump test (BNS jump test), which helps us
to recognize jumps in our time series. The identification of overnight gaps is presented in Section 2.2.

2.1. Barndorff–Nielsen and Shephard Jump Test

We follow the theoretical framework of Barndorff-Nielsen and Shephard (2004) to detect overnight
gaps. First, let us denote low-frequency returns as:

yi = y∗(ih̄) + y∗((i− 1)h̄), i = 1, 2, ..., (1)

where y∗(t) denotes the log price of an asset after time interval {t}t≥0 and h̄ represents a fixed
time period, e.g., trading days. These low-frequency returns can be split up into M equally-spaced
high-frequency returns of the following form:

yj,i = y∗((i− 1)h̄ + h̄jM−1) + y∗((i− 1)h̄ + h̄(j− 1)M−1), j = 1, 2, ..., M. (2)

If i denotes the ith day, the jth intra-h̄ return is expressed as yj,i. Therefore, the daily return can be
written as:

yi =
M

∑
j=1

yj,i. (3)
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The BNS jump test of Barndorff-Nielsen and Shephard (2004) underlies the assumptions that prices
follow a semi-martingale to ensure the condition of no-arbitrage and are generated by a jump-diffusion
process of the following form and properties:

y∗(t) = y(1)∗(t) + y(2)∗(t), (4)

where y∗(t) describes the log price and y(1)∗(t) represents the stochastic volatility
semi-martingale process:

y∗ = α∗ + m∗, (5)

with α∗ describing the trend term with locally-finite variation paths, following a continuous mean
process of the security. The stochastic volatility process is represented through m∗, which is a local
martingale and defined as:

m∗ =
∫ t

0
σ(u)dW(u), (6)

where W describes the Wiener process. The spot volatility process σ2(t) is locally restricted away from
zero and specified as càdlàg, meaning that the process is limited on the left side, while it is everywhere
right continuous. Furthermore, σ(t) > 0, and the integrated variance (IV) process:

σ2∗(t) =
∫ t

0
σ2(u)du (7)

satisfies σ2∗(t) < ∞, ∀ t < ∞. Moreover, y(2)∗(t) defines the discontinuous jump component as:

y(2)∗(t) =
N(t)

∑
i=1

ci, (8)

with N representing a finite counting process, so that N(t) < ∞, ∀ t > 0 and ci denoting nonzero
random variables. Putting all together, the process can be written as:

y∗(t) = α∗ +
∫ t

0
σ(u)dW(u) +

N(t)

∑
i=1

ci (9)

consisting of a stochastic volatility component that models continuous price motions and a jump term
that accounts for sudden price shifts and discontinuous price changes. It is assumed that σ and α∗

are independent of W. From an economic point of view, Rombouts and Stentoft (2011) showed that
neglecting the non-Gaussian features of the data, prices are estimated with large errors.

To conduct the BNS jump test, three volatility metrics need to be specified: The quadratic
variation (QV), realized variance (RV), and bipower variation (BPV). QV is defined as:

[y∗](t) = σ2∗(t) +
N(t)

∑
i=1

c2
i , (10)

with σ2∗(t) denoting the integrated variance, presenting the quadratic variation of the continuous
part of the semi-martingale process, while ∑

N(t)
i=1 c2

i determines the quadratic variation of the jump
component (see Andersen et al. (2001), Barndorff-Nielsen and Shephard (2002), Andersen et al. (2003),
Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen and Shephard (2006)). Hence, this volatility
measurement takes into account the total variation of the underlying jump-diffusion process.

The realized variance:

[y∗M]2i =
M

∑
j=1

y2
j,i (11)
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functions as a consistent estimator of QV, where M determines the number of intraday returns for
day i. This volatility measure sums up all squared intraday returns for any considered period.

Andersen and Bollerslev (1998), Andersen et al. (2001), and Barndorff-Nielsen and Shephard
(2002) showed that RV equals QV for large M, yielding to the equation:

plim
M→∞

RVt = QVt = σ2∗(t) +
N(t)

∑
i=1

c2
i . (12)

BPV was introduced by Barndorff-Nielsen and Shephard (2004) as:

{y∗}[r,s](t) = plim
δ→0

δ1−(r+s)/2
bt/δc−1

∑
j=1

|yj|r|yj+1|s, r, s ≥ 0, (13)

where every {δ}δ>0 periods of time observations exist in interval t. BPV is a consistent estimator
of IV under the assumption of a semi-martingale stochastic volatility process with a jump component
described by Equation (4). Under those assumptions and for r > 0 and s > 0 applies:

µ−1
r µ−1

s {y∗}[r,s](t) =


∫ t

0 σr+s(u)d(u), max(r, s) < 2,

x∗(t), max(r, s) = 2,

∞, max(r, s) > 2,

(14)

where x∗(t) is a stochastic process, and µ is defined as:

µx = E|u|x = 2x/2
Γ
(

1
2 (x + 1)

)
Γ
(

1
2

) , (15)

with x > 0, u following a standard normal distribution, while Γ denotes the complete gamma function.
Barndorff-Nielsen and Shephard (2004) focused on the special case of r = s = 1 leading to the

following equation:

µ−2
1 {y

∗
M}

[1,1]
i = µ−2

1

M−1

∑
j=1
|yj,1|1|yj+1,1|1

p→
∫ h̄i

h̄(i−1)
σ2(u)du. (16)

Hence, BPV is for r = s = 1 a consistent estimator of the integrated volatility for the ith period. Based
on this case, the variation of the jump term can be isolated by subtracting BPV from RV:

[y∗M]2i − µ−2
1 {y

∗
M}

[1,1]
i

p→
N(h̄i)

∑
j=N(h̄(i−1))+1

c2
j . (17)

By calculating the difference between RV and BPV, we can separate the jump contribution to
the variation of the asset price from the QV. Therefore, the volatility can be decomposed into its
continuous and discontinuous components.

