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Abstract: Most of the financial institutions compute the Value-at-Risk (VaR) of their trading
portfolios using historical simulation-based methods. In this paper, we examine the Filtered Historical
Simulation (FHS) model introduced by Barone-Adesi et al. (1999) theoretically and empirically.
The main goal of this study is to find an answer for the following question: “Does the assumption on
innovation process play an important role for the Filtered Historical Simulation model?”. For this goal,
we investigate the performance of FHS model with skewed and fat-tailed innovations distributions
such as normal, skew normal, Student’s-t, skew-T, generalized error, and skewed generalized
error distributions. The performances of FHS models are evaluated by means of unconditional and
conditional likelihood ratio tests and loss functions. Based on the empirical results, we conclude that
the FHS models with generalized error and skew-T distributions produce more accurate VaR forecasts.
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1. Introduction

The most well known risk measure, Value-at-Risk (VaR), is used to measure and quantify the
level of financial risk within a firm or investment portfolio over a specific holding period. The VaR
measures the potential loss of risky asset or portfolio over a defined period and for a given confidence
level. The VaR is defined as

VaRp = F−1(1− p), (1)

where F is the cumulative distribution function (cdf) of financial losses, F−1 denotes the inverse of
F and p is the quantile at which VaR is calculated. The approaches to VaR could be investigated in
three categories: (i) fully parametric models approach based on a volatility models; (ii) non-parametric
approaches based on the Historical Simulation (HS) methods and (iii) Extreme Value Theory approach
based on modeling the tails of the return distribution.

In this paper, we focus on the non-parametric HS models. The HS model is based on the
assumption that historical distribution of returns will remain the same over the next periods. The HS
model assumes that price change behaviour repeats itself over the time. Thus, future distribution of
asset returns could be described by the empirical one. The one-day-ahead VaR R forecast for HS model
is given by

VaRt+1 = Quantile
{
{Xt}n

t=1 , p
}

, (2)
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where p is the quantile at which VaR is calculated. Mögel and Auer (2017) compared the performance
of HS model with several competitive VaR models and stated that HS model produces the similar VaR
forecasts with unconditional generalized Pareto distribution.

The HS model has several advantages. For instance, it is easy to understand and implement. It is
a nonparametric model and does not require any distributional assumption. However, the HS model
has also several shortcomings. The HS model ignores the time-varying volatility dynamics. In order
to remove lack of HS model, Hull and White (1998) and Barone-Adesi et al. (1999) introduced the
FHS model. This approach can be viewed as mixture of the HS and the Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) models. Specifically, it does not make any distributional
assumption about the standardized returns, while it forecasts the variance through a volatility
model. Hence, it is mixture of parametric and non-parametric statistical procedures. Barone-Adesi
and Giannopoulos (2001) demonstrated the usefulness of the FHS model over the historical one.
Kuester et al. (2006) compared the forecasting performance of several advanced VaR models.
Kuester et al. (2006) concluded that GARCH-Skew-T, Extreme Value Theory (EVT) approach with
normal and Skew-T innovations and FHS model with normal and Skew-T innovations perform
the best. Angelidis et al. (2007) compared the FHS model with GARCH models specified under
different innovation distributions such as normal, Student’s-t and Skewed-T. Roy (2011) estimated
the VaR of the daily return of Indian capital market using FHS model. Omari (2017) compared
FHS, Exponentially Weighted Moving Average (EWMA), GARCH-normal, GARCH-Student’s-t,
GJR-GARCH-normal and GJR-GARCH-Student’s-t models in terms of accuracy of VAR forecasts.
Omari (2017) demonstrated that GJR-GARCH-Stundet’s-t approach and Filtered Historical Simulation
method with GARCH volatility specification perform competitively accurate in estimating VaR
forecasts for both standard and more extreme quantiles thereby generally out-performing all the
other models under consideration.

