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Abstract: The conditional capital asset pricing model (CAPM) theory postulates that the systematic
risk (β) of an asset or portfolio varies over time. Several dynamics are thus given to systematic risk in
the literature. This article looks for the dynamic that seems to best explain the returns of the assets of
the Regional Stock Exchange of West Africa (BRVM) by comparing two dynamics: one by the Kalman
filter (assuming that the β follow a random walk) and the other by the Markov switching (MS) model
(assuming that β varies according to regimes) for four portfolios of the BRVM. Having found a link
between the beta of the market portfolio and the size criterion (measured by capitalization), the two
previous models were re-estimated with the addition of the SMB (Small Minus Big) variable. The
results show according to the RMSE criterion that the estimation by the Kalman filter fits better than
MS, which suggests that investors cannot anticipate systematic risk because of its high volatility.

Keywords: West African Regional Market (BRVM); conditional capital asset pricing model (CAPM);
Kalman filter; Markov switching (MS) model

1. Introduction

In the world of finance, the evaluation of the return of financial assets is governed by the
well-known theory of the capital asset pricing model (CAPM). This theory, introduced by Sharpe
(1964), Lintner (1965), and Black (1972), states that the risk premium of an asset is equal to the product
of the systematic asset risk (beta) and the market portfolio. The beta is approximately equal to the
covariance between asset returns and market returns. However, there are several criticisms based on
the CAPM hypothesis. The most important criticism is from Fama and French (1992)1, which stipulated
that the beta of the portfolio market alone was not enough to explain the return of an asset. However,
another criticism, and not the least, concerns the postulation of the CAPM, which considers one period.
In other words, the beta obtained was based on only one period. This is how the conditional CAPM
appeared.

The conditional CAPM postulates that the simple CAPM theory holds from period to period.
Thus, agents review their beta (systematic risk) from period to period. Two branches of conditional
CAPM currently exist. The first takes into account the addition of a new factor (implying another

1 They added two other factors: SMB (Small Minus Big) and HML (High Minus Low).
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beta), while the second models the beta of the market portfolio as a system evolving over time. For the
last one, several formulations exist regarding the dynamics of the beta. Some authors model it as a
random walk, others as a random coefficient, and others as a learning process of an investor. All these
forms of modeling are based on precise assumptions about investor behavior. However, among all the
formulations of systematic beta risk, which one is more suitable?

The aim of this work is first to investigate the formulation of the beta and thus the behavior of
the investors who best explain the return of Regional Stock Exchange (BRVM) assets2. Two main
hypotheses are evaluated in this work:

• Investors cannot predict the systematic risk of assets because it is highly volatile.
• Investors change their behaviors over a given period, so the asset’s beta takes different values

according to these periods.

The first hypothesis is based on the conditional CAPM’s formulation postulating the non-stability
of the beta of the assets over time. It is therefore assumed a non-stationarity of the betas. The second
hypothesis comes from a large list of works3 in the literature of Markov switching (MS) models
regarding the beta estimate.

To our knowledge, no study of the BRVM has focused on such a subject.
The results suggest that Hypothesis 1 is more plausible when considering the RMSE criterion.

2. Materials and Methods

The idea of conditional models is to generalize the CAPM to more than two periods making them
more in line with reality. They thus raise the hypothesis of a simple periodicity of the CAPM. Indeed,
in the CAPM as established, the investor makes a decision at a period following the observed beta.
When changing periods, he can revise his behavior. The example given by Jagannathan and Wang
(1996) is that in a recession, the leverage effect of low-performing firms is expected to increase sharply
relative to other firms, resulting in an increase in their systematic risk (beta). Thus, the beta obtained
from the simple CAPM is a conditional beta as shown by the following equation:

E(Rit/It−1) = r f + βt−1E(Rmt − r f /It−1) (1)

where Rit represents the returns, r f the risk-free interest rate, Rmt the returns of market portofolio and
It−1 the information available up to t-1. Several approaches are used in conditional models: those with
several factors (Jagannathan and Wang (1996); Lettau and Ludvigson (2001)), those with covariances
varying over time (Harvey et al. (1992); Bollerslev et al. (1988)), and those with beta4 varying in time.
Although the first two approaches are widely used, the approach allowing a variation of beta over
time is regaining interest, particularly with the work of Adrian and Franzoni (2009) and Caia and Renb
(2012). Prior to this work, the most commonly used methods for estimating time-varying beta are
mainly state space models (Kalman filter estimation), recursive least squares, window regressions, etc.
In this vast literature, we distinguish the works of Groenewold and Fraser (1999), Park (2004), and
Abdymomunov and Morley (2011).

