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Abstract: Recent event study literature has highlighted abnormal stock returns, particularly in
short event windows. A common explanation is the cross-correlation of stock returns that are often
enhanced during periods of sharp market movements. This suggests the misspecification of the
underlying factor model, typically the Fama-French model. By drawing upon recent panel data
literature with cross-section dependence, we argue that the Fame-French factor model can be enriched
by allowing explicitly for network effects between stock returns. We show that recent empirical
work is consistent with the above interpretation, and we advance some hypotheses along which new
structural models for stock returns may be developed. Applied to data on stock returns for the 30
Dow Jones Industrial Average (DJIA) stocks, our framework provides exciting new insights.

Keywords: Fama-French factor model; market microstructure; trading behavior; panel data factor
model; social network model; risk spillover; abnormal returns

1. Introduction

In finance theory and empirics, stock returns are typically described by a factor model along the
lines of Fama and French (1988, 1993, 2015) and Carhart (1997). However, despite the popularity of
the Fama-French (FF) and FF-type models, substantial literature in the event study tradition, starting
from Brown and Warner (1985) and Strong (1992), has pointed towards a failure of the FF model to
adequately capture the relationship between risk and return; for recent literature, see Chiang and
Li (2012) and Marks and Musumeci (2017), among others. Specifically, there are periods when stock
returns are highly correlated (Kolari and Pynnönen 2010); this correlation leads to abnormal returns
and mismeasured risk; see also Boehmer et al. (1991) and Kothari and Warner (2007).1

In this paper, we contrast the FF-type factor models for stock returns against the standard panel
data factor model in contemporary econometrics. Then, recent developments in the econometrics
of panel factor models with cross-section dependence suggest reasons why the FF-type model may
be misspecified. To address such misspecifications, we propose modeling cross-correlations using
a suitable structural model. Motivated by the recent clustering model (Nagy and Ormos 2018) and
recursive model (Basak et al. 2018), we propose a social network dependence structure. Applied to
data on stock returns for the 30 current DJIA stocks, we find evidence of network effects, the careful

1 Abnormal return is defined in the event study finance literature as the difference between the actual return of a security (in
our case, over a one week time horizon) and the expected return as calculated using a model; see, for example, Brown and
Warner (1985). Thus, any misspecification in the underlying factor model implies mismeasurement of expected returns and
the corresponding risk-return relationship and would be evident in substantial abnormal returns.
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modeling of which addresses misspecification of the underlying factor model. This brings returns
more in line with risks, and provides a structural understanding of risk spillovers.

Any model is necessarily an abstraction of reality, and will entail a certain degree of
misspecification; understandably this is true of the FF model as well. Researchers have continued
to improve upon the FF model with a larger collection of factors (FF-type models), and this has
undoubtedly improved model fit and interpretation. Our contribution here lies in proposing quite a
different extension. We consider trading activity and its structural interpretations more explicitly than
the literature, which goes along the lines of structural interpretation of correlations that currently lies
beyond the scope of the FF-type models. Then, together with the factors in the FF model, the proposed
model provides substantial enhancement to our understanding and a better explanation of returns.
We consider as benchmark a CAPM model (including only the market return factor) and an FF-type
model including 6 factors: the 5 Fama and French (1988, 1993) factors, plus the momentum factor of
Carhart (1997). Our results show that the base CAPM, together with network effects, has competitive
explanatory power, and for some stocks offers substantial improvements relative to the above 6 factor
model. This provides an alternate structural factor model for asset pricing, and develops avenues for
new research.

Section 2 contrasts factor models in finance and econometrics and draws some insights into
misspecification. Section 3 develops a social network model and estimates this using the DJIA stock
returns. Structural interpretation of the model is discussed, together with alternate structural models.
Section 4 concludes, with an appeal for further research on structural dependence in stock returns.

2. Factor Models in Finance and Econometrics

The FF and similar factor models in finance are typically expressed as:

yit = αi + βimt + γi
′xt + εit, (1)

and estimated using time series data (t = 1, ..., T) on the returns, yit, on n (i = 1, ..., n) stocks. Here
mt denotes the excess return on the market portfolio and βi the corresponding beta-factor for stock i,
xt is a vector of returns on a finite number of firm-specific factors (typically called the Fama-French
factors) and γi their corresponding factor exposures, αi is a stock- (firm-) specific intercept that can
be interpreted as a fixed effect, and εit is an idiosyncratic error term. Typically, the excess return on
the market portfolio (mt) is easily computed from market data and the time-varying returns (xt) are
reported in market research publications (French 2017). The original Fama and French (1993) factors
SMB (Small Minus Big) and HML (High Minus Low) were extended to include Mom (momentum) in
Carhart (1997) and further to RMW (Robust Minus Weak) and CMA (Conservative Minus Aggressive)
in Fama and French (2015). Returns on these factors constitute xt; see French (2017) for further details
on concepts and computation.

