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Abstract: In this study, we propose to apply the transmuted log-logistic (TLL) model which is a
generalization of log-logistic model, in a Bayesian context. The log-logistic model has been used it is
simple and has a unimodal hazard rate, important characteristic in survival analysis. Also, the TLL
model was formulated by using the quadratic transmutation map, that is a simple way of derivating
new distributions, and it adds a new parameter λ, which one introduces a skewness in the new
distribution and preserves the moments of the baseline model. The Bayesian model was formulated
by using the half-Cauchy prior which is an alternative prior to a inverse Gamma distribution. In order
to fit the model, a real data set, which consist of the time up to first calving of polled Tabapua race,
was used. Finally, after the model was fitted, an influential analysis was made and excluding only
0.1% of observations (influential points), the reestimated model can fit the data better.

Keywords: hierarchical Bayesian model; influential analysis; log-logistic distribution; transmuted map

1. Introduction

The genetic prepotency of cows is an important issue since the development of livestock is directly
related to the growth of the food production. Brazilians institutes are concerned with the development
of a particular race, the Tabapua, which was the first humped cattle developed in the country. Due to
the economic results of this particular race, this study is twofold: present the TLL model and fit the
times up to the first calving of the cows pointing characteristics of this race.

Proposed by Granzotto and Louzada-Neto (2014), the TLL model presents important
characteristics of a good model: it is flexible, tractable, interpretable and simple. Following the
Shaw and Buckley (2007) idea, this new distribution incorporates a new third parameter λ that
introduces skewness and preserve the moments of the baseline distribution. Several studies can be
cited that proposed similar generalizations of survival models, see for example (Aryal and Tsokos 2009;
Aryal and Tsokos 2011).

Due to good characteristics of the TTL model along with its simplicity (the main functions are
analytically expressed) and the hazard properties (it has a larger range of choices for the shape of
the hazard function most commonly observed in the survival analysis field), this paper present an
application of the model in a Bayesian context.

In order to fit this new model, the subjective Bayesian analysis was used. For that, the half-Cauchy
prior distribution, cited by several authors such as (Polson and Scott 2012; Gelman 2006), as an
alternative prior to a inverse Gamma distribution, was used. Specially, Gelman (2006) made use of this
particular prior for variance parameters in hierarchical models which is our case.
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Furthermore, in order to provide an indication of bad model fitting or influential observations,
an influential analysis was made, see for example (Ortega et al. 2003; Fachini et al. 2008).

The paper is organized as follows. The hierarchical log-logistic model built by using the
half-Cauchy prior distribution is presented in Section 2. In Section 3 we presented an application by
using a real data set on a polled Tabapua race time up to first calving data. An influence diagnostic
was presented in Section 4 and the data set was re-analyzed refitting the model. Final remarks and
conclusions are presented in Section 5.

2. Hierarchical TLL Model

Proposed by Granzotto and Louzada-Neto (2014), the TLL is a generalization of the log-logistic
model containing the baseline model as a particular case (for log-logistic distribution see (Bennett 1983;
Chen et al. 2001)). Tractable, Interpretable and flexible enough, the new construction can be used to
analyze more complex dataset, introducing skew to a base distribution and preserving its moments.
Let X be a nonnegative random variable denoting the lifetime of an individual in some population
then, the probability density function (pdf) and the cumulative function of the TLL distribution are
respectively given by

f (x) =
eµβxβ−1 [(1 + eµxβ

)
− λ

(
eµxβ − 1

)](
1 + eµxβ

)3 . (1)

and

F (x) =
eµxβ(

1 + eµxβ
)2

(
1 + eµxβ + λ

)
. (2)

where β > 0, µ ∈ R and −1 ≤ λ ≤ 1. Since the distribution was proposed to model experiments in
reliability analysis, Figure 1 presents several examples of survival, probability density and hazard rate
functions for different values of the parameters.
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Figure 1. Transmuted model curves: (a) Survival, (b) hazard and (c) probability density function.

According to Chen and Ibrahim (2006), one of most common ways of combining several sources
of information is though hierarchical modeling. Thus, the authors show us the relationship between
the power prior and hierarchical models using as example the regression models.

Also, Gelman (2006) show us that several studies by using multilevel models are central to
modern Bayesian statistics for both conceptual and practical reasons. The authors suggest to use
the half-t family as a prior distribution for variance parameters such the half-Cauchy distribution,
that is a special conditionally-conjugate folded-noncentral-t family case of prior distributions for
parameters that represent the discrepancy. Even though several studies use the half-Cauchy prior for
scale parameter (see for example Polson and Scott 2012), Gelman (2006) used this prior not for scale
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but for variance parameters and illustrated serious problems with the inverse-Gamma prior which is
the most commonly used prior for variance component, see Daniels and Daniels (1998).

In this paper we proposed to use the hierarchical models in two levels, for that, suppose the
hierarchical model given as [X|µ, β, λ] ∼ f (x|µ, β, λ), µ|σ2 ∼ πµ(µ|σ2), β|θ ∼ πβ(β|θ), λ ∼ πλ(λ),
σ2 ∼ ψσ(σ2) and θ ∼ ψθ(θ). The posterior distribution can be constructed as following.

Proposition 1. Let us suppose that, in the first stage, we considered a class Γ of priors that led to following

Γ =
{

π(µ, β, λ|σ2, θ) : π(µ, β, λ|σ2, θ) = πµ(µ|σ2)πβ(β|θ)πλ(λ)
∣∣∣

πµ being N(τ, σ2), (τ, σ2) ∈ R×R+; πβ being HC(θ), θ ∈ R+;

πλ being U(a, b), (a, b) ∈ R×R, a < b} .