Groenewold and Fraser (1999) investigated the beta estimate of conditional CAPM with
time-varying beta on monthly assets in Australia for 23 sectors over the period 1979–1994.
After estimating the betas by the recursive least squares, and by the Kalman filter, they tested the
stationarity of the estimated beta and found it to be non-stationary, which reinforces the idea of using
such models. Park (2004) examined the relationship between returns and systematic beta risks on

2 The BRVM, created on 18 December 1996, is a specialized financial institution whose capital is subscribed by regional
economic actors in West Africa.

3 Guidolin and Timmermann (2005) and Abdymomunov and Morley (2011) to cite only those.
4 This is the beta related to the market portfolio.
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US assets. He first estimated the simple CAPM (simple computation of the betas by the covariance
between returns and market portfolio) and showed by means of a Cusum test that betas were not stable
over time. Based on the fact that the betas are not stable over time, they evaluated the relationship
between return and beta using the Kalman filter for 10 portfolios classified by size (capitalization) and
12 others constructed using the classification of Breeden et al. (1989) and Ferson and Harvey (1991), and
the results show that the small portfolios have higher beta and reciprocally. They explain it by the
fact that these portfolios are generally less diversified. The author has also estimated a conditional
CAPM, where it distinguishes two types of beta according to the sign of the risk premium of the
market portfolio beta and the return on portfolios. This result is consistent with the implication that
beta is a useful measure of systematic risk in time. Abdymomunov and Morley (2011) have proposed
a beta estimate using the Markov change regime method. Their results suggest that the use of the MS
model improves the explanation of asset return at the moment when the simple CAPM is invalid.

The previous models do not take investor learning into account. Indeed, it would not be wrong to
think that investors do not know the long-term level of systematic risk and therefore learn rationally
from observations of expected returns. It is on this base that Adrian and Franzoni (2009) modeled the
returns on US assets. To take investors knowledge of systematic risk into account, they introduced
variables such as “the term spread,” representing the difference between the yields of US 10-year
and 3-month treasury bills, “the value spread” and the CAY variable of Lettau and Ludvigson (2001),
capturing innovations in the cointegration relationships between consumption, market portfolio, and
labor income. The results suggest that the insertion of learning and estimation by Kalman filters reduce
pricing errors.

Recently, Caia and Renb (2012) proposed a new approach for estimating the CAPM with
time-varying beta. Namely, they used a regression model with a functional coefficient with beta
varying over time. The innovation here is certainly due to the consideration of different windows
in the estimation of beta (nonparametric estimation) but also of a different learning in each window.
The results show that this model better explains the return of assets than the simple CAPM.

2.1. Conditional Estimation of Systematic Risk (β)

The previous section helps one to understand the necessity of using conditional CAPM and
mainly those that vary the beta over time. From Equation (1), it will be necessary to give a specification
to the form of beta. It should be specified that a small modification is made to the specification of
Equation (1) to retain the following equation:

E(Rit) = r f + βt−1E(Rmt − r f )
5. (2)

Two specifications are used for this study. For each specification, two variants will be estimated
depending on whether SMB (Small Minus Big) is introduced as a factor from the Fama and French
three-factor model.

2.1.1. Specification 1: β Varies According to a Random Walk

Variant 1: The β of Market Portfolio Follows a Random Walk

The first variant of Specification 1 relating to Equation (2) is to consider that the beta of the market
portfolio follows a random walk. The equation can then be written as

βm
t = βm

t−1 + ηt (3)

5 The return of the market portfolio and the asset are assumed to be independent of the information held in t−1.
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where ηt ∼ N(0, σ2
η), and βm

t refers to the beta associated with the market portfolio. The idea
underlying this choice is that the beta variance of the market portfolio varies over time. In other
words, it is not stationary. Thus, we make the assumption, unlike Adrian and Franzoni (2009), that
agents do not know the long-term level of beta risk associated with the market portfolio. The beta
cannot be predicted by its past value and varies randomly from period to period. This specification
has been retained in several studies (Marti (2006) and Park (2004)). The general model can therefore be
written as follows:

Rit = r f + βm
t−1(Rmt − r f ) + εit

βm
t = βm

t−1 + ηt
. (4)