2.1. Network Effects and Bias

Traditionally, the above FF model (1) is estimated by least squares, where the factor exposures βi
and γi are viewed as parameters to be estimated from the data. This estimation strategy raises issues
that are well recognized in the literature; see, for example, Strong (1992), Kothari and Warner (2007)
and Kolari and Pynnönen (2010). One important issue is that risk is not consistently estimated if there
is either time-varying volatility or cross-section correlations in the errors εit. This renders inference on
abnormal returns particularly challenging. This is really an estimation efficiency issue that is not in
itself likely to cause bias in estimation of the factor model. However, there would be a more serious
problem of endogeneity if, for some reason, there were network interdependencies between returns on
different stocks. This will also lead to mismeasured risk and very likely biased estimates.
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To understand the nature of the problem, consider for simplicity a CAPM type restricted factor
model of the form

yit = αi + βimt + εit, (2)

where the effect of additional FF firm-specific factors is not included. The above CAPM model (2) can
imply a specific form of network architecture, known in the spatial econometrics literature as a social
interactions model (Lee et al. 2010; Hsieh and Lee 2016; Bhattacharjee et al. 2018; Cohen-Cole et al.
2018; Doğan et al. 2018) or a farmer-district model (Case 1992; Robinson 2003; Gupta and Robinson
2015), whereby the units (here, stocks) are classified into several groups or social networks. Stocks
in the same social network are related to each other, but not to stocks in the other networks. Further,
the inter-network influences are symmetric across all directed pairs of stocks within the network and
can be represented by an adjacency-based binary weights matrix. In turn, the membership of social
networks is inferred either by cluster analysis (Bhattacharjee et al. 2016; Chakraborty et al. 2018; Nagy
and Ormos 2018) or correlation analysis (Junior et al. 2015; Bailey et al. 2016) of the dependent variable,
which in our case are stock returns.

Now, consider the clustering pattern implied by the above CAPM, assuming for simplicity that
the parameter vector can take only one of two values, (αi, βi) ∈ {(− 1

2 , 1), ( 1
2 , 0)}, and these correspond

to the two network classes. Likewise, assume for simplicity only two time periods, t = 1, 2. Then, if
a scatterplot of returns is obtained along the axes given by t = 1 and t = 2, it is clearly seen that the
loci of data points in the two network classes will be

(
m1 − 1

2 , m2 − 1
2

)
and

(
1
2 , 1

2

)
, with the random

distribution of points around the loci determined solely by the idiosyncratic errors εit.
More generally, if the parameter vector takes values in a finite set (αi, βi) ∈

{(a1, b1), (a2, b2), · · · , (ak, bk)}, and we have data for t = 1, ..., T time periods, then
this would generate data points clustered around a corresponding set of k loci:{(

aj + bjm1, aj + bjm2, · · · , aj + bjmT
)

: j = 1, · · · , k
}

. Further, if there were no network
interdependence between the stocks, the parameters can be recovered through time series
least squares regressions based on (2) for each individual stock, since the observations are independent
over time. Therefore, the loci of the clusters can also be precisely estimated as the number of time
periods increase, that is, as T → ∞ . The same argument holds if we had additional FF firm-specific
factors, in which case we would estimate a model of the Fama-French form (1). However, the
endogenous network effects would lead to biased least squares estimation.

Let us now consider a simple extension to the CAPM type restricted factor model (2) to include
network interdependence. Denote by y

t
= (y1t, y2t, · · · , ynt)′ the vector of returns at time point t, and

consider a standard spatial autoregressive (lag) network model of the form

y
t
= ρWy

t
+ α + βmt + εt, (3)

where α and β are corresponding vectors of the CAPM parameters, W(n×n) is a square matrix of
network membership with zero diagonal elements and the off-diagonal elements are unit if two firms
belong to the same network and zero otherwise, and ρ is the so-called spatial autoregressive or network
dependence parameter (|ρ| < 1). Here, the network architecture follows exactly the social interactions
or farmer-district model; see, for example, Lee et al. (2010). Further, we assume as before that the
CAPM parameter vector takes values in a finite set

(αi, βi) ∈ {(a1, b1), (a2, b2), · · · , (ak, bk)},

and further that two stocks with the same parameters belong to the same network.
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Now, without loss of generality, let the stocks in the first network have parameters (a1, b1) and
come first in the ordering, followed by the second network with parameter values (a2, b2) and so on,
we have the following block-diagonal equicorrelation structure for W:

W =

 W1 · · · 0
...