The goal of this paper is to investigate the VaR forecasting performance of the FHS model specified
under skewed and fat-tailed innovations distributions. For this goal, the comprehensive introduction
to the FHS and GARCH models is given. The FHS model under six innovation distributions are
introduced. Rolling window estimation produce is used to obtain both unknown parameters of
GARCH models and VaR forecasts. The performance of the FHS models, in terms of accuracy of VaR
forecasts, are evaluated by means of backtesting methods and loss functions.

The rest of the paper is organized as follows: Section 2 is devoted to theoretical properties of the
FHS and GARCH models under normal, Student’s-t, skew-normal, skew-T, generalized error and
skewed generalized error innovation distributions. Backtesting methodology is given in Section 3.
Empirical findings and model comparisons are presented in Section 4. Concluding remarks are given
in Section 5.

2. Filtered Historical Simulation Models

In this section, the FHS model is defined. Then, the log-likelihood functions of GARCH model
specified under normal, skew-normal, Student’s-t, skew-T, generalized error and skewed genealized
error innovation distributions are presented.

FHS model can be summarized as follows:

√
Let Rt denotes the daily log-returns. The benchmark GARCH(1,1) model, introduced by
Bollerslev (1986), is defined by

Rt = µ + et,
et = εt ht, εt ∼ i.i.d.
h2

t = ω + γ1 e2
t−1 + γ2h2

t−1,
(3)
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where ω > 0, γ1 > 0,γ2 > 0, µt and h2
t are the conditional mean and variance, respectively,

and εt is the innovation distribution with zero mean and unit variance. Maximum Likelihood
Estimation (MLE) method is widely used to estimate parameters of GARCH models. Under the
assumption of independently and identically distributed (iid) innovations with f (εt; τ) density
function, the log-likelihood function of rt for a sample of T observations is given by

` (ψ) =
T

∑
t=1

[
ln ( f (εt; τ))− 1

2
ln
(

h2
t

)]
(4)

where ψ = (µ, ω, γ1, γ2, τ) is the parameter vector of GARCH model, τ is the shape parameter(s)
of f (εt; τ) and εt =

et
ht

.
The standardized residuals of estimated GARCH(1,1) model are extracted as follows:

εt =
êt

ĥt
, (5)

where êt is the estimated residual and ĥt is the corresponding daily estimated volatility.
Now, we can generate the first simulated residual by randomly (with replacement) draw
standardized residuals from the dataset with multiplying the one-day ahead volatility forecast:

z∗t+1 = e∗1ht+1. (6)

The first simulated return for period t + 1 can be obtained as follows:

R∗t+1 = µt+1 + z∗t+1, (7)

where z∗t+1 is the first simulated residual for period t + 1.

This procedure is repeated B times of length T. Here, B represents the number of bootstrapped
samples and T represents the each of bootstrapped sample size. Then, VaR for period t + 1 can be
forecasted as follows:

VaRt+1 =

B
∑

b=1
Quantile

{
{R∗t }

T
t=1 , 100p

}
B

. (8)

The rest of this section is devoted to present the log-likelihood functions of GARCH model
under normal, skew-normal, Student’s-t, skew-T, generalized error and skewed generalized
error distributions.

2.1. Normal Distribution

The log-likelihood function of the GARCH model specified under normal innovations is given by

`(ψ) = −0.5

(
T ln 2π +

T

∑
t=1

ln h2
t +

T

∑
t=1

ε2
t

)
, (9)

where ψ = (µ, ω, γ1, γ2) denotes the parameter vector of the GARCH-normal (GARCH-N) model and
h2

t = ω + γ1 e2
t−1 + γ2h2

t−1.
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2.2. Skew-Normal Distribution

The first skew extension of normal distribution was proposed by Azzalini (1985). The probability
density function (pdf) of skew-normal (SN) distribution is given by

φ (z; λ) = 2φ (z)Φ (zλ) , z ∈ <, λ ∈ <, (10)

where λ is an additional parameter that controls the skewness. When λ < 0, the SN distribution is
left skewed, otherwise, it is right skewed. If λ = 0, the SN distribution reduces to standard normal
distribution. The kth moment of SN distribution is given by