Variant 2

The second variant consists in introducing an additional variable into the estimation of the returns
of the assets. This is the SMB variable6. The latter represents the difference (Minus) of profitability
between small (Small) and large (Big) assets sorted by capitalization. We assume that the beta associated
with SMB is not stable. The latter is also assumed to follow a random walk. This choice is justified
by the work of Huang and Hueng (2009). They have shown that taking into account a change in the
coefficients of the additional factors of the simple CAPM could significantly reduce the price error.
The general model is thus written as follows:

Rit = r f + βm
t−1(Rmt − r f ) + βSMB

t−1 SMBt + εit
βm

t = βm
t−1 + η1

t
βSMB

t = βSMB
t−1 + η2

t

. (5)

Equations (4) and (5) are estimated by the Kalman filter. Indeed, these equations are special cases
of Equation (A1) (see Appendix A), presenting the general form of the state space model estimated
by the Kalman filter. Equation (4) is obtained by setting Zt = (1 Rmt), αt = (r f βm

it )
′, Tt = I2,

where I2 denotes the identity matrix of order 2 and Rt = (0 1)′. Equation (5) is obtained by setting
Zt = (1 Rmt SMBt), αt = (r f βm

it βSMB
it )′, Tt = I3, where I3 denotes the identity matrix of order 3 and

Rt = (0 1 1)′.

Choosing the Initialization Parameters for the Kalman Filter

The state space model estimated by the Kalman filter distinguishes four initialization parameters.
This is a1, P1, Ht, and Qt (see Appendix A). Although the parameters a1 and P1 are important
in the initialization, they are not determinative since, whatever the value of these parameters,
the filter will always tend to find its equilibrium value around the series by error correction
(Durbin and Koopman (2012)), “Time Series Analysis by State Space Methods”, pp. 32–33). The most
important parameters are Ht and Qt since they can drastically change the estimates obtained. Durbin
and Koopman propose an estimate of these parameters by the maximum likelihood.

The parameter Qt is the one that acts on the beta estimated by the Kalman filter. Although it is
estimated by the maximum likelihood, the obtained value may not minimize other criteria concerning
the quality of the model, in particular the RMSE (root mean squared error). Thus, unlike the Durbin
and Koopman approach, we propose the determination of the Qt minimizing the RMSE criterion.

6 The main idea was to add the factors used by Fama and French in their three-factor model. However, due to data availability,
only the SMB is used here.
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2.1.2. Specification 2: The β Varies According to Regime

Variant 1: Only the Market Portfolio Is Included as an Explanatory Variable

This variant takes into account the returns of the market portfolio as the only explanatory variable.
The specification for the beta of the market portfolio is allowed to take different values according to
regime. This type of model has already been used in the literature to estimate the beta of the market
portfolio in Guidolin and Timmermann (2005) and Abdymomunov and Morley (2011). The number of
regimes (states) is a priori unknown. For the case of two states, the model can be written as follows:

Rit = r f + βm
St
(Rmt − r f ) + σSt εit

βm
St
=

{
βm

1 si St = 1

βm
2 si St = 2

σSt =

{
σ1 si St = 1

σ2 si St = 2

(6)

where St denotes a discrete random variable taking the value 1 when in the first state and 2 in the
second state; βm

1 and βm
2 are the beta values corresponding to the different states. We also assume

that the standard error deviation σSt (associated to the white noise εit in equation (6)) varies from one
regime to another. Thus, σ1 and σ2 designate the values of the standard deviation according to the
two states.

Variant 2: Adding the SMB Factor

This variant is obtained by adding the SMB in Equation (6) and by varying its coefficient according
to different states. The general model is thus written:

Rit = r f + βm
St
(Rmt − r f ) + βSMB

St
SMBt + σSt εit

βm
St
=

{
βm

1 if St = 1

βm
2 if St = 2

βSMB
St

=

{
βSMB

1 if St = 1

βSMB
2 if St = 2

σSt =

{
σ1 if St = 1

σ2 if St = 2

. (7)

Equations (6) and (7) are placed in the Goldfield and Quandt (1973) (see Appendix B) model of
the Markovian switching (MS) model. These models will therefore be estimated by the MS.

