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Abstract: To model multivariate, possibly heavy-tailed data, we compare the multivariate normal
model (N) with two versions of the multivariate Student model: the independent multivariate
Student (IT) and the uncorrelated multivariate Student (UT). After recalling some facts about
these distributions and models, known but scattered in the literature, we prove that the maximum
likelihood estimator of the covariance matrix in the UT model is asymptotically biased and propose
an unbiased version. We provide implementation details for an iterative reweighted algorithm to
compute the maximum likelihood estimators of the parameters of the IT model. We present a
simulation study to compare the bias and root mean squared error of the ensuing estimators of the
regression coefficients and covariance matrix under several scenarios of the potential data-generating
process, misspecified or not. We propose a graphical tool and a test based on the Mahalanobis
distance to guide the choice between the competing models. We also present an application to model
vectors of financial assets returns.

Keywords: multivariate regression models; heavy-tailed data; Mahalanobis distances; maximum
likelihood estimator; independent multivariate Student distribution; uncorrelated multivariate
Student distribution

1. Introduction

Many applications involving models for multivariate data underline the limitations of the classical
multivariate Gaussian model, mainly due to its inability to model heavy tails. It is then natural to turn
attention to a more flexible family of distributions, for example the multivariate Student distribution.

In one dimension, the generalized Student distribution encompasses the Gaussian distribution
as a limit when the number of degrees of freedom or shape parameter tends to infinity, allowing for
heavier tails when the shape parameter is small. As we will see, a first difficulty in higher dimensions
is that there are several kinds of multivariate Student distributions; see for example Johnson and
Kotz (1972) and more recently Kotz and Nadarajah (2004). A nice summary of the properties of the
multivariate Student distribution that we will use later on in this paper, and its comparison with the
Gaussian multivariate, can be found in Roth (2013).

Before going further, let us mention that it is not so easy to have a clear overview of the results
in terms of Student regression models for at least three reasons. The first reason is that this topic
is scattered, with some papers in the statistical literature and others in the econometrics literature,
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sometimes without cross-referencing. The second reason is that the word “multivariate” is sometimes
misleading since, as we will see, the multivariate Student is used to define a univariate regression
model. At last, the distinction between models UT and IT (see below) is not always clearly announced
in the papers. Other miscellaneous reasons are that some authors just fit the distribution without
covariates and finally that some authors consider the degrees of freedom as fixed, whereas others
estimate it. Our first purpose here is to lead the reader through this literature and gather the results
concerning the maximum likelihood estimators of the parameters in the multivariate UT and IT models
with a common notation. In the present paper, we consider a multivariate dependent vector and a
linear regression model with different assumptions on the error term distribution. The most common
and convenient assumption is the Gaussian distribution. For a Gaussian vector, the assumption
of independent coordinates is equivalent to the assumption of uncorrelated coordinates. Such an
equivalence is no longer true when considering a multivariate Student distribution. We thus consider
two cases: uncorrelated (UT) on the one hand and independent Student (IT) error vectors on the
other hand.

The purpose of this paper is to contribute to the UT and IT models as well as to their comparisons.
First of all, for the UT model, we extend to the multivariate case the results of Zellner (1976) for
the derivation of the maximum likelihood estimators and Zellner’s formula (Zellner (1976)) for the
bias of the covariance matrix estimator, and we prove that it does not vanish asymptotically. For the
multivariate IT model, in the same spirit as Lange and Sinsheimer (1993), we provide details for the
implementation of an iterative reweighted algorithm to compute the maximum likelihood estimators
of the parameters. We devise a simulation study to measure the impact of misspecification on
the bias, variance, and mean squared error of these different parameters’ estimates under several
data-generating processes (Gaussian, UT, and IT) and try to answer the question: what are the
consequences of a wrong specification? Finally we introduce a new procedure for model selection based
on the knowledge of the distribution of the Mahalanobis distances under the different data-generating
processes (DGP).

One application attracted our attention in the finance literature. The work in Platen and Rendek
(2008) identified the Student distribution with between three and five degrees of freedom, with a
concentration around four, as the typical distribution for modeling the distribution of log-returns of
world stock indices. They embedded the Student t in the class of generalized hyperbolic distributions,
itself a subclass of the normal/independent family. For bivariate returns, the work in Fung and
Seneta (2010) compared a multivariate Student IT model with an alternative model obtained by a more
complex mixing representation from the point of view of asymptotic tail dependence. The work in
Hu and Kercheval (2009) insisted on the fact that the choice of distribution matters when optimizing
the portfolio. They found that the Student UT model performs the best in the class of symmetric
generalized hyperbolic distributions. The work in Kan and Zhou (2017) advocated using a multivariate
IT model for fitting the joint distribution of stock returns for a few fixed values of the degrees of
freedom parameter and showed that this model outperforms the multivariate Gaussian.

In Section 2, after recalling the univariate results, we extend the results of Zellner (1976) for the
derivation of the maximum likelihood estimators and its properties in the UT model and propose an
iterative implementation for the IT model. We present the results of the simulation study in Section 3
and of the model selection strategy in Section 4 using a toy example and a dataset from finance.
Section 5 summarizes the findings and gives recommendations.

2. Multivariate Regression Models

2.1. Literature Review

In order to define a Student regression model, even in the univariate case (single dependent
variable), one needs to use the multivariate Student distribution to describe the joint distribution of
the vector of observations for the set of statistical units. There are mainly two options, which were
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described in Kelejian and Prucha (1985) for the case of univariate regression. Indeed, the property
of the equivalence between the independence and uncorrelatedness for components of a Gaussian
vector are not satisfied anymore for a multivariate Student vector. One option, which we will call
the IT model (for independent t-distribution) in the sequel, considers that the components of the
random disturbance vector of the regression model are independent with the same marginal Student
distribution. The second option, which we will call the UT model (for uncorrelated t-distribution),
postulates a joint multivariate Student distribution for the vector of disturbances. Note that in both
models, the marginal distribution of each component still is Student univariate.

The work in Zellner (1976) introduced a univariate Student regression model of the type UT
with known degrees of freedom and studied the corresponding maximum likelihood and Bayesian
estimators (with some adapted priors). The work in Singh (1988) considered the case of univariate
Student regression with the UT model and with unknown degrees of freedom and derived an estimator
of the degrees of freedom and subsequent estimators of the other parameters. However, Fernandez
and Steel (1999) showed that this estimator was not consistent. Using one possible representation
of the multivariate Student distribution, Lange and Sinsheimer (1993) embedded univariate Student
regression with the UT model in a larger family of regression models (with normal/independent error
distributions) and developed EM algorithms to compute their maximum likelihood estimates, as in
Dempster et al. (1978).

In the framework of the spherical error distribution, which includes the Student error model as
a special case, the work in Fraser and Ng Kai (1980) proved an extension to the multivariate case of
Zellner’s result stating that inference about the parameters corresponds closely to that under normal
theory. Motivated by a financial application, the work in Sutradhar and Ali (1986) used a multivariate
UT Student regression model with moment estimators instead of maximum likelihood and allowing
the degrees of freedom to be unknown.