To identify jumps, we use the basic principles of the non-parametric BNS jump test and apply the
ratio z-statistic from Huang and Tauchen (2005). This test statistic is adjusted for market noise and
provides useful properties such as an appropriate size and a reasonable power. The evidence from the
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Monte Carlo simulation also suggests that this z-test is fairly accurate in detecting real jumps and not
easily fooled by market micro structure noises. The ratio test statistic:

Zt =

RVt − BPVt

RVt√((π

2

)2
+ π − 5

)
1
M

max
(

1,
TPt

BV2
t

) d→ N(0, 1) as M → ∞ (18)

is asymptotic standard normally distributed under the null hypothesis of no jumps. Following Huang
and Tauchen (2005), the tripower quarticity statistic is calculated by the following equation:

TPt = Mµ−3
4/3

(
M

M− 2

) M

∑
j=3
|rt,j|4/3|rt,j−1|4/3|rt,j−2|4/3 →

∫ t

0
σ4(u)du. (19)

To determine if at least one jump occurred in an asset, a right-sided hypothesis test with the null
hypothesis of no jumps was conducted. A commonly-used level of significance is 0.1 percent (see
Barndorff-Nielsen and Shephard (2006), Evans (2011), Frömmel et al. (2015)). If the null hypothesis
was rejected, at least one jump emerged in the underlying security during the considered period.

2.2. Jump Detection Scheme

The timing of jumps has an essential meaning for examining anomalous behavior around jumps.
To identify overnight gaps via jump tests, the precise time must be known. For this purpose, we
rely on the jump detection scheme introduced by Andersen et al. (2010). This jump identification
procedure is designed on the premise that jumps are rare events. If it is assumed that t equals one day
and at most one jump can emerge during the corresponding period, the only intraday jump can be
determined with:

RVt − BPVt
p→ c2

t , (20)

where c2
t represents the jump variation in period t. The intuitive idea is that the jump must be

incorporated in the highest absolute return on that specific day. Hence, the timing of the jump can be
determined by seeking the highest absolute return of the period. Furthermore, the precise jump size
can be calculated in the following way:

∼
c t = sgn

(
{rt,c : |rt,c| = max

j∈{1,...,M}
|rt,j|}

)
c2

t , (21)

where rt,c denotes the intraday return that contains the jump contribution, while sgn(·) is equal to 1 or
−1, depending on the sign of the argument.

3. Event Study of the S&P 500 Index

This section uses the outlined methodology of Section 2 to identify and analyze overnight price
gaps in the S&P 500 index. Following the approaches of Fung et al. (2000) and Grant et al. (2005), we
conducted the following four steps.

At first, the data were filtered according to the event of interest, the presence of overnight gaps.
To identify overnight gaps, we conducted daily the BNS jump tests, as introduced in Section 2.1. For
the test, we used high-frequency intraday returns of the previous day and the overnight return and a
significance level of 0.1 percent. The timing of jumps was determined by the jump detection procedure
of Andersen et al. (2010) (see Section 2.2). If the timing of the jump corresponded with the overnight
return, the day was marked as an event day and included in our study.
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Second, for every event day, the cumulative return of the S&P 500 index at minute t after the
market opening was computed by:

CRi,t =
Pi,t

Pi,0
− 1, (22)

where Pi,t denotes the index price on event day i at minute t after the beginning of the trading day.
Respectively, t = 0 represents the market opening.

Third, the average cumulative return (ACR) at time t:

ACRt =
1
N

N

∑
i=1

CRi,t, (23)

was computed for all event days. This figure is available for any minute t after the start of the trading
day. N is defined as the total number of days fulfilling the event day properties.

Fourth, t-tests were conducted to determine whether a given price movement after a specified
event was significant. Specifically, we calculated the corresponding test statistic to examine if the ACRt

at time t was significantly distinct from zero. The test statistic had the following form:

tACRt =
√

N
(ACRt − 0)

SACRt

∼ t(N − 1), (24)

where 0 < t ≤ T and ACRt denotes the mean of the sample. Furthermore, SACRt represents its
standard deviation, and N defines the total numbers of days in the filtered dataset. Under the null
hypothesis of no distinction from zero, the test statistic follows a t-distribution with N − 1 degrees
of freedom.

Table 1 shows the characteristics of the overnight price gaps detected by our jump test procedure.
In total, we observed 2128 overnight gaps during the sample period: 1154 of those gaps were positive,
while 974 were negative. On average, the S&P 500 index faced positive (negative) overnight gaps of
0.60 percent (−0.67 percent). The largest overnight gaps occurred during the global financial crisis
with 6.02 percent and −7.64 percent. The fact that both the range and the standard deviation of
negative gaps were higher than those of positive overnight movements confirms the existing literature:
market participants tend to react stronger to bad news rather than to good headlines (Suleman 2012).
Concluding, Table 1 shows that there was a sufficient number of overnight price gaps leading to
temporary market inefficiencies. As a result, this jump behavior generated high-frequency stock price
dynamics that created major trading opportunities. In stark contrast to the approach of Fung et al.
(2000) and Grant et al. (2005), the gaps identified by our jump-test scheme were both flexible and
data-driven.

Table 1. Characteristics of positive and negative overnight gaps, which are identified by the
Barndorff–Nielsen and Shephard (BNS) jump test, from January 1998–December 2015.

Positive Gap Negative Gap

Number of gaps 1154 974
Mean 0.0060 −0.0067

Minimum 0.0003 −0.0764
Quartile 1 0.0029 −0.0085

Median 0.0045 −0.0049
Quartile 3 0.0072 −0.0029
Maximum 0.0602 −0.0005

Standard deviation 0.0053 0.0063
Skewness 3.2771 −3.8289
Kurtosis 20.8453 29.3100
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Figure 1 illustrates the detected jumps in a more detailed way. We observe a higher variation of
negative overnight gaps, which is not surprising since financial data possess an asymmetric distribution
(Cont 2001). Interestingly, the interval with the highest number of observations for both positive and
negative overnight gaps was about ±0.15.
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Figure 1. Histogram of positive and negative overnight gaps, which were identified by the BNS jump
test, from January 1998–December 2015.

Figure 2 presents the number of detected overnight gaps over time. With rising volatility in
financial markets, the number of overnight gaps also increased; fluctuations in the market imply jumps.
Thus, it is not surprising that we observed almost no jumps in the first years of our sample period.
In stark contrast, the number of overnight price gaps increased in times of high market turmoil. In
general, more positive than negative gaps affect the S&P 500 index. As expected, this pattern changes
during crises such as the dot-com crash in the early 2000s and the financial crisis in 2008. This also
demonstrates the flexibility of the approach used to identify overnight gaps.
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Figure 2. Development of positive and negative overnight gaps, which were identified by the BNS
jump test, from 1998–2015.