2.2. Bootstrap Analysis of the Comparison

In order to strengthen the results of our comparison, we provide an additional bootstrap analysis.
Thus, we will make a bootstrap with a replacement obtained after 1000 RMSE replications of the Kalman
filter models and MS according to the one-factor or the two-factor model. Thus, the distributions of
these RMSE will be compared.

2.3. Data Source

The data used comes from the Regional Stock Exchange (BRVM). The disposable variables are the
daily prices of 45 assets and their capitalization, market portfolio values (composite BRVM), and sector
portfolios covering the period 1999 to 2017. Since the number of observations per asset was different,
the data were aggregated at the monthly level, and the returns on the different assets were calculated.
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On the basis of these 45 assets, four portfolios were constructed according to the size of the
capitalizations7. They are named, respectively, portfolios 1, 2, 3, and 4 in ascending order of
capitalization. The SMB (Small Minus Big) variable was obtained by differentiating the returns
of small-cap portfolios from large-cap portfolios. For the risk-free asset rate, the rate at which AFD
issued a good AAA rated bond for the period 2008–2016 was taken as a proxy. This annual rate is
5.25%. Having monthly data, this rate has been converted to a monthly rate.

3. Results

In this section, we first present the result of the one-factor model and then the two-factor model.

3.1. Estimation of Unconditional and Conditional CAPM with One Factor

The unconditional CAPM estimate on the different portfolios yields poor results. Indeed, after
estimates, the residuals of all the portfolios were not normal, so we carried out the Wald test to check
the significance of the coefficients. More importantly, the Wald test results show that beta is not
significant for any portfolio. In such a situation, Jagannathan and Wang (1996) suggest moving directly
to the conditional CAPM estimate.

3.1.1. Portfolios Description

Table 1 presents the summary statistics of the four portfolios. Thus, over the entire period,
Portfolio 2 has the highest average monthly return. Indeed, it stood at 4.38% with a dispersion of
26.11% around this average. This portfolio is followed by Portfolios 1, 3, and 4 with average monthly
returns of 4.02, 2.52, and 0.32%, respectively. In addition, it should be noted that large-cap portfolios
are the least risky in terms of variance.

Table 1. Descriptive statistics of portfolios.

Obs Min Mean Standard-dev Max

Portfolio 1 219 −39.57 4.02 31.30 294.24
Portfolio 2 219 −27.45 4.38 26.11 208.88
Portfolio 3 219 −18.04 2.52 19.86 169.50
Portfolio 4 219 −140.20 0.32 11.33 30.99

Source: author’s computations.

3.1.2. β Estimation with Kalman Filter

Table 2 presents the results of the beta estimate with the Kalman filter and the MS model using
the one-factor model. The results of the Kalman filter show that the average systematic risk (beta) of
the portfolio increases with the size of the portfolio, except for Portfolio 4. Thus, the average beta of
Portfolio 1 is 22.47% with a variability of 21.42%, while Portfolio 3 is 98.36% with a variability of 40.65%.
In addition, it should be noted that the risk-free asset ratio is negative for the two smaller portfolios.
The Figure 1 shows the adequacy of the yields predicted by the Kalman filter to the true yields.

7 The weights used for their computation are expressed in terms of capitalization as the simple CAPM assumes.
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Table 2. The one-factor model estimated by the Kalman filter and Markov switching (MS).

Kalman Filter Markov Switching

rf βM σβM rf State 1 State 2
βM βM

P1 −0.93 22.47 21.42 −1.70 *** 16.93 ** 55.16
P2 −0.33 32.10 17.13 −0.65 * 39.40 *** −46.19 **
P3 0.60 98.36 40.65 −0.15 48.23 *** 55.09
P4 1.37 93.26 43.94 0.91 *** 102.42 *** 71.07 ***

Source: author’s computation. * p < 0.1; ** p < 0.05; *** p < 0.01.

Figure 1. Actual and predicted returns after the one-factor model. Source: author’s computation.

3.1.3. β Estimation with the Markov Switching Model

The MS model reveals that the behavior of portfolio returns is governed by two states. The results
of the beta estimate by the MS model yield negative and significant risk-free interest rates for the two
smaller-sized portfolios like with the Kalman filter. However, the risk-free interest rateof Portfolio 3
is also negative. The states governing the performance of the portfolios differ in terms of volatility
(low and high volatility states can be identified). In periods of low volatility (State 1), systematic
portfolio risks increase with portfolio size and the change in rating has a significant positive impact
on portfolio’s performance. The systematic risk of the market increases from 16.93 for Portfolio 1 to
102.42% for the 4. Finally, during periods of high volatility (State 2), the performance of the market
portfolio have no significant effect on the returns, regardless of the portfolios.