The univariate IT model was introduced in Fraser (1979) and compared to the UT model in
Kelejian and Prucha (1985).

Concerning multivariate IT Student distributions, there was first a collection of results or
applications for the case without regressors. The work in McNeil et al. (2005) used a representation
of the multivariate IT Student distribution to derive an algorithm of the EM type for computing the
maximum likelihood parameter estimators. They used the framework of normal mixture distributions
in which the Student distribution can be expressed as a combination of a Gaussian random variable
and an inverse gamma random variable. More recently, the work in Dogru et al. (2018) proposed
a more robust extension, replacing maximum likelihood by a kind of M-estimation method based
on the minimization of a q-entropy criterion. For the multivariate Student IT model, the work in
Prucha and Kelejian (1984) derived the normal equations for the maximum likelihood estimators and
their asymptotic properties with known degrees of freedom in a framework that encompasses our
multivariate Student regression case. The work in Lange et al. (1989) illustrated this multivariate IT
model on several examples. The work in Lange and Sinsheimer (1993) considered the framework
of normal/independent error distributions (same as normal variance mixtures) and derived the EM
algorithm for the maximum likelihood estimators in a model with covariates. The works in Liu and
Rubin (1995) and Liu (1997) developed extensions of the EM algorithm for the multivariate IT model
with known or unknown degrees of freedom, with or without covariates and with or without missing
data. The work in Katz and King (1999) fit a multivariate IT distribution to multiparty electoral
data. The work in Fernandez and Steel (1999) attracted attention to the fact that maximum likelihood
inference can encounter problems of unbounded likelihood when the number of degrees of freedom is
considered unknown and has to be estimated. Before engaging in the use of the multivariate Student
distribution, it is wise to read Hofert (2003), which explained some traps to be avoided. One difficulty
indeed is to be aware that some authors parametrize the multivariate Student distribution using
the covariance matrix, while others use the scatter matrix, sometimes with the same notation for
either one.
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We consider the following version of the Student p-multivariate distribution denoted by
Tp(µµµ, ΣΣΣ, ν) with µµµ being the p-vector of means, ΣΣΣ being the p × p covariance matrix, and ν > 2
the degrees of freedom. It is defined, for a p-vector z, by the probability density function:

p(z|µµµ, ΣΣΣ, ν) =
f (ν)

det(ΣΣΣ)1/2

[
1 +

1
ν− 2

(z−µµµ)TΣΣΣ−1(z−µµµ)

]−(ν+p)/2
, (1)

where T denotes the transpose operator, f (ν) =
Γ[(ν + p)/2]

Γ(ν/2)(ν− 2)p/2πp/2 and Γ is the usual

Gamma function.
Note that the assumption ν > 2 implies the existence of the first two moments of the distribution

and that the above density function is parametrized in terms of the covariance matrix. In most of the
literature on multivariate Student distributions, the density is rather parametrized as a function of the
scatter matrix ((ν− 2)/ν)ΣΣΣ. Using the covariance matrix parametrization facilitates the comparison
with the Gaussian distribution. We first recall some results in the univariate regression context.

2.2. Univariate Regression Case Reminder

In the univariate regression case and for a sample of size n, we have a one-dimensional dependent
variable Y i, i = 1, . . . , n, whose values are stacked in a vector Y , and K explanatory variables defining
a n× (K + 1) design matrix X including the constant.

The regression model is written as Y = Xβββ+εεε, where βββ = (β0, . . . , βK)
T is a (K+ 1)-dimensional

vector of parameters and the error term εεε = (ε1, . . . , εn)T is an n-dimensional vector. If we consider
that the design matrix is fixed with rank K + 1 or look at the distribution of εεε conditional on X , the
usual assumptions are the following. The errors εi, i = 1, . . . , n, are independent and identically
distributed (i.i.d.) with expectation zero and equal variance σ2. In this context, it is well known that
the least squares estimator of βββ is equal to:

β̂̂β̂β = (X TX )−1X TY (2)

while the classical σ2 estimator is σ̂2 = ε̂εεTε̂εε/(n− K − 1) where ε̂εε = Y −X β̂ββ. These estimators are
unbiased. In the case of a Gaussian error distribution, the estimator β̂̂β̂β coincides with the maximum
likelihood estimator of βββ, while the maximum likelihood estimator of σ2 is equal to σ̂2 multiplied
by (n− K− 1)/n and is only asymptotically unbiased. In the Gaussian case, there is an equivalence
between the εi being independent or uncorrelated. However, this property is no longer true for a
Student distribution. This means that one should distinguish the case of uncorrelated errors from the
case of independent errors. The case where the errors εi, i = 1, . . . , n, follow a joint n-dimensional
Student distribution with diagonal covariance matrix and equal variance is called the UT model,
and its coordinates are uncorrelated, but not independent. Interestingly, the maximum likelihood
method for the UT model with known degrees of freedom leads to the least squares estimator (2) of
βββ (Zellner (1976)). This property is true for more general distributions as long as the likelihood is
a decreasing function of εεεTεεε. Concerning the error variance, the maximum likelihood estimator is
(n− K − 1)ν σ̂2/(n(ν− 2)) and is biased even asymptotically Zellner (1976). For the independent
case, we assume that the errors εi, i = 1, . . . , n, are i.i.d. with a Student univariate distribution and
known degrees of freedom. The maximum likelihood estimators belong to the class of M-estimators,
which are studied in detail in Chapter 7 of Huber and Ronchetti (2009). These estimators are defined
through implicit equations and can be computed using an iterative reweighted algorithm.

In what follows, we consider the case of a multivariate dependent variable and propose to gather
and complete the results from the literature. As we will see, the results derived in the multivariate case
are very similar to their univariate counterpart. In particular, the maximum likelihood estimator of the
error covariance matrix is biased for the uncorrelated Student model, while there is a need to define an
iterative algorithm for the independent Student model.
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2.3. The Multivariate Regression Model

Let us consider a sample of size n, and for i = 1, . . . , n, let us denote the L-dimensional dependent
vector by:

Y i = (yi1, . . . , yiL)
T .

For K explanatory variables, the design matrix is of size L× (K + 1)L and is given by:

X i = IL ⊗ xT
i

for i = 1, . . . , n, with the (K + 1)-vector xi = (1, xi1, . . . , xiK)
T , IL the identity matrix with dimension L,

and ⊗ the usual Kronecker product. The parameter of interest is a (K + 1)L vector given by:

βββ = (βββT
1 , . . . , βββT

L)
T ,

where βββj = (β0j, . . . , βKj)
T , for j = 1, . . . , L, and the L-vector of errors is denoted by:

εεεi = (εi1, . . . , εiL)
T

for i = 1, . . . , n. We consider the linear model:

Y i = X iβββ + εεεi (3)

with E(εεεi) = 0 and i = 1, . . . , n. Using matrix notations, we can write Model (3) as:

Y = Xβββ + εεε (4)

with the nL-vectors:
Y = (YT

1 , . . . ,YT
n )

T ,

εεε = (εεεT
1 , . . . , εεεT

n )
T

and the nL× (K + 1)L matrix:
X = (X T

1 , . . . ,X T
n )

T .