Figure 3 depicts the average cumulative returns after overnight gaps identified by the BNS jump
test. The detailed development of the ACR for positive and negative price gaps is reported in Table A1.
The typical price pattern after overnight gaps is still persistent in modern financial markets, despite
that markets should become more efficient in the course of digitalization and improved information
flow (see Fung et al. (2000) and Grant et al. (2005)). In the case of a positive overnight gap, the
average cumulative returns rose for a brief period before reverting to the minimum at −0.0316 percent.
After reaching the lowest ACR 105 min after market opening, it began to rise until it crossed the
zero percent line. From this point, the returns almost fell close to the minimum before increasing
again. The upswing accelerated towards market closing, reaching 0.0236 percent at the end of the
trading day. Following a negative overnight gap, the ACR move inverted. Starting with a brief
continuation of the initial overnight movement, which marked the minimum of −0.0093 percent two
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minutes after the stock exchange opens, the ACR began to reverse to its maximum of 0.0463 percent
after approximately one and a half hours. The ACR remained relatively stable between 0.0200 and
0.0400 percent subsequent to hitting the upper limit. During the last ten minutes, the ACR rapidly
decreased until the end of the trading day. Noticeable is that the magnitude of the variation of the
ACR was stronger after negative price gaps. This is in line with stronger expected reactions of market
participants to bad information that was also observable in the represented gap characteristics (Table 1).
The p-values for both ACR realizations indicated that the returns were statistically different from zero
on a 10 percent significance level for most of the time before the 115-min mark. After that threshold
has passed, p-values well exceeded 10 percent; this fact is not surprising since many professional
day traders stop trading after two trading hours because volatility and volume tend to decrease (see
Balance (2019)). Furthermore, we recognized that the ACR for positive overnight gaps were not
significant for a target time of 5, 35, 65, and 95 min based on a 10% significance level; it seems that
the pattern is systematically repeated at 30-min intervals. This statement is confirmed by Business
Insider (2015), which shows that the trading volume increases in the first minutes of every trading hour.
Furthermore, Bedowska-Sojka (2013) demonstrated that this volatility is influenced by macroeconomic
releases, which are typically published at 9:30, 10:00, 10:30, and 11:00. As a result, the test-statistic
decreased, leading to non-significant p-values.

Concluding, our event study confirms the overreaction hypothesis and supports the results of
Fung et al. (2000) and Grant et al. (2005). The findings of the event study further suggest that we are in
a position to develop a statistical arbitrage strategy that exploits the mean-reversion characteristic of
stocks after statistically-significant overnight price gaps (see Poterba and Summers (1988), Leung and
Li (2015), Lubnau and Todorova (2015)). Specifically, it seems profitable to open trades after overnight
gaps and close them after 2 h, i.e., we should set a target time of 120 min.
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Figure 3. Average cumulative returns (%) after positive and negative overnight gaps, which were
identified by the BNS jump test, from January 1998–December 2015.

4. Back-Testing Framework

The empirical back-testing study was performed from January 1998–December 2015 at intraday
prices for the S&P 500 index components (see Section 4.1). According to Gatev et al. (2006) and
Nakajima (2019), we divided the dataset into overlapping study periods, which were shifted by one
day each. Each study period consisted of two consecutive phases. In the formation period (Section 4.2),
the most appropriate stocks were selected using predefined models and criteria. In the subsequent
out-of-sample trading period (Section 4.3), the top stocks were traded using rule-based entry and
exit signals; this procedure avoids any look-ahead bias. Summarizing, we developed a full-fledged
statistical arbitrage framework based on a jump–diffusion model (JDS), which is able to capture
intraday and overnight high-frequency price dynamics.
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4.1. Data and Software

The empirical back-testing was based on intraday data from the S&P 500 from
January 1998–December 2015. This highly liquid stock market includes the stocks of the 500 leading
blue chip companies that offer high-quality commodities and generally-accepted services. Since the
S&P 500 index captures 80 percent of the total U.S. market capitalization (S&P Dow Jones Indices
2015), this dataset represents a fundamental test for any potential capital market anomaly. To be in line
with Stübinger and Endres (2018), we applied a two-step process with the objective of removing any
survivor bias from the database. First, we used the information list from QuantQuote (2016) to build
a binary constituent matrix for S&P 500 shares from January 1998–December 2015. The 4527 rows
characterize the trading days considered, and the 984 columns show the stocks that were ever in
the S&P 500. Each element of this matrix displays a “1” if the corresponding company is part of the
S&P 500 index on the corresponding day, otherwise a “0”. The sum of each row is about 500 because
on each trading day, there are approximately 500 stocks in the index. Second, the complete archive
of minute-by-minute prices from January 1998–December 2015 was downloaded from QuantQuote
(2016). The corresponding stock exchange was open from Monday to Friday from 9:30–16:00 Eastern
time. Consequently, the price time series of a share includes 391 data points per day. We followed
Stübinger and Endres (2018) and adjusted the data by stock splits, dividends, and other corporate
actions. By performing these two steps, our study design is in a position to map the constituents of the
S&P 500 and the corresponding price time series completely.

The presented methodology and all relevant evaluations were implemented in the statistical
programming language R (R Core Team 2019). For computation-intensive calculations, we used both
the general-purpose programming language C++ and on-demand cloud computing platforms with
virtual computer clusters that are available 24/7 via the Internet.

4.2. Formation Period

In the formation period, we considered all S&P 500 stock constituents. Therefore, we (i) conducted
the BNS jump test based on past returns (ii) applied the jump detection scheme in the case of rejecting
the null hypothesis, and (iii) selected the top stocks for the subsequent trading period. This subsection
describes the outlined three-step logic.

In the first step, we executed the BNS jump test based on both the 390 intraday returns of the
last trading day and the overnight return, i.e., the percentage change of the price from 16:00 of the
last day to 9:30 of the current trading day. Specifically, we determined the z-statistic of Huang and
Tauchen (2005) (see Equation (18)). If the null hypothesis was rejected, at least one jump emerged in
the underlying security during the considered period. If the null hypothesis was not rejected, no jump
emerged in the underlying security during the considered period. Consequently, we did not consider
this stock in our back-testing framework.