. . .
...

0 · · · Wk

,

where the connection matrix for network j (j = 1, . . . , k) is of order
(
nj × nj

)
and takes the form:

Wj =


0 1/

(
nj − 1

)
1/
(
nj − 1

)
0

· · · 1/
(
nj − 1

)
· · · 1/

(
nj − 1

)
...

...
1/
(
nj − 1

)
1/
(
nj − 1

) . . .
...

· · · · · · · · · · · · 0


(nj×nj)

,

with zero diagonal and row-standardised unit values everywhere else, and n = n1 + n2 + · · ·+ nk.
The equicorrelation form of the social interactions model clearly highlights why it may be useful

to identify the network structure based on cross-section correlations, as in Lee et al. (2010) and
mboxciteauthorB3-jrfm-450549 (2016). Then, the reduced form the network model (3) is:

y
t
= (I − ρW)−1α + (I − ρW)−1βmt + (I − ρW)−1εt, (4)

where

(I − ρW)−1 =


(I − ρW1)

−1 · · · 0
...

. . .
...

0 · · · (I − ρWk)
−1

.

This reduced form representation (4) clearly highlights how the network generates risk spillovers.
The structure of the reduced form in (4) has important implications for estimation and inference on

the Fama-French model. First, additional FF-type firm-specific factors retain the same basic structure
of the model, with slope parameters that are proportional to the underlying structural model at (3).
Second, applied to data from the network interactions model (3), time series least squares regression
based on individual stock returns will simply recover the reduced form intercept and slopes, rather
than the underlying structural parameters (aj and bj); clearly this leads to biased and inconsistent
inferences. Third, the reduced form least squares parameter estimates correctly recover the underlying
network structure because the nature of clustering does not change. Specifically, the data points are still
clustered around a set of k loci, which is a simple scale transformation of the original model without
network dependence. Hence, the network structure can be accurately identified by cluster analysis
of the underlying returns. In fact, within the context of the FF model (1) with network dependence
as in (3), cluster analysis will typically recover the loci of the FF- firm specific factors as well. Fourth,
simply accounting for the network structure does not help. True, the underlying network dependence
can be identified by clustering; but under the network interactions model (3), if the CAPM (and FF)
part of the model were ignored, this would provide biased inferences on the network dependence
parameters. Hence, both parts of the model are important for accurate estimation and analyses of risk
and return.
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2.2. Comparison with Panel Data Factor Model

Cross-section dependence is well studied within the current literature in panel data econometrics.
Here, the central factor model has the following form:

yit = δi
′ ft + θi

′zit + εit, (5)

where ft denotes a vector of time-specific “factors” with corresponding stock-specific loadings δi,
zit contains a collection of stock- and time-varying covariates, and εit are stationary but potentially
cross-section dependent and autocorrelated regression errors; see, for example, Pesaran (2006). Some
of the “factors” may be observed, and others latent. In particular, a factor taking unit value in each
time period corresponds to fixed effects, denoted αi in the FF model (1). The response variable (returns)
yit has cross-section dependence arising from two sources. First, there is the influence of common
“factors” ft, but potentially with effects heterogeneous across different stocks. Second, there are the
cross-section dependent errors εit.

Pesaran (2006) points to an important distinction between cross-section strong and weak
dependence (of returns on different stocks, in our case). The first arises from the effect of
common factors, such as the market portfolio and the FF factor returns; the second is due to local
interdependencies (spillovers) between firms and their stocks. Following from Pesaran (2006), an
influential literature has spawned in this area; see, for example, Kapetanios and Pesaran (2007), Bai
(2009), Pesaran and Tosetti (2009), and Bailey et al. (2016).

Pesaran (2006) developed two key results. First, least squares estimation of (5) with omitted
latent factors provides inconsistent and biased estimates of θi in general. The only situation where
credible inferences can be made is when the errors εit are stationary over time and granular across
the cross-section. Pesaran (2006) and Pesaran and Tosetti (2009) provide technical definitions of
cross-sectional granularity. This is conceptually akin to stationarity, but across the cross-section
dimension, and implies that the degree of cross-section dependence is limited. Pesaran (2006) terms
this case weak cross-section dependence, and Pesaran (2015) provided a statistical test based on average
cross-section correlation of the residuals; see Bhattacharjee and Holly (2013) for an alternate test.