E
(

Z2k+1
)
=

√
2
π

(2k + 1)!
2kk!

k

∑
i=0

(−1)i

(
k
i

)
δ2i+1

2i + 1
. (11)

here, k = 0, 1, 2, . . . , n and δ = λ
/√

1 + λ2. Note that the even moments of the SN distribution are
equal to standard normal distribution. The mean and variance of SN distribution is, respectively,
given by,

µ = bδ

σ2 = 1− (bδ)2 (12)

where b =
√

2
π . The standardized SN distribution is obtained using the transformed random variable

ε = (z− µ)
/

σ where E (ε) = 0 and var (ε) = 1. The random variable z can be expressed as z = εσ + µ

and ∂z
/

∂ε = σ. Thus, the pdf of the standardized SN distribution is given by

f (ε; λ) = 2σφ ((εσ + µ))Φ ((εσ + µ)λ) (13)

Hereafter, using the standardized SN distribution, the log-likelihood function of GARCH model
with SN innovation distribution is given by

` (ψ) =
T

∑
t=1

ln [2σφ (εtσ + µ)] +
T

∑
t=1

ln [Φ ((εtσ + µ) λ)]− 1
2

T

∑
t=1

ln
(

h2
t

)
, (14)

where ψ = (µ, ω, γ1, γ2, λ) is the parameter vector.

2.3. Student’s-t Distribution

Since financial return series has fatter tails than normal distribution, Bollerslev (1986, 1987)
proposed the GARCH model with the Student’s-t innovations. GARCH model with the Student’s-t
innovations enables to model both fat-tail and excess kurtosis observed in financial return series.
The log-likelihood function of the GARCH-Student’s-t (GARCH-T) model is given by

`(ψ) = T
[
ln Γ

(
υ+1

2

)
− ln Γ

(
υ
2
)
− 1

2 ln [π(υ− 2)]
]

− 1
2

T
∑

t=1

[
ln h2

t + (1 + υ) ln
(

1 + ε2
t

υ−2

)] , (15)

where ψ = (µ, ω, γ1, γ2, υ) is the parameter vector, Γ(υ) is the gamma function and parameter υ

controls the tails of the distribution.
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2.4. Skew-T Distribution

The pdf of skew-T distribution obtained by Azzalini and Capitanio (2003) is given by

f (x; λ, υ) = 2t (x; υ) T

(√
1 + υ

x2 + υ
λt; υ + 1

)
, x ∈ <, (16)

where t (·) and T (·) are pdf and cdf of Student’s-t distribution, respectively, and λ controls the
skewness. When λ = 0, ST distribution reduces to Student’s-t distribution in Equation (16).
The moments of ST distribution are given by

E
(

Xk
)
=

(
υ
2
) k

2 Γ
(
(υ−k)

2

)
Γ
(

υ
2
) E

(
Zk
)

, (17)

The mean and variance of ST distribution are, respectively, given by

µ =
( υ

π )
1
2 Γ
(
(υ−1)

2

)
Γ( υ

2 )
λ√

1+λ2 ,

σ2 =
(

υ
υ−2 − µ2) .

(18)

The standardized ST distribution is obtained using the transformed random variable
ε = (z− µ)

/
σ, where E (ε) = 0 and var (ε) = 1. The random variable z can be expressed as z = εσ + µ

and ∂z
/

∂ε = σ. Thus, the pdf of standardized ST distribution is given by

f (ε; λ, υ) = 2σt ((εσ + µ) ; υ) T

(√
1 + υ

(εσ + µ)2 + υ
λ (εσ + µ) ; υ + 1

)
, υ > 2 (19)

where µ and σ are mean and standard deviation of ST distribution, respectively. The log-likelihood
function of GARCH model with the ST innovation distribution is given by

` (ψ) = T ln (2) + T ln (σ) +
T
∑

t=1
ln [t ((εtσ + µ) ; υ)]

+
T
∑

t=1
ln

[
T

(√
1+υ

(εtσ+µ)2+υ
λ (εtσ + µ) ; υ + 1

)]
− 1

2

T
∑

t=1
ln
(
h2

t
) (20)

where ψ = (µ, ω, γ1, γ2, λ, υ) is the parameter vector.