In the second step, we applied the jump identification method of Andersen et al. (2010) to ensure
that we only selected stocks possessing overnight gaps (see Section 2.2). Therefore, we considered only
stocks that incorporate a significant overnight gap.

In the third step, we followed Miao (2014) and Stübinger and Endres (2018) and selected the
most suitable shares for the out-of-sample trading period. Our algorithm attempted to find stocks
possessing the most meaningful jump last night. For this purpose, we selected the top stocks, that
possesses overnight gaps in the sense of Andersen et al. (2010), with the highest z-statistic of Huang
and Tauchen (2005). The top 10 stocks were transferred to the trading period (see Section 4.3)1.

1 If less than 10 shares satisfied the condition of Andersen et al. (2010), we traded accordingly less. However, this case is
extremely rare.
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4.3. Trading Period

The top 10 stocks with the highest z-statistic were considered in the one-day trading period. For
every top stock, we applied the following trading rules:

• We observe a negative price gap during the night, i.e., the stock is undervalued. Consequently,
we go long in the stock.

• We observe a positive price gap during the night, i.e., the stock is overvalued. Consequently, we
go short in the stock.

Motivated by Section 3, the trade was reversed 120 min later. Our strategy was based on a
two-stage logic. First, we identified significant overnight price changes that had a substantial impact
on future stock prices. Second, the top stocks possessed mean-reverting price dynamics, so that we
could take advantage of these temporary market inefficiencies. If our assumption was correct, we were
in a position to capture transient mispricings and generate profits. Concluding, we created a statistical
arbitrage strategy based on a mean-reverting jump-diffusion model, the individual jump threshold
depends on the underlying volatility.

As we aim for a classic long-short investment strategy in the sense of Gatev et al. (2006), we
followed the principles of Avellaneda and Lee (2010) and Stübinger et al. (2018) and secured the
market exposure with appropriate capital investments in the S&P 500 index. Every activity carried
out on the market involves transaction costs. Therefore, it would be naive to ignore these fees as
our high-frequency framework is based on permanent trading. According to Prager et al. (2012)
and Stübinger and Bredthauer (2017), estimating exact values is not possible, but the bid-ask spread
had abated to lower than one percent for stocks of the S&P 500 index, i.e., two basis points for an
average stock price of 50 USD. In the same vein, Voya Investment Management (2016) accounted for a
bid-ask spread of 3.5 basis points for the S&P 500, which was caused by increased use of algorithmic
trading, decimalization, and changes in the stock market landscape. To be in line with Stübinger and
Endres (2018), we assumed transaction costs of five basis points per share per half-turn. Consequently,
transaction costs per complete round-trip corresponded to 20 basis points. This assumption appears
realistic in light of our high-turnover strategy in a highly-liquid equity market.

In order to evaluate the value-add of our strategy, we benchmarked it against strategies from
the same research field, but less flexible. More specifically, we considered the S&P 500 buy-and-hold
strategy (BHS), fixed threshold strategy (FTS), general volatility strategy (GVS), and reverting volatility
strategy (RVS) (see Table 2). The characteristic “individual” implies that the trading behavior depends
on the underlying variable. If the model captured the behavior of fluctuations of stock price dynamics,
we assigned the “volatility” property. The feature “mean-reverting” was fulfilled for statistical
approaches that were able to model convergence to equilibrium after divergence. Finally, the explicit
inclusion of a jump term led to the characteristic “jump-diffusion”. Data and the general frame were
set identically to the JDS in order to ensure a fair comparison. Especially, we transferred the top 10
stocks to the trading period for each day across all strategies. Details of the four benchmark strategies
are presented in the following paragraphs.

Table 2. Overview of the characteristics of the S&P 500 buy-and-hold strategy (BHS), fixed
threshold strategy (FTS), generalized volatility strategy (GVS), reverting volatility strategy (RVS),
and jump-diffusion strategy (JDS).

Characteristic BHS FTS GVS RVS JDS

Individual No Yes Yes Yes Yes
Volatility No No Yes Yes Yes

Mean-reverting No No No Yes Yes
Jump-diffusion No No No No Yes
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S&P 500 Buy-and-Hold Strategy (BHS)

First, we compared JDS to a naive S&P 500 buy-and-hold strategy (BHS). To be more specific, the
index was bought in January 1998 and held during the complete time period. This passive investment
neglected all the characteristics required for a successful strategy, namely, “individual”, “volatility”,
“mean-reverting”, and “jump-diffusion”.

Fixed Threshold Strategy (FTS)

According to Fung et al. (2000), Grant et al. (2005), and Caporale and Plastun (2017), the fixed
threshold strategy (FTS) detects abnormal overnight changes using a fixed threshold of ±0.20 percent.
This benchmark strategy obtains an individual trading limit for each stock. In our framework, the top
10 stocks with the highest absolute changes were opened at 9:30 of the trading day. We went long in
the undervalued stocks and went short in the overvalued stocks. Identical to JDS, the positions were
reversed 120 min after market opening. This approach was not in a position to distinguish stocks on
the basis of their fluctuation behavior.

General Volatility Strategy (GVS)

The general volatility strategy (GVS) is based on the assumption that equities with high volatility
exhibit temporary market inefficiencies (see Banerjee et al. (2007), Bariviera (2017)). Following
Stübinger and Endres (2018), we calculated the standard deviation of the overnight returns of the
last 40 days and transferred the top 10 stocks with the highest volatility to the trading period. Again,
undervalued (overvalued) stocks were bought (sold), and trades were reversed after 120 min.

Reverting Volatility Strategy (RVS)

Last but not least, the reverting volatility strategy (RVS) adds the mean-reversion component to
GVS, i.e., we measured the degree of reversion to the equilibrium level after divergences. According to
Do and Faff (2010), we determined the mean-reversion speed by the number of zero-crossings, which is
defined as the number of times prices cross the zero line. Stocks were ranked separately by standard
deviation and zero crossings; the stock with the highest value was assigned the highest rank for each
measurement. Next, we formed a combined rank by the sum of the two separate ranks. The top 10 stocks
were received by selecting stocks with the highest overall rank. The main disadvantage of this approach
was the lack of a jump term, which reflects uncertainty in addition to the volatility component (Cartea
et al. 2015).