In what follows, we make different assumptions on the distribution of εεε and recall (for Gaussian
and IT) or derive (for UT) the maximum likelihood estimators of the parameter βββ and of the covariance
matrix of εεε.

2.4. Multivariate Normal Error Vector

Let us first consider Model (4) with independent and identically distributed error vectors εεεi,
i = 1, . . . , n, following a multivariate normal distribution NL(0, ΣΣΣ) with an L-vector of means equal to
zero and an L× L covariance matrix ΣΣΣ. This model is denoted by N, and the subscript N is used to
denote the error terms εεεNi, i = 1, . . . , n, and the parameters βββN and ΣΣΣN of the model. The maximum
likelihood estimators of βββN and ΣΣΣN are:

β̂̂β̂βN = (X TX )−1X TY , (5)

Σ̂̂Σ̂ΣN =
∑n

i=1 ε̂̂ε̂εNiε̂̂ε̂ε
T
Ni

n
, (6)

where ε̂̂ε̂εNi = Y i −X i β̂̂β̂βN (see, e.g., Theorem 8.4 from Seber (2008)).
The estimator β̂̂β̂βN is an unbiased estimator of βββN while the bias of Σ̂̂Σ̂ΣN is equal to −((K + 1)/n)ΣΣΣN

and tends to zero when n tends to infinity (see, e.g., Theorems 8.1 and 8.2 from Seber (2008)).
For data such as financial data, it is well known that the Gaussian distribution does not fit the

error term well. Student distributions are known to be more appropriate because they have heavier
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tails than the Gaussian. As for the univariate case, for Student distributions, the independence of
coordinates is not equivalent to their uncorrelatedness, and we consider below two types of Student
distributions for the error term. In Section 2.5, the error vector εεε is assumed to follow a Student
distribution with nL dimensions and a particular block diagonal covariance matrix. More precisely,
we assume that the error vectors εεεi, i = 1, . . . , n, are identically distributed and uncorrelated but are
not independent. In Section 2.6, however, we consider independent and identically distributed error
vectors εεεi, i = 1, . . . , n, with an L-dimensional Student distribution.

2.5. Uncorrelated Multivariate Student (UT) Error Vector

Let us consider Model (4) with uncorrelated and identically distributed error vectors εεεi,
i = 1, . . . , n, such that the vector εεε follows a multivariate Student distribution TnL(0, ΩΩΩ, ν) with
known degrees of freedom ν > 2 and covariance matrix ΩΩΩ = In ⊗ Σ. The L × L matrix Σ is the
common covariance matrix of the εεεi, i = 1, . . . , n. This model is denoted by UT, and the subscript
UT is used to denote the error terms εεεUTi, i = 1, . . . , n, and the parameters βββUT , ΩΩΩUT , and ΣΣΣUT of the
model. This model generalizes the model proposed by Zellner (1976) to the case of multivariate εεεis.
We derive the maximum likelihood estimators of βββUT and ΣΣΣUT in Proposition 1 and give the bias of
the covariance estimator in Proposition 2. The proofs of the propositions are given in the Appendix A.

Proposition 1. The maximum likelihood estimators of βββUT and ΣΣΣUT are given by:

β̂ββUT =
(
X TX

)−1
X TY ,

Σ̂ΣΣUT =
ν

ν− 2
∑n

i=1 ε̂εεUTiε̂εε
T
UTi

n
,

(7)

where ε̂̂ε̂εUTi = Yi −X iβ̂ββUT .

The next proposition gives the bias of the maximum likelihood estimators and generalizes
Zellner’s result (Zellner (1976), p. 402) to the multivariate UT model. The maximum likelihood
estimator of βββUT coincides with the least squares and with the method of moment estimators and
is unbiased. This is no longer the case for the maximum likelihood estimator of ΣΣΣUT , which is
biased even asymptotically. This gives an example of a maximum likelihood estimator that is not
asymptotically unbiased in a context where the random variables are not independent. It illustrates
that the independence assumption is crucial to derive the usual properties of the maximum likelihood
estimators. Note that the method of moments estimator is a consistent estimator of ΣUT (see Sutradhar
and Ali (1986)).

Proposition 2. The estimator β̂ββUT is unbiased for βββUT . The estimator Σ̂ΣΣUT is biased for ΣΣΣUT even
asymptotically. More precisely,

E(Σ̂ΣΣUT) =
n− K

n
ν

ν− 2
ΣΣΣUT

A consequence of Proposition 2 is that an asymptotically unbiased estimator of ΣΣΣUT is given by

Σ̃ΣΣUT =
n

∑
i=1

ε̂εεUTiε̂εε
T
UTi/n.

2.6. Independent Multivariate Student Error Vector

Let us consider Model (4) using the notations of Section 2.3 with i.i.d. εεεi, i = 1, . . . , n, following a
Student distribution with L dimensions and known degrees of freedom ν > 2. We denote this model
by IT and the parameters of the model by βββIT and ΣΣΣIT . The IT model is a particular case of Prucha and
Kelejian (1984) where the B matrix in Expression (2.1) in Prucha and Kelejian (1984) is equal to zero.
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Following Prucha and Kelejian (1984), we derive the maximum likelihood estimators for the
IT model.

Proposition 3. The maximum likelihood estimators of βββIT and ΣΣΣIT in the IT regression model satisfy the
following implicit equations:

β̂ββIT =

(
n

∑
i=1

ŵITiX T
i Σ̂ΣΣ
−1
IT X i

)−1 n

∑
i=1

ŵITiX T
i Σ̂ΣΣ
−1
IT Y i

Σ̂ΣΣIT =
1
n

n

∑
i=1

ŵITiε̂εεITiε̂εε
T
ITi

(8)

with: ε̂̂ε̂εITi = Yi −X iβ̂ββIT and ŵITi =
ν + L

ν− 2 + ε̂εεT
ITiΣ̂ΣΣ

−1
IT ε̂εεITi

.

These estimators are consistent estimators of βββIT and ΣΣΣIT (see Theorem 3.2 in Prucha and Kelejian
(1984)). In order to compute them, we propose to implement the following iterative reweighted
algorithm in the same spirit as in Huber and Ronchetti (2009) for the univariate case (see also
Lange et al. (1989)).