3.2. Integration of the SMB Factor of Fama and French

The summary of results from the estimation of the two-factor models are shown in the Table 3.

3.2.1. Estimation by the Kalman Filter

The introduction of the size factor has increased the systematic risk of all portfolios in absolute
value, except for 3 and 4. However, the growth of this risk with the size of the portfolios is, respectively,
observed firstly for Portfolios 1 and 2 and secondly for 3 and 4. It should be noted that the systematic
risk of Portfolio 1 is negative. As a result, the market beta stood at −45.38% with a variability of 30.78%
for Portfolio 1, 631.80% with a variability of 99.52% for Portfolio 2, 74.38% with a variability of 4.04%
for Portfolio 3, and 80.40% with a variability of 34.70% for Portfolio 4.



J. Risk Financial Manag. 2019, 12, 27 8 of 15

On the other hand, the average risk linked to the size factor (SMB) decreases with the size of the
portfolios, except for Portfolio 1. It went from 104.08% for Portfolio 2 to 1.09% for Portfolio 4, with
respective variabilities of 490.47 and 26.39%. The Figure 2 shows the predicted returns with the model
with the size factor and actual returns.

Figure 2. Actual and predicted returns after the two-factor model. Source: author’s computation.

3.2.2. The Markov Switching Model Estimation

The MS model yields different results according to the states. Indeed, during periods of low
volatility, portfolio returns are both explained by the market portfolio and the size factor, except for
Portfolio 3. For the latter, the SMB factor is not significant. The SMB factor introduction hardly changes
the systematic risk of Portfolios 3 and 4 during periods of low volatility, whereas those of Portfolios 1
and 2 vary significantly by 40.87 and 40.10 percentage points, respectively, compared to the model
without the SMB factor.

Table 3. β estimation with the SMB factor.

Kalman Filter Markov Switching

rf βM σβM βSMB σβSMB rf State 1 State 2
βM βSMB βM βSMB

P1 0.13 −45.38 30.78 92.37 26.84 0.25 57.80 *** 69.15 *** −44.11 73.63 ***
P2 −1.20 631.80 99.52 104.08 490.47 −0.70 ** 39.10 *** 3.81 ** −65.49 −8.21
P3 5.07 74.38 4.04 74.37 4.04 −0.22 48.52 *** 1.40 63.71 ** −7.96
P4 0.13 80.40 34.70 1.09 26.39 0.98 *** 105.07 *** −3.35 *** 70.37 *** −1.82

Source: author’s computation. p < 0.1; ** p < 0.05; *** p < 0.01.

4. Discussion

After estimation of the different models, we proceed in this section to their comparison according
to the RMSE criterion. Table 4 presents the RMSE of the different models according to the portfolios.
The results show that, generally, the Kalman filter is better. Indeed, when considering the one-factor
model, the Kalman filter has the smallest RMSE compared to the MCRM for all portfolios. It should be
noted, however, that the gap remains small. For the two-factor model, the Kalman filter performs
better than the MS model for Portfolios 1, 2, and 4. The beta of Portfolio 3 seems to be more governed
by states than by a random work.
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Table 4. RMSE of different estimation.

RMSE

One Factor Model Model with SMB Factor
FK MS FK MS

Portfolio 1 0.1492 0.1498 0.0213 0.0882
Portfolio 2 0.1200 0.1205 0.0000 0.1213
Portfolio 3 0.0595 0.0646 0.3062 0.0646
Portfolio 4 0.0360 0.0453 0.0152 0.0689

Source: author’s computation.

To reinforce these results, according to our methodology, we compare below the bootstrap
distributions of the RMSE of Kalman filter and MS models after 1000 replications. Figure 3 gives
the bootstrap distributions of the RMSE following the one-factor model. The results show, with the
exception of Portfolio 1, that the RMSE distribution obtained by the MS model dominates that of the
Kalman filter. This means that the model obtained by the Kalman filter outperforms the MS model.
For Portfolio 1, we cannot draw conclusions because distributions are crossing.

Figure 3. RMSE distribution for the one-factor model.