Second, Pesaran (2006) offers a large sample method to address strong dependence when both
dimensions are large, that is, n→ ∞ and T → ∞ . In such situations, one can enrich the model by
including cross-section averages of the dependent and independent variables as:

yit = δi
′(yt, zt) + θi

′zit + εit, (6)

where the cross-section averages (yt, zt) eliminate strong dependence from the model, leaving only
weak dependence in the residuals. This model can then be consistently estimated by least squares.
This methodology is called common correlated effects estimation because (yt, zt) take these high
cross-section correlations out of the data.

Let us now revert to a comparison with the FF model (1). The return on the market is akin to
the average return in each period, and hence is very close to yt. Since temporal variation in the risk
free rate is much lower than the market, the excess return on the market, mt, is numerically almost
the same cross-section average return less a constant.2 Unfortunately, beyond yt, common correlated
effects cannot be directly applied in (1), because there are no regressors with both cross-section and
time variation, unlike zit in (5). This key observation has two implications. First, one should always
test the residuals from least squares estimation of (1) for potential strong dependence. Second, strong
cross-section dependence needs to be modelled based on structural considerations of pricing in
financial markets. We focus on this second issue in the next section.

2 Over the period of our analysis, standard deviation of the risk free rate is only 0.15, as compared to 4.43 for the market return.
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3. Structural Models of Asset Pricing Correlations

As discussed in Section 2, the lack of cross-section variation in the regressors precludes the
opportunity to apply common correlated effects estimation in the FF model (1). This implies that any
cross-section strong dependence (across the stocks) needs to be modelled explicitly using structural
models of price formation in the market. This is where we turn to next. We first discuss a few structural
models and the relevant literature, and propose an alternate model. Then, we illustrate our proposed
structural model using data on monthly returns on the stocks currently included in the Dow Jones
Industrial Average (DJIA).

3.1. Structural Models of Price Formation

Structural modelling of cross-section dependence is the domain of spatial and network
econometrics. Within this literature, there is very little research on stock returns. However, one
can draw some insights from the literature on other markets (for example, housing and labor markets)
or to dependence across financial markets. A key result from this literature is that the underlying
structural model is, in general, not fully identified from cross-section covariances and correlations
(Bhattacharjee and Jensen-Butler 2013). Hence, one requires further structural assumptions, either
from theory or from context specific research, to identify network effects.

One such admissible assumption is recursive structure under which information flows are
sequential (but contemporaneous) through different segments of the market. Based on 25 portfolios
formed on size and book-to-market (Fama and French 1996; French 2017), Basak et al. (2018) find
substantial explanation for risk spillovers and abnormal returns, and the model outperforms reduced
form VAR (vector autoregressive) factor models. Suppose risk neutral traders arrive sequentially and
repeatedly at the market taking positions on preferred risk/return FF portfolios. Then, limit or market
order mechanisms would generate such recursive ordering of the portfolios in terms of information
flow, in turn leading to cross-portfolio correlations. This ties in with the recent market microstructure
literature on limit orders; see, for example, Handa and Schwartz (1996), Parlour (1998), Foucault (1999),
Mertens (2003) and Foucault et al. (2005).

Recursive ordering is often a feature of cross-market information flows, where the sequencing of
opening and closing times of different markets produce the so-called ‘meteor shower’ phenomenon
documented in volatility by Engle et al. (1990) and in returns by Hamao et al. (1990). Bhattacharjee
(2017) find that return correlations across 19 markets worldwide are explained by recursive ordering,
in combination with global factors capturing the dominance of major markets. We propose a different
model in this paper, but recursive structural models hold good promise for the future.

Beyond recursive ordering, some other structural assumptions are also admissible. Bhattacharjee
and Jensen-Butler (2013) show that network dependence structure is identified under the assumption
of symmetric interdependence. There are three important special cases of symmetry. First, there are
social network models where individuals in the same network share information or interact with each
other, but not with members in other networks; see, for example, Lee et al. (2010) and Cohen-Cole et al.
(2018). This model is also closely related to the farmer-district model (Case 1992; Robinson 2003).
Cross-section dependent stock returns can well be represented by social network models, but in
applications, the membership and identity of networks is seldom known a priori, and one still needs
appropriate theory or clustering/LASSO methods (discussed below) to motivate these networks.