Step 0: Let:

β̂ββ
(0)
IT = (X TX )−1X TY

ε̂εε
(0)
IT = Y −X β̂ββ

(0)
IT

Σ̂ΣΣ
(0)
IT =

1
n

n

∑
i=1

ε̂εε
(0)
ITiε̂εε

(0)T
ITi

Step k→ Step (k + 1), k > 0:

ŵ(k+1)
ITi =

ν + L

ν− 2 + ε̂εε
(k)
ITiΣ̂ΣΣ

(k)−1
IT ε̂εε

(k)
ITi

β̂ββ
(k+1)
IT =

(
n

∑
i=1

ŵ(k+1)
ITi X T

i Σ̂ΣΣ
(k)−1
IT X i

)−1 n

∑
i=1

ŵ(k+1)
ITi X T

i Σ̂ΣΣ
(k)−1
IT Y i

ε̂εε
(k+1)
IT = Y −X β̂ββ

(k+1)
IT

Σ̂ΣΣ
(k+1)
IT =

1
n

n

∑
i=1

ŵ(k+1)
ITi ε̂εε

(k+1)
ITi ε̂εε

(k+1)T
ITi

The process is iterated until convergence. Note that this algorithm is given in detail in Section 7.8
of Huber and Ronchetti (2009) for a general class of univariate regression M-estimators. It is also
sometimes called IRLS for iteratively-reweighted least squares and can be seen as a particular case of
the EM algorithm (Dempster et al. (1978)).

Table 1 gathers the likelihoods and thus summarizes the three models of interest.
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Table 1. Distribution of the error vector εεε in the Gaussian, UT, and IT models.

Model Distribution

N(εεε1, . . . , εεεn) NnL(0, In ⊗ΣΣΣN) =
n

∏
i=1
NL(0, ΣΣΣN)

UT(εεε1, . . . , εεεn) TnL(0, In ⊗ΣΣΣUT , ν)

IT(εεε1, . . . , εεεn)
n

∏
i=1

TL(0, ΣΣΣIT , ν)

3. Simulation Study

3.1. Design

This study aims at comparing the properties of the estimators of βββ and ΣΣΣ as defined in the
previous section for the multivariate Gaussian (N), the uncorrelated multivariate Student (UT), and
the independent multivariate Student (IT) error distributions, under several scenarios for the DGP.
Note that for the UT model, we used the asymptotically unbiased estimator Σ̃ΣΣUT to estimate ΣΣΣUT . We
considered a variety of degrees of freedom νDGP for the Student IT and UT models with a focus on
values between three and five. We used the function rmvt from the R package mvnfast to simulate
the Student distributions. For a sample size n = 1000 and a number of replications N = 10,000, we
simulated an explanatory variable X following a Gaussian distribution N (45, 10). The parameter
vector βββ and the covariance matrix ΣΣΣ are respectively chosen to be:

βββ =


β01

β11

β02

β12

 =


2
3
4
−3

 ; ΣΣΣ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
=

[
2 0.5

0.5 1

]
.

Note that similar results are obtained with other choices of parameters.
For each DGP, we calculate a number of Monte Carlo performance measures of the estimators

proposed in Section 2. The performances are measured by the Monte Carlo relative bias (RB) and the
mean squared error (MSE), which are defined for an estimator θ̂ of a parameter θ by:

Bias(θ̂) =
1
N

n

∑
i=1

θ̂(i) − θ

RB(θ̂) = 100
Bias(θ̂)

θ

MSE(θ̂) =
1
N

N

∑
i=1

(
θ̂(i) − θ

)2
.

(9)

We also compute a relative root mean squared error (RRMSE) with respect to a baseline estimator
θ̃ as:

RRMSE(θ̂) =

(
MSE(θ̂)
MSE(θ̃)

)1/2

.

In our case, the baseline estimator is the maximum likelihood estimator (MLE) corresponding to
the DGP. For example, in Table 2, the RRMSE of the β̂ββIT for the Gaussian DGP is the ratio of the MSE
of β̂ββIT with the degrees of freedom νMLE and the MSE of β̂ββN . Note that if θ̂ = θ̃, then the RRMSE of θ̂

is equal to one.
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Table 2. Relative bias and relative root mean squared error of the estimators of βββ (β̂ββN , β̂ββUT , β̂ββIT) for the
corresponding DGP (Gaussian, UT, and IT).

DGP N UT (νDGP = 3) IT (νDGP = 3)

Methods Estimators RB (%) RRMSE RB (%) RRMSE RB (%) RRMSE

β̂ββN , β̂ββUT

β̂01 −0.07 1.00 −0.06 1.00 −0.09 1.48
β̂02 0.00 1.00 0.00 1.00 0.00 1.48
β̂11 −0.02 1.00 −0.01 1.00 −0.07 1.46
β̂12 −0.00 1.00 −0.00 1.00 −0.00 1.46

β̂ββIT(νMLE = 3)

β̂01 −0.09 1.04 −0.09 1.09 −0.03 1.00
β̂02 0.00 1.04 0.00 1.09 0.00 1.00
β̂11 −0.04 1.07 −0.02 1.08 −0.03 1.00
β̂12 −0.00 1.07 −0.00 1.08 −0.00 1.00

3.2. Estimators of the β Parameters

Table 3 reports the bias and the MSE of the Gaussian MLE estimator β̂ββN , the UT MLE estimator
β̂ββUT (νDGP = 3), and the IT MLE estimator β̂ββIT (νDGP = 3) when the model is well specified, i.e., under
the corresponding DGP. The bias and MSE of the estimators of βββ are small and comparable under the
Gaussian and the UT DGP, but smaller for the IT DGP. Note that, in our implementation, the results of
the algorithm for the IT estimators are very similar to those obtained using the function heavyLm from
the R package heavy.

Table 3. Bias and MSE of the maximum likelihood estimators of βββ for the corresponding DGP (Gaussian,
UT, and IT).

DGP N UT (νDGP = 3) IT (νDGP = 3)

Estimators Bias MSE Bias MSE Bias MSE

β̂01 −1.39× 10−3 4.57× 10−2 −1.27× 10−3 3.72× 10−2 6.65× 10−4 1.99× 10−2

β̂02 2.41× 10−5 2.18× 10−5 1.47× 10−5 1.76× 10−5 9.90× 10−6 9.50× 10−6

β̂11 −6.62× 10−4 2.16× 10−2 3.23× 10−4 2.05× 10−2 −1.02× 10−3 9.84× 10−3

β̂12 1.87× 10−5 1.02× 10−5 3.90× 10−6 9.60× 10−6 2.14× 10−5 4.70× 10−6

In Table 2, we start considering misspecifications and report the corresponding relative values RB
and RRMSE of the same estimators and the same DGP as in Table 3 with all possible combinations of
DGP and estimation methods. The results indicate that the RB of β̂ββ are all very small. If the DGP is
Gaussian and the estimator is IT, the RRMSE of coordinates of β̂ββ is about 1.09. However, if the DGP is
IT and the estimator is Gaussian, the RRMSE of coordinates of β̂ββ is higher (from 1.46–1.48). Hence for
the Gaussian DGP, we do not loose too much efficiency using the IT estimator β̂ββIT with three degrees of
freedom. Inversely, we loose much more efficiency when using β̂ββN for the IT DGP with three degrees
of freedom.