2.5. Generalized Error Distribution

Nelson (1991) introduced the GARCH volatility model of generalized error distribution (GED).
The log-likelihood function of GARCH-GED model is given by

`(ψ) =
T

∑
t=1

[
ln
(υ

2

)
− 1

2

∣∣∣ εt

λ

∣∣∣υ − (1 + υ−1) ln(2)− ln Γ
(

1
2

)
− 1

2
ln
(

h2
t

)]
(21)

where ψ = (µ, ω, γ1, γ2, υ) is the parameter vector, υ is tail-thickness parameter and

λ =

 Γ
(

1
υ

)
2

2
υ Γ
( 3

υ

)


1
2

. (22)

Note that the normal distribution is a special case of the GED when υ = 2. If υ < 2, the GED has
heavier tails than the Gaussian distribution.
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2.6. Skewed Generalized Error Distribution

Skewed Generalized Error Distribution (SGED) provides an opportunity to model skewness and
excess kurtosis observed in financial return series. Lee et al. (2008) introduced the GARCH-SGED
model and concluded that GARCH model with SGED innovation process outperformed the GARCH-N
model for all confidence levels.

The pdf of standardized SGED is given by,

f (εt) = C exp
(
− |εt + δ|κ

[1 + sign(εt + δ)λ]κθκ

)
(23)

where
C = κ

2θ Γ
(

1
κ

)−1
, θ = Γ

(
1
κ

)0.5
Γ
( 3

κ

)0.5S(λ)−1

S(λ) =
√

1 + 3λ2 − 4A2λ2, δ = 2λA
S(λ)

A = Γ
( 2

κ

)
Γ
(

1
κ

)−0.5
Γ
( 3

κ

)−0.5
,

(24)

where κ > 0 is the shape parameter, −1 < λ < 1 is skewness parameter. The SGED turns out to be the
standard normal distribution when κ = 2 and λ = 0. The log-likelihood function of GARCH-SGED
model is given by

`(ψ) = −
T

∑
t=1

(
|εt + δ|κ

[1 + sign (εt + δ) λ]κθκ

)
+ T ln (c)−

T

∑
t=1

ln (ht) (25)

where ψ = (µ, ω, γ1, γ2, λ, κ) is the parameter vector.

3. Evaluation of VaR Forecasts

Now, we introduce backtesting methodology that is used to compare VaR forecast accuracy
of the models. Statistical accuracy of the models is evaluated by backtests of Kupiec (1995),
Christoffersen (1998), Engle and Manganelli (2004) and Sarma et al. (2003). Recently, some alternative
backtesting methods for VaR forecasts were proposed by Ziggel et al. (2014) and Dumitrescu et al. (2012).

Kupiec (1995) proposed a likelihood ratio (LR) test of unconditional coverage (LRuc) to evaluate
the model accuracy. The test examines whether the failure rate is equal to the expected value. The LR
test statistic is given by

LR = −2 ln
[

pn1(1− p)n0

π̂n1(1− π)n0

]
∼ χ2

1, (26)

where π̂ = n1/(n0 + n1) is the MLE of p, n1 represents the total violation and n0 represents the total
non-violations forecasts. Violation means that if VaRt > rt, violation occurs, opposite case indicates
the non-violation. Under the null hypothesis (H0 : p = π̂), the LR statistic follows a chi-square
distribution with one degree of freedom.