Second, there are models where interconnections are binary and reciprocal, as in the social
networks model, but the networks can be overlapping. In the context where the network is sparse, but
negative interactions are possible, Bailey et al. (2016) propose estimation of network structure based
on multiple testing of estimated cross-section correlations. We will briefly consider a model of this
type later. In the context of stock returns factor models, lack of any obvious structural interpretation of
the network is obviously an impediment. Besides, one would expect network interdependence in the
stock market to be fairly dense, and hence the sparsity assumption may also be somewhat tenuous.
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The third class of models use either clustering or LASSO (least absolute shrinkage and selection
operator; Tibshirani 1996) to identify social network or block structure from the data. However, an
observed pattern of clustering does not necessarily imply clustering of the parameter vector, since
the returns of different stocks may be similar because they share a network. This observation justifies
current approaches of characterizing the underlying latent network structure using either spatial
and spatio-temporal clustering (Bhattacharjee et al. 2016; Chakraborty et al. 2018) or an analysis
of cross-section correlations (Junior et al. 2015; Bailey et al. 2016); Nagy and Ormos (2018) apply
clustering across markets to study dependence. Lam and Souza (2016) provide a method to identify
block structure using the LASSO and similar methods. Our structural model and empirical analysis
are based mainly on this third approach. As discussed earlier, since the network structure can only
contribute to weak dependence, the factor structure needs to be removed from the data a priori. As
our analytical discussion in Section 2.1 shows, one can first estimate a FF-type factor model, identify
the common factors that are associated with strong dependence, and then cluster the stocks based on
the remaining weak-dependence factors. However, since the factors in the FF model are essentially
returns on different types of risk, clustering can then be based on exposure to the corresponding risks.

The above approach is consistent with the following trading strategy. In the context of factor
models (1) and (5), absence of cross-section variation in regressors for the FF-type model imply that
subtle variations, over time, in the factor exposures for each stock are not captured in the data; hence,
traders need to address this issue through diversification. Then, our structural model posits that,
traders sort themselves on heterogenous risk preferences. Given a specific preference type over
multiple risk factors, they then choose their preferred exposure to the risks and create a diversified
portfolio of stocks with this risk exposure. This behavior generates interdependence across stock
returns within this portfolio, but not beyond. Since the exposures are estimated by an FF-type factor
model (1), the network can be identified by clustering the stocks on this estimated exposure vector.3

The above trading model is structural, but its assumptions need validation. To highlight the promise
that this approach holds, we now provide an illustrative application on the DJIA stock returns.

Our central argument is that, since the structural network effects are only partially identified
from reduced form regressions (Bhattacharjee and Jensen-Butler 2013), inference requires structural
assumptions underpinned by appropriate theory. Above, we have discussed three such lines of theory,
emphasizing in particular one new structural model. There, traders choose their diversified portfolio
with a preferred risk exposure; this trading behavior generates interdependence across stock returns
within this portfolio, but not beyond. Since the exposures are estimated by an FF-type factor model,
the network can be identified by clustering the stocks on this estimated exposure vector. This justifies
our approach (in Section 3.2) of assuming that within cluster correlations dominate network effects
across the clusters, which are then assumed to be absent.

Obviously, there are competing structural models where stocks belonging to different groups
would be correlated, and we also discussed two such models: First, we refer to Basak et al. (2018),
who developed a model where limit or market order mechanisms generate recursive ordering of
the portfolios in terms of information flow, in turn leading to cross-portfolio correlations. This
may be viewed as a model diametrically in opposition to the model developed in this paper.
Second, unrestricted correlations can be modeled, and we also consider this approach. However,
the unrestricted correlations model raises two further issues from a structural point of view. First, we
need an assumption of sparsity (Bailey et al. 2016). Network interdependence in the stock market
may be dense, and hence the sparsity assumption may be somewhat tenuous. Second, we do not
currently have theory to justify sparse interactions, and lack of any obvious structural interpretation
of the network is obviously an impediment. Nevertheless, we estimated such a model (Section 3.2)

3 Alternate structural restrictions with asymmetric dependence, for example, tree-based nested dependence (Bhattacharjee
and Holly 2013), sparsity (Ahrens and Bhattacharjee 2015; Lam and Souza 2018) and copulas (Liu et al. 2018) can also hold
promise, but we do not consider these here.



J. Risk Financial Manag. 2019, 12, 50 8 of 13

and highlight that more work is required for structural understanding of the underlying trading
mechanisms. We suggest this as an avenue for future research.