In order to consider more degrees of freedom (3, 4, and 5), we now drop the bias and focus on
the RRMSE. Table 4 indicates that the RRMSE of β̂̂β̂β is very similar and close to one, with a maximum
of 1.09, except for the case of the N estimator under the IT DGP, where it can reach 1.48. The work
in Maronna (1976) provided theoretical asymptotic efficiencies of the Student versus the Gaussian

estimators, the ratio of asymptotic variances being equal to
(ν− 2)(ν + L + 2)

ν(ν + L)
. The values obtained in

Table 2 are very similar to these asymptotic values.
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Table 4. The root relative mean squared errors of β̂̂β̂β.

Methods DGP N UT IT

RRMSE νDGP = 3 νDGP = 4 νDGP = 5 νDGP = 3 νDGP = 4 νDGP = 5

N

β̂01 1.00 1.00 1.00 1.00 1.48 1.22 1.14
β̂02 1.00 1.00 1.00 1.00 1.48 1.23 1.14
β̂11 1.00 1.00 1.00 1.00 1.46 1.22 1.13
β̂12 1.00 1.00 1.00 1.00 1.46 1.22 1.13

IT (νMLE = 3)

β̂01 1.04 1.09 1.09 1.08 1.00 1.00 1.01
β̂02 1.04 1.09 1.09 1.08 1.00 1.00 1.01
β̂11 1.07 1.08 1.10 1.08 1.00 1.00 1.01
β̂12 1.07 1.08 1.09 1.09 1.00 1.00 1.01

IT (νMLE = 4)

β̂01 1.02 1.07 1.06 1.06 1.00 1.00 1.00
β̂02 1.01 1.06 1.06 1.05 1.00 1.00 1.00
β̂11 1.04 1.06 1.07 1.06 1.00 1.00 1.00
β̂12 1.04 1.05 1.07 1.06 1.00 1.00 1.00

IT (νMLE = 5)

β̂01 1.00 1.05 1.05 1.04 1.01 1.00 1.00
β̂02 1.00 1.05 1.05 1.04 1.01 1.00 1.00
β̂11 1.03 1.04 1.05 1.05 1.01 1.00 1.00
β̂12 1.03 1.04 1.05 1.05 1.01 1.00 1.00

Figure 1 shows the performances in terms of RRMSE of the IT estimators β̂IT
12 under different

DGP as a function of the degrees of freedom of the IT estimator (νMLE). The considered DGP are the
Gaussian, UT, and IT DGP with the degrees of freedom νDGP = 3 (respectively, νDGP = 4, νDGP = 5)
on the left (respectively, middle, right) plot. Overall, the RRMSE of β̂IT

12 for the IT DGP has a down
trend and then an up trend, while for the Gaussian and the UT DGP, the RRMSE are decreasing when
νMLE increases. The maximum RRMSE of β̂IT

12 is around 1.09 under the UT DGP and is around 1.08
under the Gaussian DGP. It decreases then to one when νMLE increases to twenty under the Gaussian
and the UT DGP; thus, the risk under misspecification is not very high. The curve is U-shaped under
the IT DGP with a minimum when νMLE = νDGP. The worst performance is when νDGP is small and
νMLE is large. The RRMSE of β̂IT

12 with νDGP = 4 is similar than the one with νDGP = 5.
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Figure 1. The RRMSE of the IT estimator of β̂12 for the UT DGP in solid line, for the IT DGP in dashed
line, and for the Gaussian DGP in dotted line with νDGP = 3 (respectively, νDGP = 4, νDGP = 5) on the
left (respectively, middle, right) plot.
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3.3. Estimators of the Variance Parameters

Table 5 reports the biases and the MSE of ρ̂, σ̂2
1 , σ̂2

2 for the Gaussian DGP, the UT (νDGP = 3) DGP,
and the IT (νDGP = 3) DGP. The bias and the MSE of ρ̂ are very similar and small for all cases. The MSE
of the Gaussian estimators σ̂2

1 and σ̂2
2 are small under the Gaussian DGP, but they are higher under the

UT and IT DGP. The biases and MSE of the IT estimator σ̂2
1 and σ̂2

2 are small under the IT DGP, but
high under the Gaussian and the UT DGP. Besides, Table 5 also indicates that there is no method that
estimates the variances well under the UT DGP.

Table 5. The bias and the MSE of ρ̂, σ̂2
1 , σ̂2

2 .

Methods DGP N UT (νDGP = 3) IT (νDGP = 3)

Bias MSE Bias MSE Bias MSE

N
ρ̂ −4.85× 10−4 9.46× 10−4 −2.08× 10−4 7.68× 10−4 −3.99× 10−3 1.17× 10−2

σ̂2
1 −3.89× 10−3 8.33× 10−3 −1.05× 10−1 58 6.94× 10−3 3.17

σ̂2
2 −1.75× 10−3 2.01× 10−3 −5.17× 10−2 14.93 −1.77× 10−2 2.85× 10−1

IT
ρ̂ −1.70× 10−4 8.94× 10−4 −2.18× 10−4 9.05× 10−4 −2.03× 10−4 1.07× 10−3

νMLE = 3
σ̂2

1 2.00 4.06 1.80 244.87 −1.43× 10−2 1.54× 10−2

σ̂2
2 1.00 1.02 0.91 64.75 −7.30× 10−3 3.94× 10−3

As before, we now consider misspecified cases and focus on relative bias in Table 6. We observe
that the relative bias for ρ̂ is negligible in all situations. The RB for σ̂2

1 and σ̂2
2 are also quite small (less

than around 5%) when using the Gaussian estimator for all DGP. This is also true when using the IT
estimator for the IT DGP with the same degrees of freedom νMLE = νDGP. There are some biases for
σ̂2

1 and σ̂2
2 if the DGP is Gaussian or UT and the estimator is IT. For this estimator, the relative bias of

σ̂2
1 , σ̂2

2 is around 100% for the Gaussian DGP, 96% for the UT DGP with νDGP = 5 and νMLE = 3, and
22% for the UT DGP with νDGP = 5 and νMLE = 5. The RB for σ̂2

1 and σ̂2
2 are also quite high (up to 50%)

for the IT estimator when the DGP is IT with νMLE 6= νDGP. To summarize, in terms of the RB of the
variance estimators, the Gaussian estimator yields better results than the IT estimator.

Table 6. The RB of ρ̂, σ̂2
1 , σ̂2

2 with ν = 3, 4, 5.