The LRuc test fails to detect if violations are not randomly distributed. Christoffersen (1998)
proposed a LR test of conditional coverage LRcc to remove the lack of Kupiec (1995) test. The LRcc

test investigates both equality of failure rate and expected one and also independently distributed
violations. The LRcc test statistic under the null hypothesis shows that the failures are independent
and equal to the expected one. It is given by

LRcc = −2 ln
[

(1− α)n0 αn1

(1− π01)
n00 π01

n01(1− π11)
n10 π11

n11

]
∼ χ2

2, (27)

where nij is the number of observations with value i followed by j for i, j = 0, 1 and πij = nij/ ∑
j

nij is

the probability, for i, j = 1. It denotes that the violation occurred, otherwise indicates the opposite case.
The LRcc statistic follows a chi-square distribution with two degrees of freedom.
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The Dynamic Quantile (DQ) test, proposed by Engle and Manganelli (2004), examines if the
violations is uncorrelated with any variable that belongs to information set Ωt+1 when the VaR is
calculated. The main idea of DQ test is to regress the current violations on past violations in order to
test for different restrictions on the parameters of the model. The estimated linear regression model is
given by

It = β0 +
p

∑
i=1

βi It−i +
q

∑
i=1

µjXj + εt (28)

where

It =

{
1, rt < VaRt

0, rt ≥ VaRt
(29)

This regression model tests whether the probability of violation depends on the level of the VaR.
Here, p and q are used as 5 and 1, respectively, for illustrative purpose.

In most instances, evaluating the performance of VaR models by means of LRuc, LRcc and DC tests
may not be sufficient to decide the most adequate model among others. For instance, some models
may have the same violation number with different forecast errors. Sarma et al. (2003) defined a test
on the basis of regulator’s loss function (RLF) to take into account differences between realized returns
and VaR forecasts. The RLF is given by

RLFt+1 =

{
(rt+1 −VaRt+1)

2, if rt+1 < VaRt+1

0, if rt+1 ≥ VaRt+1
(30)

where VaRt+1 represents the one-day-ahead VaR forecast for a long position.
The unexpected loss (UL) is equal to average value of differences between realized return and

VaR forecasts. The one-day-ahead magnitude of the violation for long position is given by

ULt+1 =

{
(rt+1 −VaRt+1), if rt+1 < VaRt+1

0, if rt+1 ≥ VaRt+1
(31)

The QLF and UL loss functions do not consider the case in which the realized returns exceed the
VaR forecast. The appropriate loss function should take into consideration the cost of excess capital.
Because, overestimated VaR forecasts yield firms to hold much more capital value than required one.
The main objective of any firm is to maximize the their profits. For this reason, Sarma et al. (2003) is
proposed the new loss function, called Firm’s Loss Function (FLF). The FLF is given by

FLFt+1 =

{
(rt+1 −VaRt+1)

2, if rt+1 < VaRt+1

−βVaRt+1, if rt+1 ≥ VaRt+1
(32)

where β is the cost of excess capital.

4. Empirical Results

4.1. Data Description

To evaluate the performance of FHS models in terms of accuracy of VaR forecasts, ISE-100 index
of Turkey is used. The used time series data contains 1092 daily log-returns from 3 January 2013
to 4 May 2017. The descriptive statistics of the log-returns of ISE-100 index are given in Table 1.
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Table 1. Summary statistics for the ISE-100 index.

ISE-100

Number of observations 1092
Minimum −0.048
Maximum 0.027

Mean 6.6× 10−5

Median 2× 10−4

Std. Deviation 0.006
Skewness −0.603
Kurtosis 4.957

Jarque-Bera 1190.970 (p <0.001)

Table 1 shows that the mean return is closed to 0. The results of the Jarque-Bera test prove that the
null hypothesis of normality is rejected at any level of significance. It shows strong evidence for high
excess kurtosis and negative skewness. Thus, it is clear that log return of ISE-100 index has non-normal
characteristics, excess kurtosis, and fat tails. Figure 1 displays the daily log-returns of ISE-100 index.

−
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s

ISE−100
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Figure 1. Daily log-returns of the ISE-100 index.

Figure 2 displays the time-varying skewness and kurtosis of ISE-100. For Figure 2, window length
is determined as 392 and the rolling window procedure is used. Based on Figure 2, it is clear that
skewness and kurtosis of ISE-100 index exhibit great variability across the time.