3.2. Data and Estimated Model

We collected daily stock returns data (adjusted for splits, dividends and distributions) from Yahoo
Finance, on the stocks currently included in the Dow Jones Industrial Average (DJIA).4 The period
under analysis is January 2001 to December 2015.5 Historical monthly factor returns on the Fama and
French (1993, 2015) 5-factors and the Carhart (1997) momentum factor were collected from the web
archive of French (2017). To make our stock returns data comparable with factor returns, stock returns
are aggregated to the monthly level. These constitute our data under analysis.

First, we estimate by least squares a CAPM model (2) including only an intercept and excess
return on the market. As discussed in Section 2.1, the network structure can be accurately identified
by clustering on the vector (αi, βi). We also estimate a FF-type factor model including all the six
factors: mt, SMB, HML, RMW, CMA and Mom. The CAPM model exhibits spatial (network) strong
dependence. Using the CD test of Pesaran (2015), the null hypothesis of weak dependence is strongly
rejected. The test statistic evaluates to −4.026 with a p-value of 5.7 × 10−5. However, the same is not
true for the FF-type model with six factors; the CD test statistic is −1.775 with a p-value of 0.076.

Next, we apply cluster analysis to the estimated
(
α̂i, β̂i

)
, and clearly identify 3 clusters: low

alpha and low beta (13 stocks), low alpha and high beta (13 stocks) and high alpha (4 stocks). The
membership of the clusters is reported in Table 1. Then, we construct a social network weighting
matrix W(n×n) based on membership of the above three clusters.

Finally, we estimate two spatial autoregressive (lag) network models, including only mt but not
the Fama and French (1993, 2015) or Carhart (1997) factors. In the first, a contemporaneous spatial lag
Wy

t
is included; this is exactly the model in (3). Inclusion of the spatial lag introduces endogeneity

in the model, and we estimate using a variant of the popular two stage least squares (2SLS) method
in Kelejian and Prucha (1998). Like the application of common correlated effects, the above 2SLS
method also presents challenges because there is no cross-section variation in the regressors. We use as
instruments the omitted five FF-type factors, together with lagged residuals from the estimated CAPM
model (2). The first stage estimation work well (with F-statistics much greater than 10 in all cases)
and weak instruments issues are not apparent. However, 2SLS is known to have finite sample bias
and there is loss of efficiency; for this reason, model comparison is based on root mean squared errors
(RMSE). The second network model includes network effects as a time-lag, that is Wy

t−1
. Here, we do

not have contemporaneous endogeneity and the model can be estimated using least squares:

y
t
= ρWy

t−1
+ α + βmt + εt, (7)

The spatial lag (3) and space-time lag (7) model would in general have different structural
implications. However, in our specific context, they are similar since the time lag is one week, which is
very long in financial markets. By this time lag, all stock specific temporal information is expected
to already have been factored into prices, and this information is therefore not relevant for trading
strategy based on portfolio construction. Under our proposed structural model discussed in Section 3.1,
trading behavior generates network effects through the choice of portfolios which get updated at a
much lower frequency. Hence, structural implications of the spatial autoregressive and time lag models

4 The following 30 stocks are included (tickers in parentheses): 3M (MMM), American Express (AXP), Apple (AAPL),
Boeing (BA), Caterpillar (CAT), Chevron (CVX), Cisco Systems (CSCO), Coca-Cola (KO), DowDuPont (DOW), ExxonMobil
(XOM), Goldman Sachs (GS), The Home Depot (HD), IBM (IBM), Intel (INTC), Johnson & Johnson (JNJ), JPMorgan Chase
(JPM), McDonald’s (MCD), Merck & Company (MRK), Microsoft (MSFT), Nike (NKE), Pfizer (PFE), Procter & Gamble
(PG), Travelers (TRV), UnitedHealth Group (UNH), United Technologies (UTX), Verizon (VZ), Visa (V), Walmart (WMT),
Walgreens Boots Alliance (WBA), and Walt Disney (DIS).

5 Data for Visa (V) are only from March 2008. Our methods are applicable to unbalanced panel data.
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are literally the same in so far as network effect implications are concerned. In terms of econometric
implications, estimation of the two models are different. The spatial lag model generates endogenous
effects; hence, we use instrumental variables methods, while the space-time lag model has only lagged
endogenous effects, and therefore, least squares estimation is employed.

Table 1. Clusters, Model Diagnostics and Relative Efficiencies.