5. Results

Following the high-frequency research studies of Mitchell (2010) and Knoll et al. (2018),
we conducted a fully-fledged performance evaluation for the top 10 stocks of JDS from
January 1998–December 2015 compared to the benchmarks BHS, FTS, GVS, and RVS. In particular,
we evaluated the return characteristics and risk metrics (Section 5.1), examined the performance over
time (Section 5.2), and analyzed the robustness of the strategies (Section 5.3). According to Gatev
et al. (2006) and Avellaneda and Lee (2010), this paper calculated the total return based on committed
capital, i.e., we divided the sum of daily net profits at the current day by the deployed capital.

5.1. Risk-Return Characteristics

Table 3 shows the daily return characteristics and risk metrics before and after transaction costs for
the top 10 stocks per strategy from January 1998–December 2015. We observed statistically-significant
returns for FTS, GVS, RVS, and JDS with Newey–West (NW) t-statistics above 15 prior to transaction
costs. From an economical point of view, daily returns ranged between 0.17 percent for FTS and
0.36 percent for JDS. If we considered transaction costs, only the mean-reverting strategies RVS and
JDS produced positively significant daily returns of 0.13 percent (RVS) and 0.17 percent (JDS). As
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expected, BHS generated statistically non-significant returns of 0.02 percent per day (see Endres and
Stübinger (2019b)). The range, i.e., the difference of the maximum and minimum, was vastly different
for JDS (approximately 0.30 percentage points), compared to BHS, FTS, GVS, and RVS (approximately
0.15 percentage points); this dissimilarity is potentially driven by the jump-diffusion term. The
same argument explains the increased standard deviation of JDS. All individual strategy variants
depicted favorable characteristics for any potential investor due to the fact that the underlying returns
showed right skewness and followed a leptokurtic distribution (Cont 2001). We found that the
maximum drawdown was quite different for FTS (87.84 percent) and GVS (89.47 percent), in contrast to
RVS (55.91 percent), BHS (64.33 percent), and JDS (68.17 percent); the difference between non-reverting
and reverting top stocks is clearly pointed out. The hit rate of JDS, i.e., the percentage of days with
non-negative returns, outperformed with 58.41 percent after transactions costs, compared to the
benchmarks, ranging between 41.79 percent for FTS and 55.92 percent for RVS.

Table 3. Daily return characteristics and risk metrics for BHS, FTS, GVS, RVS, and JDS from
January 1998–December 2015. NW denotes Newey–West standard errors with 1-lag correction and
CVaR the conditional value at risk.

Before Transaction Costs After Transaction Costs

BHS FTS GVS RVS JDS FTS GVS RVS JDS

Mean return 0.0002 0.0017 0.0019 0.0033 0.0036 −0.0003 −0.0001 0.0013 0.0017
Standard error (NW) 0.0002 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0002
t-Statistic (NW) 0.8617 17.9433 15.8454 23.0251 16.4912 −2.5816 −1.1504 9.2534 7.8870
Minimum −0.0947 −0.0410 −0.0521 −0.0544 −0.1169 −0.0430 −0.0541 −0.0564 −0.1187
Quartile 1 −0.0056 −0.0012 −0.0016 −0.0013 −0.0021 −0.0032 −0.0036 −0.0033 −0.0041
Median 0.0005 0.0012 0.0013 0.0030 0.0028 −0.0008 −0.0007 0.0010 0.0008
Quartile 3 0.0061 0.0040 0.0046 0.0076 0.0085 0.0020 0.0026 0.0056 0.0065
Maximum 0.1096 0.0604 0.0776 0.0889 0.1947 0.0584 0.0756 0.0869 0.1923
Standard deviation 0.0126 0.0062 0.0077 0.0090 0.0129 0.0062 0.0077 0.0090 0.0128
Skewness −0.1987 1.2552 1.2987 0.9082 2.7078 1.2552 1.2987 0.9082 2.6990
Kurtosis 7.5278 9.5525 11.7337 8.3119 29.7136 9.5525 11.7337 8.3119 29.8425
Historical VaR 1% −0.0350 −0.0136 −0.0178 −0.0187 −0.0255 −0.0156 −0.0198 −0.0207 −0.0275
Historical CVaR 1% −0.0506 −0.0186 −0.0249 −0.0263 −0.0346 −0.0206 −0.0269 −0.0283 −0.0365
Historical VaR 5% −0.0197 −0.0068 −0.0078 −0.0093 −0.0129 −0.0088 −0.0098 −0.0113 −0.0149
Historical CVaR 5% −0.0302 −0.0110 −0.0141 −0.0155 −0.0209 −0.0130 −0.0161 −0.0175 −0.0228
Maximum drawdown 0.6433 0.0667 0.0860 0.1012 0.2707 0.8784 0.8947 0.5991 0.6817
Share with return ≥ 0 0.5313 0.6327 0.6200 0.6782 0.6715 0.4179 0.4288 0.5592 0.5841

In Table 4, we depict annualized risk-return measures before transaction costs (left side) and
after transaction costs (right side). After transaction costs, JDS produced returns of 51.47 percent p.a.,
compared to 38.85 percent for RVS, −4.07 percent for GVS, and −6.59 percent for FTS. Thus, the first
two strategies achieved meaningfully better results than the naive buy-and-hold strategy (BHS) with an
average return of 1.81 percent p.a. Across all strategies, the mean excess return was similar to the mean
return because the risk-free rate was very close to zero, especially in the last years. Our jump-based
strategy JDS generated approximately the standard deviation of the market, resulting in a Sharpe ratio
of 2.38 after transaction costs. This value confirmed the results of the high-frequency studies of Knoll
et al. (2018) and Stübinger (2018). The lower partial moment risk of JDS led to a Sortino ratio of 4.76,
compared to the benchmarks ranging between −1.03 (FTS) and 4.67 (RVS). We summarized that JDS
outperformed the classic approaches in a large number of comparisons; complexity pays off. Our task
was still to evaluate the performance over time, as well as the robustness of the strategies.