Figure 4 shows the bootstrap distributions of the RMSE following the one-factor model. At this
level, the conclusions are similar to the case of the one-factor model for Portfolios 1 and 4. For Portfolios
2 and 3, we cannot draw conclusions.
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Figure 4. RMSE distribution for the two-factor model.

Thus, our results converge more toward the fact that the systematic risk beta follows a random
walk, since the model obtained by the Kalman filter generally dominates that with a change in regime.

5. Conclusions

The literature on conditional CAPM has seen much development. As such, a multitude of
models exist today for systematic risk modeling (β). Based on two assumptions, we estimated
the systematic risk according to two models: the Kalman filter and the MS model for four BRVM
portfolios, constructed by sorting the assets according to their capitalization and considering the
quartiles. Two types of models were evaluated: the first with a market beta as an explanatory variable
(a one-factor model) and the second when adding the SMB (Small Minus Big) factor.

The results show that, according to the RMSE criterion, the Kalman filter model is more efficient
for both the one- and two-factor estimation.

Following these results, conjectures can be made regarding the behavior of investors in the BRVM
market. These conjectures stem directly from the study assumptions. The Kalman filter model provides
better predictions than MS. This means that when choosing a portfolio, managers are more likely to
expect an uncontrolled risk than a risk varying according to periods.

It is important to remember that our results only apply to the assets of the BRVM and in the
context of portfolios built according to criteria concerning the size of capitalizations.

Some of the hypotheses in this study can be released to provide a basis for future research. In
this study, only one additional factor was taken into account due to a lack of data. Additional analysis
that could be an extension of this study would be to integrate other factors such as HML or B/M.
Another extension is the choice of the risk-free asset rate. The rate chosen for our study is only a proxy.
An approach that models the risk-free asset would be appropriate.

Author Contributions: M.T. and I.A.A. provided the methodology, analyzed the data, and wrote the paper; M.K.
and M.C. supervised all work.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



J. Risk Financial Manag. 2019, 12, 27 11 of 15

Abbreviations

The following abbreviations are used in this manuscript:

BRVM Regional Stock Exchange
MS Markov switching
RMSE root mean squared error

Appendix A. Kalman Filter

As introduced in Durbin and Koopman (2012) in their book, “Time Series Analysis by State Space
Methods”, state space modeling provides a global methodology for dealing with several kinds of
problems encountered in time series estimation. In this model, it is assumed that the evolution in
time of the system studied is determined by a series α1, . . . , αn, which is associated with a series of
observations y1, . . . , yn; the relationship between αt and yt being specified by a state space model. The
main purpose of the state space model is to dynamically determine the unknown vector αt through
the knowledge of yt.

The Gaussian general state space model can be written as follows:

yt = Ztαt + εt, εt ∼ N(0, Ht)

αt+1 = Ttαt + Rtηt, ηt ∼ N(0, Qt), t = 1, . . . , n
(A1)

where yt is an observations vector, and αt the unobservable component called the state vector. The
first equation, Equation (A1), is called the equation of the observations, and the second is called the
equation of state. Zt, Tt, Rt, Ht, and Qt are matrices whose initial values are assumed to be known.
Errors εt and ηt are assumed to be iid and not correlated.

The estimation of the Equation (A1) model is done recursively. Everything starts from the
assumption that α1 ∼ N(a1, P1), with a1 and P1 known. Parameters Qt and Ht are also assumed
to be known. On this basis, we sought for distributions of αt and αt+1 knowing Yt, where Yt =

(y′1, . . . , y′t)
′, the distribution of αt conditionally to Yt−1 being N(at, Pt). By setting at|t = E(αt|Yt),

at+1 = E(αt+1|Yt), Pt|t = Var(αt|Yt) and Pt+1 = Var(αt+1|Yt), the respective conditional distributions
of αt and αt+1 are given by N(at|t, Pt|T) and N(at+1, Pt+1). By setting vt = yt −E(yt|Yt−1), we obtain
vt = yt − Ztat because

E(yt|Yt−1) = E(Ztαt + εt|Yt−1) = Ztat.

E(εt|Yt−1) = 0 and E(αt|Yt−1) = at. By setting Ft = Var(vt|Yt−1), we obtain, by a few computations,
the following recursive algorithm:

vt = yt − Ztat, Ft = ZtPtZ′t + Ht

at|t = at + PtZ′tF
−1
t vt, Pt|t = Pt − PtZ′tF

−1
t ZtPt

at+1 = Ttat + Ktvt, Pt+1 = TtPt(Tt + KtZt)′ + RtQtR′t

(A2)

for t = 1, . . . , n and Kt = TtPtZ′tF
−1
t with a1 and P1 the mean and the variance of the initial parameter

α1. This recursive algorithm is called the Kalman filter.