Clusters
(Network) Ticker

Root Mean Squared Errors (RMSE) Efficiency, Relative to

CAPM (2) FF Model (1) Contemporaneous
Network (3)

Time-Lag
Network (7) CAPM (2) FF Model (1)

Low alpha, low beta
PFE 4.757 4.596 4.357 4.744 −8.41% −5.20%
TRV 4.782 4.752 4.633 4.786 −3.11% −2.50%
MCD 4.764 4.700 4.630 4.777 −2.81% −1.50%
JNJ 3.697 3.445 3.437 3.660 −7.02% −0.23%

XOM 4.380 4.226 4.224 4.384 −3.55% −0.03%
KO 4.308 4.058 4.066 4.319 −5.61% 0.21%

WMT 4.827 4.759 4.966 4.819 −0.17% 1.26%
PG 3.927 3.720 3.772 3.932 −3.94% 1.39%

WBA 6.515 6.325 6.788 6.496 −0.30% 2.71%
MMM 4.431 4.263 4.524 4.383 −1.08% 2.81%
CVX 4.807 4.603 4.733 4.798 −1.54% 2.84%
MRK 6.489 5.939 6.329 6.501 −2.46% 6.56%
VZ 5.536 4.969 5.570 5.479 −1.03% 10.27%

High alpha
V 6.217 5.894 5.490 5.432 −12.64% −7.84%

UNH 6.693 6.699 6.658 6.704 −0.52% −0.61%
NKE 5.681 5.657 6.508 5.688 0.14% 0.56%

AAPL 9.143 8.929 9.906 9.112 −0.34% 2.05%

Low alpha, high beta
BA 6.340 6.262 6.316 6.065 −4.33% −3.15%

UTX 4.403 4.348 4.322 4.402 −1.82% −0.58%
DIS 4.760 4.688 4.708 4.666 −1.98% −0.47%
HD 5.680 5.698 5.767 5.683 0.05% −0.28%

MSFT 5.730 5.651 5.696 5.733 −0.58% 0.81%
GS 5.938 5.856 5.946 5.937 −0.03% 1.38%

INTC 7.283 6.887 7.224 7.202 −1.11% 4.56%
CAT 6.501 6.201 6.518 6.498 −0.04% 4.78%
IBM 5.303 4.937 5.322 5.175 −2.41% 4.83%

CSCO 7.561 6.946 7.395 7.438 −2.19% 6.47%
DOW 8.606 7.382 8.641 8.540 −0.76% 15.69%
AXP 7.349 6.200 7.320 7.255 −1.27% 17.03%
JPM 6.401 5.370 6.852 6.418 0.26% 19.52%

Between the two network models (3) and (7), we choose the one with lower RMSE; the model
with better fit is indicated in bold in Table 1. Then, we apply the CD test to the correlation matrix
of residuals. The test statistic is 1.458 with a p-value of 0.145. Hence, we are satisfied that weak
dependence holds, and estimates of the network factor model are consistent. Finally, we report relative
efficiency of the chosen network model, in terms of percent lower RMSE, relative to the CAPM model
(1) and the FF-type model (2).

In terms of RMSE, the clustering network model improves upon the CAPM for all stocks except
two (Nike and JPMorgan Chase). This is reassuring but not surprising because the network model
includes one addition regressor, the spatial lag. However, it is remarkable that the network model
improves upon the FF-type model with all six factors for 11 (out of the 30) stocks. This provides
encouraging validation of the clustering structural model proposed in this paper. Understanding
trading activity and pricing in financial markets is an important problem in finance. It is our belief that
the work here takes an important step in this direction.

In Table 2, we report the estimated alphas (α) and betas (β) for the CAPM and network models.
The distinction between the three estimated clusters is clear from the CAPM estimates. Further, as
predicted by theory, there is strong correlation between the estimates from the two models; 0.68 for
alpha and 0.76 for beta. However, also as expected from our theory, there is substantial bias in the
CAPM model estimates; on average, positive bias in alpha is about 66% and 30% for beta. The FF-type
model with 6 factors is qualitatively similar. Since the time-period under study is not too long, we
assume that W and ρ is constant over time, but that ρ varies by stock (that is, ρi).
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Table 2. Factor Model Estimates.