J. Risk Financial Manag. 2019, 12, 51 13 of 19

Table 4. Annualized risk-return measures for BHS, FTS, GVS, RVS, and JDS from
January 1998–December 2015.

Before Transaction Costs After Transaction Costs

BHS FTS GVS RVS JDS FTS GVS RVS JDS

Mean return 0.0181 0.5456 0.5874 1.2959 1.4472 −0.0659 −0.0407 0.3885 0.5147
Mean excess return −0.0022 0.5149 0.5558 1.2503 1.3985 −0.0846 −0.0598 0.3609 0.4845
Standard deviation 0.2005 0.0984 0.1219 0.1432 0.2045 0.0984 0.1219 0.1432 0.2037
Downside deviation 0.1441 0.0490 0.0633 0.0696 0.0950 0.0639 0.0777 0.0832 0.1082
Sharpe ratio −0.0110 5.2312 4.5598 8.7339 6.8392 −0.8592 −0.4904 2.5211 2.3781
Sortino ratio 0.1256 11.1380 9.2757 18.6058 15.2388 −1.0315 −0.5229 4.6719 4.7587

5.2. Sub-Period Analysis

Motivated by the time-varying returns of Liu et al. (2017) and Stübinger and Knoll (2018), we
analyzed the stability and potential of the strategies over time. Figure 4, therefore, presents the
development of an investment of USD 1 after transaction costs for FTS, GVS, RVS, JDS (first column),
and the S&P 500 buy-and-hold strategy BHS (second column) over three partial periods. Table A2
provides a detailed overview of the corresponding annualized risk-return ratios for sub-periods of
three years.

The first sub-period ran from 1998–2006 and described the bursting of the Internet bubble and
the start of the Iraq war, as well as the subsequent bull market. We observed meaningful differences
in performance between the mean-reverting and non-mean-reverting strategies: the average annual
returns after transaction costs of up to 73.76 percent for RVS and up to 64.08 percent for JDS were well
above those of BHS (7.87 percent), FTS (27.31 percent), and GVS (42.26 percent). As a typical feature in
the financial context, the baseline methods were nevertheless successful in this period due to market
inefficiencies and a lack of transparency.

The second sub-period ranged from 2007–2009 and was characterized by the global financial
crisis and its consequences. In the course of the sub-prime crisis, the overall market showed strong
fluctuations and substantial declines. In contrast, the other strategies generated positive returns,
ranging from 27.35 percent for FTS to 315.02 percent for JDS. This strong performance was not
astonishing as Avellaneda and Lee (2010) and Rad et al. (2016) demonstrated that statistical arbitrage
trading strategies achieved abnormal returns during bear markets.

The third sub-period extends from 2010–2015 and covered a period of comebacks and restarts.
The benchmarks FTS and GVS showed declining trends compared to the overall market, caused by the
increasing public availability of these methods. RVS achieved an almost constant cumulative return
of one, i.e., this strategy generated exactly the costs that were incurred. For JDS, we observed that
1 USD invested in January 2010 grew to 5 USD after transaction costs; performance did not decline
across time and seemed to be robust against drawdowns.

5.3. Robustness Check

As mentioned above, we motivated the target time of 120 min based both on the available
literature and the results of our event study; see Section 3. Since data snooping is a major problem in
many financial applications, this subsection examines the sensitivity of our strategies to deviations
from their parameter value. In Table 5, we vary the target time in two directions and report the
annualized returns before and after transaction costs for BHS, FTS, GVS, RVS, and JDS.

First of all, we see that our results were robust in the face of parameter variations and always
led to statements similar to those in Section 5.1. As expected, the results of a target time of 120 were
identical to those of Table 3. Furthermore, the annualized returns for each strategy converged as the
relative change decreased with increasing target time. The naive S&P 500 buy-and-hold strategy (BHS)
always led to an annualized return of 1.81 percent, which is not surprising, since this approach is
completely independent of the target time (Section 4). Furthermore, the performance of FTS increased
slightly with ascending target time, e.g., the annualized return after transaction costs was−9.37 percent
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if we closed the trade at 9:50 and −8.36 percent if we closed it at 13:10. The same statement applies to
GVS (−9.70 percent vs. −4.28 percent). Due to their mean-reverting component, RVS and JDS showed
a slightly declining performance. For each target time, JDS remained the best variant with annualized
returns between 49.65 percent and 62.61 percent, after transaction costs. Obviously, we were not on an
optimum, but we found robust trading results, regardless of fluctuations in our parameter setting.
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Figure 4. Development of an investment of 1 USD after transaction costs for FTS, GVS, RVS, and JDS
(first column) compared to the S&P 500 buy-and-hold-strategy (BHS) (second column). The time period
from January 1998–December 2015 is divided into three sub-periods (March 1998/December 2006,
January 2007/December 2009, January 2010/December 2015).

Table 5. Yearly returns for BHS, FTS, GVS, RVS, and JDS for a varying target time from
January 1998–December 2015.

Before Transaction Costs After Transaction Costs

Target Time BHS FTS GVS RVS JDS FTS GVS RVS JDS

20 min 0.0181 0.4997 0.4944 1.4201 1.6941 −0.0937 −0.0970 0.4638 0.6261
40 min 0.0181 0.5030 0.5382 1.4120 1.6685 −0.0918 −0.0704 0.4589 0.6104
60 min 0.0181 0.5214 0.5525 1.3706 1.6624 −0.0806 −0.0618 0.4338 0.6068
80 min 0.0181 0.5088 0.5483 1.3132 1.5883 −0.0882 −0.0643 0.3990 0.5628
100 min 0.0181 0.5065 0.5583 1.3107 1.5893 −0.0896 −0.0583 0.3975 0.5634
120 min 0.0181 0.5456 0.5874 1.2959 1.4472 −0.0659 −0.0407 0.3885 0.5147
140 min 0.0181 0.5346 0.5748 1.2748 1.5233 −0.0726 −0.0483 0.3757 0.5241
160 min 0.0181 0.5384 0.5897 1.2653 1.5226 −0.0703 −0.0392 0.3700 0.5229
180 min 0.0181 0.5699 0.5848 1.2510 1.4946 −0.0512 −0.0422 0.3613 0.5061
200 min 0.0181 0.5268 0.5764 1.2255 1.4783 −0.0773 −0.0473 0.3459 0.4965
220 min 0.0181 0.5165 0.5838 1.2358 1.4865 −0.0836 −0.0428 0.3521 0.5014
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Motivated by the findings in Section 3, Table 6 examines the annualized returns for a target time
of 5, 35, 65, and 95 min. Most interestingly, annual returns were substantially lower for a target time of
5 min for FTS, GVS, RVS, and JDS because high market turmoil during the opening minutes reduced
the results. For a target time of 35, 65, and 95 min, increasing market efficiency during the first minutes
of each trading hour did not affect yearly returns before and after transaction costs; our strategies seem
to be robust against this effect.