Methods DGP N UT IT

RB (%) νDGP = 3 νDGP = 4 νDGP = 5 νDGP = 3 νDGP = 4 νDGP = 5

N
ρ̂ −0.14 −0.06 −0.06 −0.06 −1.13 −0.24 0.02

σ̂2
1 −0.21 −5.23 −3.34 −2.31 0.35 −0.08 −0.12

σ̂2
2 −0.18 −5.17 −3.33 −2.20 −1.77 −0.30 −0.09

IT, νMLE = 3
ρ̂ −0.05 −0.06 −0.06 −0.06 −0.06 −0.04 −0.02

σ̂2
1 99.99 90.25 93.89 95.80 −0.72 32.79 50.12

σ̂2
2 100.05 90.60 93.90 96.03 −0.73 32.79 50.13

IT, νMLE = 4
ρ̂ −0.05 −0.06 −0.06 −0.06 −0.06 −0.04 −0.01

σ̂2
1 42.62 35.80 38.32 39.68 −24.66 −0.24 11.18

σ̂2
2 42.66 36.01 38.34 39.85 −24.67 −0.23 11.19

IT, νMLE = 5
ρ̂ −0.06 −0.06 −0.06 −0.06 −0.06 −0.04 −0.00

σ̂2
1 24.71 18.85 21.03 22.23 −31.75 −10.13 −0.14

σ̂2
2 24.74 19.02 21.04 22.38 −31.76 −10.13 −0.14

Finally, Table 7 presents the RRMSE in the same cases. It shows that the RRMSE of ρ̂ varies from
0.94–1.09 for all DGP except for the case of the IT DGP with the Gaussian estimator, which ranges
between 1.42 and 3.21. Besides, if the DGP is Gaussian and the estimator is IT or if the DGP is IT and
the estimator is Gaussian, the RRMSE of σ̂2

1 and σ̂2
2 are high in particular for νDGP = 3 or νMLE = 3:

we loose a lot of efficiency in these misspecified cases. To conclude, we have seen from Table 6 that the
RB of σ̂2

1 and σ̂2
2 are smaller for the Gaussian estimator than for the IT estimator. However, in terms of

RRMSE, there is no clear advantage in using the Gaussian estimator with respect to the IT estimator.
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It should be noted that for ν ≤ 4, the Student distribution has no fourth-order moment, which
may explain the fact that the covariance estimators have large MSE.

Table 7. The RRMSE of ρ̂, σ̂2
1 , σ̂2

2 in the Gaussian DGP, the UT DGP (νDGP = 3, 4, 5), and the IT DGP
(νDGP = 3, 4, 5).

Methods DGP N UT IT

RRMSE νDGP = 3 νDGP = 4 νDGP = 5 νDGP = 3 νDGP = 4 νDGP = 5

N
ρ̂ 1.00 1.00 1.00 1.00 3.21 1.91 1.42

σ̂2
1 1.00 1.00 1.00 1.00 14.33 2.65 1.64

σ̂2
2 1.00 1.00 1.00 1.00 8.50 2.24 1.78

IT, νMLE = 3
ρ̂ 0.97 1.09 1.09 1.09 1.00 1.00 1.01

σ̂2
1 22.07 2.05 2.11 2.16 1.00 5.89 9.18

σ̂2
2 22.45 2.08 2.11 2.16 1.00 5.77 9.13

IT, νMLE = 4
ρ̂ 0.95 1.06 1.06 1.06 1.01 1.00 1.00

σ̂2
1 9.49 1.46 1.47 1.48 4.04 1.00 2.31

σ̂2
2 9.65 1.48 1.47 1.48 4.00 1.00 2.30

IT, νMLE = 5
ρ̂ 0.94 1.05 1.05 1.05 1.01 1.00 1.00

σ̂2
1 5.58 1.27 1.27 1.28 5.16 1.99 1.00

σ̂2
2 5.68 1.28 1.28 1.27 5.10 1.95 1.00

In order to allow the reproducibility of the empirical analyses contained in the present and the
following sections, some Supplementary Material is available at the following link: http://www.
thibault.laurent.free.fr/code/jrfm/.

4. Selection between the Gaussian and IT Models

In this section, we propose a methodology to select a model between the Gaussian and
independent Student models and to select the degrees of freedom for the Student in a short list
of possibilities. Following the warnings of Fernandez and Steel (1999) and the empirical results of Katz
and King (1999), Platen and Rendek (2008), and Kan and Zhou (2017), we decided to focus on a small
selection of degrees of freedom and fit our models without estimating this parameter, considering
that a second step of model selection will make the choice. Indeed, there is a limited number of
interesting values, which are between three and eight (for larger values, the distribution gets close
to being Gaussian). The work in Lange et al. (1989), p.883, proposed the likelihood ratio test for the
univariate case. In what follows, we use the fact that the distribution of the Mahalanobis distances is
known under the two DGP, which allows building a Kolmogorov–Smirnov test and using Q-Q plots.
Unfortunately, this technique does not apply to the UT model for which the n observations are a single
realization of the multivariate distribution. One advantage of this approach is that the Mahalanobis
distance is a one-dimensional variable, whereas the original observations have L dimensions.

4.1. Distributions of Mahalanobis Distances

For an L-dimensional random vector Y, with mean µµµ, and covariance matrix ΣΣΣ, the squared
Mahalanobis distance is defined by:

d2 = (Y−µµµ)TΣΣΣ−1(Y−µµµ)

If Y1, . . . Yn is a sample of size n from the L-dimensional Gaussian distribution NL(µµµN , ΣΣΣN), the
squared Mahalanobis distance of observation i, denoted by d2

Ni, follows a χ2
L distribution. If µµµN and

ΣΣΣN are unknown, then the squared Mahalanobis distance of observation i can be estimated by:

d̂2
Ni = (Yi − µ̂µµN)

TΣ̂ΣΣ
−1
N (Yi − µ̂µµN)

http://www.thibault.laurent.free.fr/code/jrfm/
http://www.thibault.laurent.free.fr/code/jrfm/
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where µ̂µµN = Ȳ =
1
n

n

∑
i=1

Yi and Σ̂ΣΣN is the sample covariance matrix. The work in Gnanadesikan and

Kettenring (1972) (see also Bilodeau and Brenner (1999)) proved that this square distance follows a
Beta distribution, up to a multiplicative constant:

n
(n− 1)2 (Yi − µ̂µµN)

TΣ̂ΣΣ
−1
N (Yi − µ̂µµN) ∼ Beta

(
L
2

,
n− L− 1

2

)
where L is the dimension of Y. For large n, this Beta distribution can be approximated by the chi-square
distribution d2

Ni ∼ χ2
L. According to Gnanadesikan and Kettenring (1972) (p. 172), n = 25 already

provides a sufficiently large sample for this approximation, which is the case in all our examples below.
If we now assume that Y1, . . . , Yn is a sample of size n from the L-dimensional Student distribution
Yi ∼ T(µµµIT , ΣΣΣIT , ν), then the squared Mahalanobis distance of observation i, denoted by d2

ITi and
properly scaled, follows a Fisher distribution (see Roth (2013)):

1
L

ν

ν− 2
d2

ITi ∼ F (L, ν)

If µµµIT and ΣΣΣIT are unknown, then the squared Mahalanobis distance of observation i can be
estimated by:

d̂2
ITi = (Yi − µ̂µµIT)

TΣ̂ΣΣ
−1
IT (Yi − µ̂µµIT),

where µ̂µµIT and Σ̂ΣΣIT are the MLE of µµµIT and ΣΣΣIT . Note that in the IT model, µ̂µµIT is no longer equal to Ȳ.
Up to our knowledge, there is no result about the distribution of d̂2

ITi.
In the elliptical distribution family, the distribution of Mahalanobis distances characterizes the

distribution of the observations. Thus, in order to test the normality of the data, we can test whether
the Mahalanobis distances follow a chi-square distribution. Similarly, testing the Student distribution
is equivalent to testing whether the Mahalanobis distances follow the Fisher distribution. There are
two difficulties with the approach. The first one is that the estimated Mahalanobis distances are not a
sample from the chi-square (respectively, the Fisher) distribution because there is dependence due to
the estimation of the parameters. The second one is that, in our case, we not only estimate µµµ and ΣΣΣ, but
we are in a regression framework where µµµ is linear combination of regressors, and we indeed estimate
its coefficients. In what follows, we will ignore these two difficulties and consider that, for large n, the
distributions of the estimated Mahalanobis distances behave as if µµµ and ΣΣΣ were known.