Clusters
(Network) Ticker

Estimated Network Model—(3) or (7) Estimated CAPM

Alpha Beta Network (rho) Alpha Beta

Low alpha, low beta
PFE −0.061 0.669 −0.147 −0.162 0.650
TRV 0.463 0.787 −0.090 0.369 0.771
MCD 0.746 0.660 0.013 0.670 0.649
JNJ 0.515 0.484 −0.172 0.374 0.457

XOM 0.329 0.582 −0.078 0.249 0.567
KO 0.231 0.524 −0.032 0.179 0.515

WMT −0.224 −0.115 0.786 0.043 0.388
PG 0.493 0.395 −0.064 0.409 0.380

WBA −0.033 0.044 1.222 0.305 0.779
MMM 0.299 0.415 0.668 0.427 0.808
CVX 0.247 0.298 0.703 0.410 0.721
MRK 0.008 0.615 −0.080 −0.107 0.596
VZ 0.254 0.696 −0.264 0.162 0.676

High alpha
V 0.698 0.414 0.355 1.410 0.785

UNH 1.023 0.607 0.049 1.090 0.614
NKE 0.060 0.223 0.608 1.133 0.762

AAPL 0.716 0.248 1.423 2.612 1.252

Low alpha, high beta
BA 0.225 1.045 0.307 0.391 1.090

UTX 0.311 0.976 0.055 0.329 0.981
DIS 0.446 1.014 0.122 0.488 1.174
HD 0.375 0.465 0.428 0.453 1.020

MSFT 0.282 1.042 −0.062 0.430 1.059
GS −0.063 0.943 0.353 0.053 1.396

INTC −0.124 1.184 0.163 −0.015 1.402
CAT 0.429 0.847 0.520 0.461 1.494
IBM −0.119 0.486 0.341 0.100 0.953

CSCO −0.173 1.599 −0.246 −0.319 1.563
DOW 0.168 1.629 0.210 0.277 1.656
AXP −0.075 1.442 0.215 0.008 1.463
JPM 0.025 1.367 0.025 0.152 1.388

In addition to the clustering model, we also applied the multiple testing procedure of Bailey et al.
(2016) to construct a weighting matrix; in this case, the p-value of the CD test is 0.650, which is
promising performance of this method in negating strong dependence. However, more work is
required for structural understanding of the underlying trading mechanisms; this is also an avenue for
future research.

We verify the robustness of our findings across several dimensions. First, we evaluate robustness
in clustering. We use different starting clusters, and different algorithms, all of which provide consistent
results. Further, we account for the uncertainty in estimated alpha and beta parameters by multiple
imputation based on estimated confidence intervals, and the results are consistent as well. Second,
we evaluate robustness in choice of factors by considering two traditional factor models. One is
the CAPM with a single market return factor, and the other is a 6-factor model including the Fama
and French (1988, 1993) and Carhart (1997) factors. We find that our model almost always provides
an improvement over the CAPM (in terms of RMSE), but is also frequently better than the 6-factor
model. Third, we consider several network models. One, a contemporaneous spatial lag model; two, a
space-time lag model; and finally, a sparse network model with unrestricted interactions. The main
implications of our results are consistent across all three specifications.
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4. Conclusions

The Fama and French (1993) and similar factor models are important and popular in finance,
and they provide good structural understanding of the risk, returns and price formation. Typically,
the model is estimated as a time series regression separately for each stock (firm). Such estimation
would provide consistent estimates if the data are independent across firms. However, if there were
any network effects, such estimates can be inefficient or even inconsistent if the network effects
are endogenous.

Indeed, persistent evidence of abnormal returns and cross-section correlations in stock returns
points towards potential misspecification of the FF-type models. In this paper, we show that
endogenous network effects create cross-section dependence that renders least squares estimation of
FF-type factor models inconsistent; hence, computed returns and risk may both be erroneous.

Further, we argue that current econometric methods to deal with cross-section dependence are
not applicable to the above factor models. This leads us to development of structural models to
understand network effects better. We propose a social network model based on clustering and show
that it lends itself to interesting structural interpretations. Applied to data on the 30 DJIA stocks, our
model provides improved estimation of factor models and insightful new understanding of trading
activity and price formation. How the information in improved relative efficiencies can be harnessed
for trading is a matter of further research and practice, which we also retain for future work.

While our current evidence is limited to only the DJIA stocks, this work provides the basis for
further empirical validation and development of theory, not to mention alternate structural models of
trading activity as well. A larger temporal dimension would obviously be useful in highlighting the
weaknesses of the FF model which ignores structural cross-sectional interactions that are highlighted
from our findings. However, capturing such interactions requires a potentially strong assumption that
the nature and strength of interactions is constant over time. Obviously, the validity of this assumption
would become more tenuous with a larger sample, but can equally be verified using more data. The
advantages of larger sample data would also be apparent with a larger cross-section dimension. The
current paper is best viewed as a proof of concept that further research on structural network effects
may be fruitful. Hence, our work provides several promising avenues for further research in the
direction of market microstructure models and their applications.
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