Table 6. Yearly returns for BHS, FTS, GVS, RVS, and JDS for a target time of 5, 35, 65, and 95 min from
January 1998–December 2015.

Before Transaction Costs After Transaction Costs

Target Time BHS FTS GVS RVS JDS FTS GVS RVS JDS

5 min 0.0181 0.3217 0.2529 1.0387 1.1842 −0.2015 −0.2432 0.2327 0.3174
35 min 0.0181 0.5233 0.5349 1.4023 1.6719 −0.0795 −0.0725 0.4531 0.6134
65 min 0.0181 0.5232 0.5515 1.3793 1.6431 −0.0795 −0.0624 0.4391 0.5956
95 min 0.0181 0.5118 0.5601 1.3102 1.5824 −0.0864 −0.0572 0.3972 0.5589

Next, we take a closer look at our S&P 500 buy-and-hold strategy (BHS). The S&P 500 index
was purchased in January 1998 and was held for the entire sample period. Of course, BHS is only a
baseline approach for betting on the market. Therefore, we followed Endres and Stübinger (2019b)
and developed a more realistic benchmark: The S&P 500 strategy buys the index at 9:30 and reverses
it after 120 min. We observed an annualized return of 1.03% compared to 1.81% for BHS (see also
Table 4). This insufficient performance is not surprising, as it is a baseline approach without modeling.

Finally, this manuscript supposed a high-turnover strategy of an institutional trader on
high-frequency prices. Motivated by the literature, our back-testing framework assumed transaction
costs of five basis points per share per half-turn, resulting in 20 basis points per round-trip per pair.
However, other traders may be less aggressive in implementing this strategy. Therefore, we analyzed
the breakeven point of the statistical arbitrage strategy since investors are exposed to different market
conditions. We found that the breakeven point of JDS was between 35 basis points and 40 basis points.
Concluding, this strategy generated promising results, even for investors that are exposed to different
market conditions and thus higher transaction costs.

6. Conclusions

In this paper, we presented an integrated statistical arbitrage strategy based on overnight
price gaps and implemented it on high-frequency data of the S&P 500 stocks from
January 1998–December 2015. In this context, we made four contributions to the literature. The
first contribution relates to the developed trading framework based on a jump-diffusion model: we
are in a position to capture jumps, mean-reversion, volatility clusters, and drifts. Our approach
identifies overnight price gaps based on the jump test of Barndorff-Nielsen and Shephard (2004)
and exploits temporary market anomalies by corresponding investments. In a preliminary study,
we confirmed the assumption of mean-reverting overnight gaps with the aid of the S&P 500 index.
The second contribution focuses on the value-add of our strategy. Therefore, we benchmarked
it against well-known quantitative strategies from the same research area, namely the naive
S&P 500 buy-and-hold strategy, fixed threshold strategy, general volatility strategy, and reverting
volatility strategy. The third contribution is based on our large-scale empirical study on a sophisticated
back-testing framework. Our strategy produced statistically- and economically-significant returns of
51.47 percent p.a. after transaction costs; the benchmarks were outperformed. The fourth contribution
focuses on the profitable and robust performance results also in the last part of our sample period. Our
findings posited a severe challenge to the semi-strong form of market efficiency even in recent times.

We identified three possible directions for further research: First, the event study and the
back-testing framework should be conducted in other equity universes. Second, the exit signal
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of the strategy should be determined for each stock individually. Third, a multivariate model could be
developed that takes into account the common interactions between stocks.
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Appendix A

Table A1. Detailed development of the ACR with p-values of the two-sided t-test from
January 1998–December 2015. ACR denotes the average cumulative returns.

Positive Gap Negative Gap

Target Time ACR in % p-Value ACR in % p-Value

5 min 0.0056 0.1180 0.0013 0.8140
10 min −0.0037 0.4690 0.0178 0.0180
15 min −0.0155 0.0160 0.0334 0.0000
20 min −0.0229 0.0020 0.0293 0.0060
25 min −0.0248 0.0030 0.0355 0.0030
30 min −0.0207 0.0260 0.0310 0.0160
35 min −0.0150 0.1580 0.0327 0.0320
40 min −0.0193 0.0850 0.0284 0.0670
45 min −0.0245 0.0400 0.0314 0.0480
50 min −0.0227 0.0670 0.0318 0.0560
55 min −0.0236 0.0610 0.0415 0.0160
60 min −0.0255 0.0490 0.0420 0.0150
65 min −0.0209 0.1230 0.0346 0.0490
70 min −0.0231 0.1000 0.0333 0.0690
75 min −0.0257 0.0810 0.0387 0.0470
80 min −0.0287 0.0600 0.0417 0.0310
85 min −0.0301 0.0490 0.0432 0.0280
90 min −0.0256 0.1030 0.0415 0.0360
95 min −0.0230 0.1540 0.0373 0.0690