The benchmark model, GARCH(1,1), is estimated with six different innovation distributions:
Normal, SN, Student’s-t, ST, GED and SGED. Table 2 shows the estimated parameters of GARCH
models. The rugarch package in R software is used to obtain parameter estimation of normal,
Student’s-t, GED and SGED models. The constrOptim function in R software is used to minimize
negative log-likelihood functions of GARCH-ST and GARCH-SN models.

Based on Table 2, we conclude that GARCH-T and GARCH-SGED models have the lower
log-likelihood value among others. Since GARCH-T model has the lowest log-likelihood value, it could
be chosen as best model for in-sample period. Table 2 also shows that the conditional variance
parameters γ2 are highly significant for all GARCH models.
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Figure 2. Time varying skewness and kurtosis plots of ISE-100 index.

Table 2. In-sample performance of GARCH models under skewed and fat-tailed innovation distributions.

Parameters Normal Student-T ST SN GED SGED

µ 5.24× 10−4 5.67× 10−4 8.56× 10−4 4.05× 10−4 5.67× 10−4 3.51× 10−4

3.41× 10−4 3.04× 10−4 3.60× 10−4 3.34× 10−4 3.77× 10−4 3.26× 10−4

ω 3.69× 10−6 2.01× 10−6 2.27× 10−6 3.65× 10−6 2.72× 10−6 2.63× 10−6

1.50× 10−6 1.53× 10−6 6.71× 10−6 1.73× 10−6 1.66× 10−6 1.57× 10−6

γ1 0.1194 0.0759 0.1510 0.1460 0.0930 0.0873
0.0413 0.0336 0.2940 0.0560 0.0393 0.0353

γ2 0.8234 0.8908 0.8240 0.7950 0.8600 0.8650
0.0449 0.0485 0.3130 0.0662 0.0518 0.0486

ν - 4.7490 4.8760 - 1.2020 -
- 1.1600 0.5620 - 0.1040 -

λ - - −0.2750 −1.5050 - 0.8860
- - 2.4260 0.2630 - 0.0440

κ - - - - - 1.2200
- - - - - 0.1093

−` −1381.1100 −1405.003 −1402.2630 −1388.1800 −1401.0600 −1402.7300

4.2. Backtesting Results

In this subsection, rolling window estimation procedure is used to estimate parameters of GARCH
models. Then, VaR forecasts of FHS models are obtained by using estimated parameters of GARCH
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models, one-day-ahead forecasts of conditional mean and conditional variance and standardized
residuals extracted from estimated GARCH models. Rolling window estimation produce allows us
to capture time-varying characteristics of the time series in different time periods. Window length is
determined as 392 and next 700 daily returns are used to evaluate the out of sample performance of
VaR models.

Table 3 shows the backtesting results for FHS-N, FHS-T, FHS-ST, FHS-SN, FHS-GED and
FHS-SGED models. The two step decision making procedure is applied to decide the best VaR model.
In first step, the performance of VaR models are evaluated according to results of LRuc, LRcc and
DC tests. In second step, the models, achieved to pass these three backtest, considered as accurate
model and obtained the results of loss functions of these VaR models. Finally, the lowest values of loss
functions indicate the best VaR models.

Table 4 shows that all FHS models perform well based on the results of LRuc, LRcc and DC tests
results at p = 0.05 ad p = 0.025 levels. However, FHS model with Student’s-t and ST innovation
distributions provide better VaR forecasts than other competitive models at p = 0.01 level based on the
result of DC test. Therefore, it can be concluded that FHS model specified under skewed and fat-tailed
innovation distributions provides more accurate VaR forecasts especially for high quantiles.