We propose to implement several Kolmogorov–Smirnov tests in order to test different null
hypothesis: Gaussian, Student with three degrees of freedom, and Student with four degrees of
freedom. As an exploratory tool, we also propose drawing Q-Q plots of the Mahalanobis distances
with respect to the chi-square and the Fisher distribution Small (1978).

4.2. Examples

This section illustrates some applications of the proposed methodology for selecting a model.
We use a real dataset from finance and three simulated datasets with the same DGP as in Section 3.

The real dataset is the daily closing share price of IBM and MSFT, which are imported from
Yahoo Finance from 3 January 2007–27 September 2018 using the quantmod package in R. It contains
n = 2955 observations. Let St, t = 1, . . . , n be the daily share price of IBM and MSFT and Yt be the
log-price increment (return) (see Fung and Seneta (2010)) over a day period, then:

Yt = log St − log St−1.
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The three other datasets are simulated using the same model as in Section 3 with the Gaussian
DGP, the IT DGP with νDGP = 3, and the IT DGP with νDGP = 4 and with sample size n = 1000.
Figure 2 (respectively, Figure 3) displays the scatterplots of the financial data (respectively, the three
toy data).

We compute the Gaussian and the IT estimators as in Section 3. We then calculate the squared
Mahalanobis distances of the residuals and use a Kolmogorov–Smirnov test for deciding between the
models. For the financial data, we have no predictor. We test the Gaussian (respectively the Student
with three degrees of freedom, the Student with four degrees of freedom) null hypothesis. When
testing one of the null hypotheses, we use the estimator corresponding to the null. Moreover, when the
null hypothesis is Student, we use the corresponding degrees of freedom for computing the maximum
likelihood estimator. We do reject the null hypothesis if the p-value is smaller than α = 5%. Note that
we could adjust the level of α by taking into account multiple testing.

−0.05 0.00 0.05 0.10
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10
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Figure 2. Financial data: scatterplot of returns.

Table 8 shows the p-values of these tests. For the simulated data, at the 5% level, we do not
reject the Gaussian assumption when the DGP is Gaussian. Similarly, we do not reject the Student
distribution with three (respectively, four) degrees of freedom when the DGP is the IT with degrees
of freedom νDGP = 3 (respectively, νDGP = 4). For the financial data, we do not reject the Student
distribution with three degrees of freedom, but we do reject the Gaussian distribution and the Student
distribution with four degrees of freedom.

Table 8. All datasets: the p-values of the Mahalanobis distances tests with the null hypothesis and the
corresponding estimators.

Hypothesis H0 Toy DGP
Financial Data

Methods N IT, νDGP = 3 IT, νDGP = 4

N 0.546 2.2× 10−16 2.2× 10−16 2.2× 10−16

IT, νMLE = 3 2.2× 10−16 0.405 0.033 0.882

IT, νMLE = 4 2.2× 10−16 0.023 0.303 0.049
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Gaussian method

Residuals in y1
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IT (ν_MLE = 3) method

Residuals in y1
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IT (ν_MLE = 4) method

Residuals in y1
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Gaussian method

Residuals in y1
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IT (ν_MLE = 3) method

Residuals in y1
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IT (ν_MLE = 4) method

Residuals in y1
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IT (ν_MLE = 4) method

Residuals in y1

Figure 3. Toy data: scatterplots of residuals in the Gaussian DGP (respectively, the IT DGP with
νDGP = 3, the IT DGP with νDGP = 4) on the first row (respectively, the second row, the third row).

Figure 4 shows the Q-Q plots comparing the empirical quantiles of the Mahalanobis distances for
the normal (respectively, the IT (νMLE = 3), the IT (νMLE = 4)) estimators on the horizontal axis to the
theoretical quantiles of the Mahalanobis distances for the normal (respectively, the IT (νMLE = 3), the
IT (νMLE = 4)) on the vertical axis for the financial data. These Q-Q plots are coherent with the results
of the tests in Table 8. The IT model with three degrees of freedom fits our financial data well.

Figure 5 displays the Q-Q plots for the toy DGP: the Gaussian DGP in the first column, the IT DGP
with νDGP = 3 in the second column, and the IT DGP with νDGP = 4 in the third column. The first
row compares the empirical quantiles to the normal case quantiles, the second to the Student case
quantiles with νDGP = 3, and the third row to Student case quantiles with νDGP = 4. The Q-Q plots on
the diagonal confirm that the fit is good when the model is correct. The other Q-Q plots outside the
diagonal correctly reveal a clear deviation from the hypothesized model.
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Figure 4. Financial data: Q-Q plots of the Mahalanobis distances for the normal, IT (νMLE = 3), and IT
(νMLE = 4) estimators.
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Figure 5. Toy data: Q-Q plots of the Mahalanobis distances of the residuals for the normal (respectively,
the IT with νDGP = 3, the IT with νDGP = 4) case empirical quantiles against the normal (respectively,
the IT with νMLE = 3, the IT with νMLE = 4) case theoretical quantiles in the first row (respectively, the
second row, the third row).

To summarize the findings of this study, let us first say that there may be an abusive use of
the Gaussian distribution in applications due to its simplicity. We have seen that considering the
Student distribution instead is just slightly more complex, but feasible, and that one can test this
choice. Concerning the two Student models, we have seen that the UT model is simpler to fit than
the IT model, but has limitations due to the fact that it assumes a single realization, which restricts
the properties of the maximum likelihood estimators and prevents the use of tests against the other
two models.
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5. Conclusions

We have compared three different models: the multivariate Gaussian model and two different
multivariate Student models (uncorrelated or independent). We have derived some theoretical
properties of the Student UT model and proposed a simple iterative reweighted algorithm to compute
the maximum likelihood estimators in the IT model. Our simulations show that using a multivariate
Student IT model instead of a multivariate Gaussian model for heavy tail data is simple and can be
viewed as a safeguard against misspecification in the sense that there is more to loose if the DGP
is Student and one uses a Gaussian model than in the reverse situation. Finally, we have proposed
some graphical tools and a test to choose between the Gaussian and the IT models. The IT model
fits our finance dataset quite well. There is still work to do in the direction of improving the model
selection procedure to overcome the fact that the parameters are estimated and hence the hypothetical
distribution is only approximate. Let us mention that it is also possible to adapt our algorithm for the
IT model to the case of missing data. We intend to work in the direction of allowing different degrees
of freedom for each coordinate. It may be also relevant to consider an alternative estimation method
by generalizing the one proposed in Kent et al. (1994) to the multivariate regression case. Finally,
another perspective is to consider multivariate errors-in-variables models, which allow incorporating
measurement errors in the response and the explanatory variables. A possible approach is proposed in
Croux et al. (2010).