Appendix B. The Markov Switching Model

The Markov switching model (MS) is widely used for the estimation of cyclical phenomena subject
to different phases (e.g., periods of expansion and recession) but also in the stock markets where lot
of volatility are observed. MS thus suggests a different estimation of states guided by a process St.
The formulation of Goldfield and Quant is as follows:

yt = βSt xt + εt où εt ∼ N(0, σSt) (A3)

with βSt = (β1St , . . . , βkSt) and xt = (x1t, . . . , xkt), a vector of k exogenous variables.
The following notations are retained:
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• S = (St)t=0,...,n is a Markov process with N states;
• Y = (Yt)t=0,...,n is a random variable;
• The observed values of Y are noted y = (y1, . . . , yn);
• yt−1 = (y1, . . . , yt−1) refers to a lagged value of Yt;
• p(y, S|θ) denotes the joint density of y and S and θ the parameters of Equation (A3) that have to

be estimated;
• p(yt|yt−1, St, θ) denotes the density function of the distribution of Yt conditioned on past

realizations yt−1 and knowing St;
• p(St|St−1, yt−1, θ) denotes the density function of the distribution of St conditioned on past

realizations yt−1 and knowing St−1.

Three cases are distinguished: to infer S if θ is known, to estimate θ if S is known, and to estimate
simultaneously θ and S. Not knowing S, the method of estimating the third case will be performed.
In this case, only y is observed. The idea is to estimate θ by going through all possible values of S.
We suppose that S ∈ Sn+1 = {1, . . . , N}. The likelihood to maximize is written as follows:

p(y|θ) = ∑
S∈Sn+1

p(y|S, θ1, . . . , θN)p(S|θ).

The numerical solutions of the previous maximization of the likelihood is not viable because Sn+1

is gigantic. Quandt (1972) proposed an approximation of the previous likelihood by the following:

p(y|θ) =
n

∏
t=p+1

(
n

∑
k=1

p(yt|St = k, yt−1, θ)p(St = k|yt−1, θ)). (A4)

where θ is estimated by the quasi-maximum likelihood (QML)8. For the choice of the state number,
several estimates are made by increasing the number of states of S. The best state being that which
minimizes the AIC criterion.

Appendix C. Diagnostic Tests of the Two Models

Appendix C.1. Diagnostic Tests of the Kalman Filter

Table A1. Diagnosis of one-factor residuals models.

Normality Test Ljung-Box Test

w p-Value χ2 df p-Value

Portfolio 1 0.39 <0.01 19.22 15.00 0.20
Portfolio 2 0.39 <0.01 50.87 15.00 0.00
Portfolio 3 0.66 <0.01 27.17 15.00 0.03
Portfolio 4 0.71 <0.01 15.62 15.00 0.41

Table A2. Diagnosis of two-factor residuals models.

Normality Test Ljung-Box Test

w p-Value χ2 df p-Value

Portfolio 1 0.39 <0.01 19.22 15.00 0.200
Portfolio 2 0.39 <0.01 50.87 15.00 0.00
Portfolio 3 0.66 <0.01 27.17 15.00 0.03
Portfolio 4 0.71 <0.01 15.62 15.00 0.41

8 We speak of quasi-maximum likelihood because it is an approximation of the true likelihood.
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Appendix C.2. Diagnostic Tests of Markov Switching Models

Table A3. P-value of structure change tests.

One Factor Model Two Factors Models

βM σ βM βSMB σ

Portfolio 1 0.0000 0.0000 0.0000 0.3995
Portfolio 2 0.0791 0.0000 0.1016 0.9164 0.000
Portfolio 3 0.0768 0.0000 0.1843 0.0001 0.000
Portfolio 4 0.5346 0.0000 0.1692 0.000 0.0249

Appendix D. Graphics of β

Appendix D.1. β Estimated in the One-Factor Model by the Kalman Filter

Figure A1. Beta estimated from the Kalman filter after the one-factor model. Source:
author’s computation.
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Appendix E. β Estimated in the Two-Factor Model by the Kalman Filter

Figure A2. Beta estimated from the Kalman filter after the two-factor model. Source: author’s
computation.
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