Even if FHS models have similar results in view of LRuc, LRcc and DC results, they have different
failure rates and forecast errors. Loss functions are useful to compare VaR models with their forecast
errors. Based on the ARLF, UL and FLF results, we conclude following results: (i) FHS-SN is the
best performed model at p = 0.05 and p = 0.025 levels according to ARLF and UL criteria. Based on
the FLF results, FHS-GED model has the lowest excess capital value than other models at p = 0.05
and p = 0.025 levels. Therefore, FHS-GED model could be chosen as best model for p = 0.05 and
p = 0.025 levels; (ii) Based on the three backtesting results, FHS-T and FHS-ST models provide the
most accurate VaR forecasts among others at p = 0.01 level. According to loss functions results, it is
easy to see that FHS-ST model has lower values of ARLF, UL and FLF results than FHS-T model.
Therefore, FHS-ST model could be chosen as the best model for p = 0.01 model.

Figures 3 displays the VaR forecasts of FHS models specified under six innovation distributions.
As seen in Figure 3, the assumption on innovation process does not affect the VaR forecasts of FHS
model soulfully. However, the GED and ST distributions could be preferable to reduce the forecast
error of the FHS model.

Table 3. Backtesting results of FHS models for long position (p = 0.05, p = 0.025, and p = 0.01).

p = 0.05

Models Mean VaR (%) N. Of Vio. Failure Rate LR-uc LR-cc DQ

FSH-N −0.910 29 0.041 1.146 (0.284) 1.186 (0.552) 4.586 (0.710)
FSH-SN −0.911 29 0.041 1.146 (0.284) 1.186 (0.552) 4.545 (0.715)
FSH-T −0.897 32 0.046 0.278 (0.597) 0.459 (0.794) 2.996 (0.885)

FSH-GED −0.899 30 0.043 0.788 (0.374) 0.863 (0.649) 4.041 (0.775)
FSH-SGED −0.904 30 0.043 0.788 (0.374) 0.863 (0.649) 4.255 (0.749)

FSH-ST −0.897 32 0.046 0.278 (0.597) 0.459 (0.794) 3.187 (0.867)

p = 0.025

Models Mean VaR (%) N. Of Vio. Failure Rate LR-uc LR-cc DQ

FSH-N −1.193 20 0.029 0.350 (0.554) 0.630 (0.729) 6.820 (0.448)
FSH-SN −1.196 20 0.029 0.350 (0.554) 0.630 (0.729) 6.805 (0.449)
FSH-T −1.177 20 0.029 0.350 (0.554) 0.630 (0.729) 4.056 (0.773)

FSH-GED −1.179 20 0.029 0.350 (0.554) 0.630 (0.729) 4.579 (0.711)
FSH-SGED −1.187 20 0.029 0.350 (0.554) 0.630 (0.729) 5.102 (0.647)

FSH-ST −1.177 20 0.029 0.350 (0.554) 0.630 (0.729) 4.051 (0.774)
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Table 3. Cont.

p = 0.01

Models Mean VaR (%) N. Of Vio. Failure Rate LR-uc LR-cc DQ

FSH-N −1.546 9 0.013 0.529 (0.466) 0.764 (0.682) 15.479 (0.030)
FSH-SN −1.549 9 0.013 0.529 (0.466) 0.764 (0.682) 16.338 (0.022)
FSH-T −1.526 9 0.013 0.529 (0.466) 0.764 (0.682) 13.185 (0.067)

FSH-GED −1.530 8 0.011 0.137 (0.710) 0.323 (0.851) 16.115 (0.024)
FSH-SGED −1.538 9 0.013 0.529 (0.466) 0.764 (0.682) 14.620 (0.041)

FSH-ST −1.526 9 0.013 0.529 (0.466) 0.764 (0.682) 12.893 (0.075)

p values of LR-uc, LR-cc and DC tests are presented in parentheses.