100 min −0.0286 0.0810 0.0338 0.0990
105 min −0.0316 0.0550 0.0334 0.1060
110 min −0.0288 0.0820 0.0334 0.1070
115 min −0.0294 0.0780 0.0382 0.0740
120 min −0.0248 0.1360 0.0328 0.1260
130 min −0.0189 0.2620 0.0307 0.1670
140 min −0.0207 0.2290 0.0256 0.2660
150 min −0.0224 0.2150 0.0343 0.1430
160 min −0.0177 0.3300 0.0313 0.1920
170 min −0.0156 0.3940 0.0295 0.2230
180 min −0.0091 0.6250 0.0248 0.3160
190 min −0.0066 0.7270 0.0276 0.2620
200 min −0.0069 0.7180 0.0296 0.2320
210 min −0.0111 0.5700 0.0340 0.1770
220 min −0.0070 0.7210 0.0304 0.2370
230 min −0.0027 0.8880 0.0258 0.3260
240 min −0.0038 0.8450 0.0288 0.2650
250 min −0.0068 0.7300 0.0254 0.3340
260 min −0.0121 0.5460 0.0302 0.2640
270 min −0.0175 0.3850 0.0314 0.2470
280 min −0.0218 0.2890 0.0275 0.3260
290 min −0.0212 0.3130 0.0241 0.3960
310 min −0.0189 0.3880 0.0347 0.2390
330 min −0.0131 0.5740 0.0309 0.3140
350 min −0.0115 0.6360 0.0344 0.2820
370 min −0.0073 0.7720 0.0276 0.4320
390 min 0.0229 0.4070 −0.0052 0.8900
391 min 0.0236 0.3900 −0.0052 0.8870
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Table A2. Annualized risk-return measures for BHS, FTS, GVS, RVS, and JDS for sub-periods of 3 years
from January 1998–December 2015.

Before Transaction Costs After Transaction Costs

BHS FTS GVS RVS JDS FTS GVS RVS JDS

1998–2000

Mean return 0.0624 1.1054 1.3520 1.8718 0.1674 0.2731 0.4226 0.7376 −0.2956
Mean excess return 0.0106 1.0030 1.2378 1.7324 0.1105 0.2111 0.3534 0.6531 −0.3300
Standard deviation 0.2055 0.1037 0.1172 0.1193 0.1439 0.1037 0.1172 0.1193 0.1435

Downside deviation 0.1442 0.0449 0.0546 0.0515 0.1035 0.0591 0.0687 0.0641 0.1191
Sharpe ratio 0.0516 9.6750 10.5590 14.5236 0.7682 2.0364 3.0143 5.4756 −2.2991
Sortino ratio 0.4324 24.6231 24.7455 36.3203 1.6165 4.6206 6.1472 11.5012 −2.4817

2001–2003

Mean return −0.0781 0.5919 0.7374 1.7218 1.5412 −0.0379 0.0502 0.6467 0.6408
Mean excess return −0.0978 0.5580 0.7005 1.6640 1.4872 −0.0584 0.0278 0.6116 0.6058
Standard deviation 0.2184 0.1214 0.1463 0.1636 0.2037 0.1214 0.1463 0.1636 0.2024

Downside deviation 0.1538 0.0685 0.0827 0.0823 0.1057 0.0849 0.0981 0.0966 0.1187
Sharpe ratio −0.4478 4.5978 4.7880 10.1681 7.2995 −0.4816 0.1902 3.7375 2.9939
Sortino ratio −0.5080 8.6396 8.9161 20.9326 14.5766 −0.4467 0.5116 6.6958 5.3993

2004–2006

Mean return 0.0787 0.4021 0.2554 0.9144 1.3252 −0.1529 −0.2417 0.1574 0.4035
Mean excess return 0.0475 0.3616 0.2191 0.8592 1.2582 −0.1774 −0.2636 0.1240 0.3630
Standard deviation 0.1046 0.0601 0.0656 0.1019 0.1278 0.0601 0.0656 0.1019 0.1276

Downside deviation 0.0720 0.0323 0.0396 0.0499 0.0613 0.0483 0.0562 0.0650 0.0758
Sharpe ratio 0.4542 6.0149 3.3407 8.4349 9.8430 −2.9506 −4.0187 1.2171 2.8453
Sortino ratio 1.0935 12.4580 6.4486 18.3127 21.6319 −3.1672 −4.2977 2.4206 5.3199

2007–2009

Mean return −0.1177 1.1060 1.2654 2.5881 5.8734 0.2735 0.3701 1.1720 3.1502
Mean excess return −0.1358 1.0628 1.2189 2.5147 5.7331 0.2473 0.3419 1.1274 3.0653
Standard deviation 0.2995 0.1500 0.1991 0.2193 0.3477 0.1500 0.1991 0.2193 0.3470

Downside deviation 0.2209 0.0687 0.0977 0.1009 0.1323 0.0823 0.1111 0.1134 0.1437
Sharpe ratio −0.4534 7.0874 6.1215 11.4693 16.4905 1.6491 1.7170 5.1421 8.8346
Sortino ratio −0.5328 16.0953 12.9488 25.6392 44.4096 3.3231 3.3318 10.3376 21.9222

2010–2012

Mean return 0.0671 0.1413 0.1445 0.3591 0.6918 −0.3107 −0.3088 −0.1789 0.0215
Mean excess return 0.0663 0.1404 0.1436 0.3581 0.6905 −0.3112 −0.3093 −0.1795 0.0207
Standard deviation 0.1856 0.0538 0.0651 0.1017 0.1543 0.0538 0.0651 0.1017 0.1540

Downside deviation 0.1341 0.0328 0.0415 0.0658 0.0905 0.0512 0.0590 0.0815 0.1061
Sharpe ratio 0.3572 2.6115 2.2080 3.5202 4.4759 −5.7880 −4.7542 −1.7647 0.1348
Sortino ratio 0.5004 4.3142 3.4861 5.4583 7.6420 −6.0655 −5.2322 −2.1942 0.2029

2013–2015

Mean return 0.1219 0.2262 0.2275 1.0296 1.5703 −0.2593 −0.2585 0.2272 0.6838
Mean excess return 0.1219 0.2262 0.2275 1.0296 1.5703 −0.2593 −0.2585 0.2272 0.6838
Standard deviation 0.1281 0.0487 0.0611 0.1022 0.1392 0.0487 0.0611 0.1022 0.1372

Downside deviation 0.0904 0.0289 0.0367 0.0506 0.0535 0.0455 0.0535 0.0647 0.0662
Sharpe ratio 0.9516 4.6472 3.7216 10.0702 11.2826 −5.3274 −4.2295 2.2221 4.9853
Sortino ratio 1.3484 7.8150 6.2034 20.3644 29.3617 −5.7035 −4.8294 3.5130 10.3278
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