Supplementary Materials: In order to allow the reproducibility of the empirical analyses contained in the present
paper, some Supplementary Material is available at the following link: http://www.thibault.laurent.free.fr/code/
jrfm/.
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data curation.
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Abbreviations

The following abbreviations are used in this manuscript:

EM Expectation-maximization
MLE Maximum likelihood estimator
N Normal (Gaussian) model
IT Independent multivariate Student
UT Uncorrelated multivariate Student
RB Relative bias
MSE Mean squared error
RRMSE Root relative mean squared error
DGP Data-generating process

Appendix A

Proof of Proposition 1. Using Expression (1), the joint density function of ε̂̂ε̂εUT is:

p(εεεUT |0, ΩΩΩUT , ν) =
f (ν)

det(In ⊗ΣΣΣUT)1/2

[
1 +

1
ν− 2

εεεT
UT(In ⊗ΣΣΣUT)

−1εεεUT

]− ν+nL
2

=
f (ν)

det(ΣΣΣUT)n/2

[
1 +

1
ν− 2

εεεT
UT(In ⊗ΣΣΣUT)

−1εεεUT

]− ν+nL
2

=
f (ν)

det(ΣΣΣUT)n/2

[
1 +

1
ν− 2

n

∑
i=1

εεεT
UTiΣΣΣ

−1
UTεεεUTi

]− ν+nL
2

http://www.thibault.laurent.free.fr/code/jrfm/
http://www.thibault.laurent.free.fr/code/jrfm/
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Therefore, the logarithm of p(εεεUT |0, ΩΩΩUT , ν) is:

log p(εεεUT |0, ΩΩΩUT , ν) = log f (ν)− n
2

log ΣΣΣUT −
ν + nL

2
log

[
1 +

1
ν− 2

n

∑
i=1

εεεT
UTiΣΣΣ

−1
UTεεεUTi

]
. (A1)

In order to maximize log p(p(εεεUT |0, ΩΩΩUT , ν)) as a function of βββUT , we follow the same argument
as in Theorem 8.4 from Seber (2008) for the Gaussian case and obtain that the minimum of
∑n

i=1 εεεT
UTiΣΣΣ

−1
UTεεεUTi is obtained for:

β̂ββUT =
(
X TX

)−1
X TY .

Besides, taking the partial derivative of (A1) as a function of ΣΣΣUT , we obtain:

∂ log(p(εεεUT |0, ΩΩΩUT , ν))

∂ΣΣΣUT
= −

nΣΣΣ−1
UT

2
− (ν + nL)

2
∂ log(ν− 2 + ∑n

i=1 εεεT
UTiΣΣΣ

−1
UTεεεUTi)

∂ΣΣΣUT

= −
nΣΣΣ−1

UT
2
− (ν + nL)

2
∂(ν− 2 + ∑n

i=1 εεεT
UTiΣΣΣ

−1
UTεεεUTi)/∂ΣΣΣUT

ν− 2 + ∑n
i=1 εεεT

UTiΣΣΣ
−1
UTεεεUTi

.

Let:
wUT =

1
ν− 2 + ∑n

i=1 εεεT
UTiΣΣΣ

−1
UTεεεUTi

. (A2)

We have:

∂ log(p(εεεUT |0, ΩΩΩUT , ν))

∂ΣΣΣUT
= −

nΣΣΣ−1
UT

2
− (ν + nL)wUT

2
∂(ν− 2 +

n

∑
i=1

εεεT
UTiΣΣΣ

−1
UTεεεUTi)/∂ΣΣΣUT

= −
nΣΣΣ−1

UT
2

+
(ν + nL)wUT

2

n

∑
i=1

ΣΣΣ−1
UTεεεUTiεεε

T
UTiΣΣΣ

−1
UT

Solving
∂ log(p(εεεUT |0, ΩΩΩUT , ν))

∂ΣΣΣUT
= 0 and letting E = ∑n

i=1 εεεUTiεεε
T
UTi, we have:

ΣΣΣ−1
UT =

ν + nL
n

wUT

n
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i=1

ΣΣΣ−1
UTεεεUTiεεε

T
UTiΣΣΣ
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UT
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n

wUT

n

∑
i=1

ΣΣΣUTΣΣΣ−1
UTεεεUTiεεε

T
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ΣΣΣUT = (ν + nL)wUT
E
n

(A3)

The expression of wUT in (A3) can be simplified by noting that:

ΣΣΣ−1
UT = n((ν + nL)wUT)

−1E−1

n

∑
i=1

εεεT
UTiΣΣΣ

−1
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−1
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∑
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n
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(
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∑
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εεεUTiεεε
T
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)
n

∑
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εεεT
UTiΣΣΣ

−1
UTεεεUTi =

nL
(ν + nL)wUT

. (A4)
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Replacing the expression of ∑n
i=1 εεεT

UTiΣΣΣ
−1
UTεεεUTi from (A4) into wUT , we get:

wUT =
ν

(ν− 2)(ν + nL)
.

Finally,

Σ̂ΣΣUT =
ν

ν− 2
∑n

i=1 ε̂εεUTiε̂εε
T
UTi

n
.

Proof of Proposition 2. The property E(β̂ββUT) = βββUT is immediate. In order to facilitate the derivation
of the proof for Σ̂ΣΣUT , we write Model (4) as:

Y = XB + εεε (A5)

where:

Y =

y11 y12 · · · y1L
...

...
...

...
yn1 yn2 · · · ynL

 , X =

1 x11 · · · x1K
...

...
...

...
1 xn1 · · · xnK

 , B =


β01 β0L
β11 β1L

...
...

βK1 βKL



εεε =

ε11 ε12 · · · ε1L
...

...
...

...
εn1 εn2 · · · εnL

 , B̂UT = (XTX)−1XTY and ε̂εεUT = Y− XB̂UT .

Let E = ε̂εεT
UTε̂εεUT and M = In − X(XTX)−1XT . We have MXB = 0, and following Seber (2008),

Theorem 8.2,

E = (Y− XB̂UT)
T(Y− XB̂UT) = (MY)TMY = YTMY

= (Y− XB)TM(Y− XB) = εεεTMεεε = ∑
h

∑
i

MhiεεεhεεεT
i .

Since E(εεεhεεεT
i ) =

{
ΣΣΣ if h = i
0 otherwise

, for h, i = 1, . . . , n , E(E) = ∑h Mhh ΣΣΣ = tr(M)ΣΣΣ = (n− K)ΣΣΣ

and:

E(Σ̂ΣΣUT) = E
(

ν

ν− 2
E
n

)
=

ν

ν− 2
E(E)

n
=

ν

ν− 2
n− K

n
ΣΣΣUT .
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