Table 4. Loss functions results of FHS models for long position (p = 0.05, p = 0.025, and p = 0.01).

p = 0.05

Models ARLF Min.-Max. ARLF UL Min.-Max. UL FLF Min.-Max. FLF

FSH-N 0.0172063 (1× 10−4, 5.133) −0.0179110 (−2.265, −0.010) 0.0283988 (1× 10−4, 5.133)
FSH-SN 0.0171900 (1× 10−4, 5.121) −0.0178643 (−2.263, −0.011) 0.0283877 (1.37× 10−4, 5.121)
FSH-T 0.0173740 (5.84× 10−8, 5.150) −0.0181385 (−2.269, −2× 10−4) 0.0284271 (5.84× 10−8, 5.150)

FSH-GED 0.0172983 (1.89× 10−6, 5.135) −0.0180858 (−2.266, −0.001) 0.0283820 (1.89× 10−6, 5.135)
FSH-SGED 0.0173162 (2.05× 10−5, 5.145) −0.0179867 (−2.268, −0.004) 0.0284463 (2.05× 10−5, 5.145)

FSH-ST 0.0173437 (9.28× 10−6, 5.127) −0.0181591 (−2.264, −0.003) 0.0283897 (9.28× 10−6, 5.127)

p = 0.025

Models ARLF Min.-Max. ARLF UL Min.-Max. UL FLF Min.-Max. FLF

FSH-N 0.0097984 (0.003, 3.896) −0.0108364 (−1.974, −0.058) 0.0228029 (0.003, 3.896)
FSH-SN 0.0097622 (0.001, 3.863) −0.0107498 (−1.965, −0.033) 0.0227883 (0.001, 3.863)
FSH-T 0.0098350 (0.002, 3.886) −0.0108600 (−1.971, −0.049) 0.0226889 (0.002, 3.886)

FSH-GED 0.0097898 (0.004, 3.876) −0.0108694 (−1.968, −0.063) 0.0226529 (0.004, 3.876)
FSH-SGED 0.0098099 (0.002, 3.893) −0.0107848 (−1.973, −0.040) 0.0227502 (0.002, 3.893)

FSH-ST 0.0098287 (0.002, 3.884) −0.0108752 (−1.971, −0.049) 0.0226755 (0.002, 3.884)

p = 0.01

Models ARLF Min.-Max. ARLF UL Min.-Max. UL FLF Min.-Max. FLF

FSH-N 0.0052475 (7.17× 10−5, 2.885) −0.0051635 (−1.698, −0.008) 0.0212668 (7.17× 10−5, 2.885)
FSH-SN 0.0052483 ( 8.22× 10−5, 2.893) −0.0051776 (−1.700, −0.009) 0.0213011 (8.22× 10−5, 2.893)
FSH-T 0.0052399 (1× 10−4, 2.914) −0.0051979 (−1.707, −0.011) 0.0210625 (1.15× 10−4, 2.914)

FSH-GED 0.0052125 (3× 10−4, 2.882) −0.0051546 (−1.697, −0.017) 0.0210964 (2.81× 10−4, 2.882)
FSH-SGED 0.0052148 (4× 10−4, 2.883) −0.0051849 ( −1.697, −0.019) 0.0211543 (3.98× 10−4, 2.883)

FSH-ST 0.0052135 (3.32× 10−5, 2.895) −0.0051634 (−1.701, −0.006) 0.0210319 (3.32× 10−5, 2.895)

p values of LR-uc and LR-cc tests are presented in parentheses.
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Figure 3. Daily VaR forecast of GARCH models with different innovation distributions for 97.5%
and 99% confidence levels.

5. Conclusions

In this study, we investigate FHS models with skewed and fat-tailed innovation distributions
both theoretically and empirically. For this aim, we use Normal, Student’s-t, ST, SN, GED and SGED as
the innovation distributions. The empirical findings show that all of FHS models perform well based
on the LRuc, LRcc and DC results at p = 0.05 and p = 0.025 levels. However, only two FHS model,
FHS-T and FHS-ST models achieve to pass LRuc, LRcc and DC tests at p = 0.01 level. Based on the
results of loss functions, FHS-GED is the best performed model at p = 0.05 and p = 0.025 levels and
FHS-ST model is the best performed model at p = 0.01 level. We conclude that skewed and fat-tailed
distributions are preferable to reduce the VaR forecast error of FHS models. We hope that the results
given in this study will be useful for both researchers and practitioners.
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