Also, the second stage (sometimes called a hyperprior), would consist of putting a prior distribution ψk(·)
on the hyperparameters σ2 and θ where

Ψ =
{

ψ(σ2, θ) : ψ(σ2, θ) = ψσ2(σ2)ψθ(θ) ψσ2 being Gamma(α, ζ),

(α, ζ) ∈ R+ ×R+; ψβ being Gamma(η, ϑ), (η, ϑ) ∈ R+ ×R+;

α, ζ, η, ϑ are known and does not depend on any other hyperparameter} .

Thus, the hyerarchical log-logistic posterior distribution is written as

π(µ, β, λ|x) ∝
eµβθ

σ

[
xβ+α+η−3

[
(1 + eµxβ)− λ(eµxβ − 1)

]
(1 + eµxβ)3

]
× exp

{
−
(

ζ + ϑ +
x

2σ2

)}
. (3)

Proof. The demonstration is direct.
Note that, the β parameter is supposed to be a half-Cauchy distribution which probability density

function given by

f (x) =
2θ

π (x2 + θ2)
, x > 0, θ > 0, (4)

where θ is a scale parameter which has a broad peak at zero and, in limit, θ → ∞ this becomes a
uniform prior density. However, large finite values for θ represent prior distributions which we call
“weakly informative”. For example, Gelman (2006) show us that, for θ = 25, the half-Cauchy is nearly
flat although it is not completely.

3. Application to Real Data

Founded in 70’s, the Brazilian Agricultural Research Corporation (Embrapa) is under the aegis of
the Brazilian Ministry of Agriculture, Livestock, and Food Supply. Since the foundation, they have
taken on the challenge to develop a genuinely Brazilian model of tropical livestock (and agriculture as
well), to keep increasing the production of food. As a result of the intense research work, the beef and
pork supply were quadrupled, helping the Brazilian food to one of the world’s largest food producers
and exporters.

One of the special research is related to the genetic prepotency of cows whereas
the economic results is directly related to beef cattle, see for example Pereira (2000).
Granzotto and Louzada-Neto (2014) study the Tabapua race time up to first calving of 17, 026 animals
observed from 1983 to 2007, held at Embrapa. Firstly, as the minimum observed calving was 721 days,
we subtract this amount of the observed times and the distribution of the first calving times can be
observed in the Figure 2b.
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Also, the TTT plot, presented in Figure 2a shows the possible unimodal hazard rate as it is concave,
convex and then concave again, see for example Barlow and Campo (1975).
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Figure 2. (a) TTT Plot and (b) boxplot of times.

After initial analysis, we are considering the hierarchical TLL model, as we specify in Section 2,
to fit the data. The posterior samples were generated by the Metropolis-Hastings technique. Three
chains of the dimension 100, 000 was considered for each parameter, discarding the first 10,000 iterations
(in order to eliminate the effect of the initial values), a lag size 10 was used to avoid the correlation
problems, resulting in a final sample size 10,000. The posterior summaries for µ, β, λ, σ2 and θ are
present in Table 1 and the 95% credible intervals by considering the priors above-mentioned can be
seem in Table 2.

Table 1. Posterior model summary of the hierarchical TLL model parameters.

Parameter Mean Standard Percentiles
Deviation 25% 50% 75%

µ −17.865 0.138 −17.958 −17.871 −17.775
β 3.043 0.022 3.029 3.044 3.058
λ −0.815 0.012 −0.823 −0.815 −0.807
σ2 900.100 822.500 333.800 640.400 1208.100
θ 198.800 195.100 60.171 139.800 273.400

Table 2. 95% Credible Interval of parameters estimated.

Parameter Equal-Tail Interval HPD Interval

µ −18.123 −17.576 −18.118 −17.571
β 2.997 3.085 2.997 3.084
λ −0.838 −0.791 −0.838 −0.790
σ2 96.474 3044.600 37.837 2516.300
θ 5.395 733.800 0.008 594.800

The convergence of the chain was verified by Gelman and Rubin’s convergence diagnostic
criterion, see for example (Gelman and Rubin 1992), which demonstrate that these criteria is satisfied
(Table 3). Also, the convergence can be seem in Figure 3a–j.
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Table 3. Gelman and Rubin’s criterion to verify the parameters convergence of the hierarchical
TLL distribution.

Parameter Estimate Upper Bound

µ 1.0085 1.0060
β 1.0082 1.0057
λ 1.0020 1.0017
σ2 1.0016 1.0019
θ 1.0004 1.0009

0 5000 10000 15000 20000

−
18

.4
−

18
.2

−
18

.0
−

17
.8

−
17

.6

µ

(a)

0 5000 10000 15000 20000

3.
00

3.
05

3.
10

β

(b)

0 5000 10000 15000 20000
−

0.
86

−
0.

84
−

0.
82

−
0.

80
−

0.
78

λ

(c)

0 5000 10000 15000 20000

0
20

00
40

00
60

00
80

00

σ2

(d)

0 5000 10000 15000 20000

0
20

0
40

0
60

0
80

0
10

00

θ

(e)

0 5000 10000 15000 20000

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Iteration 

µ

Estimate
Upper Bound

(f)

0 5000 10000 15000 20000

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Iteration 

β

Estimate
Upper Bound

(g)

0 5000 10000 15000 20000

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Iteration 

λ

Estimate
Upper Bound

(h)

0 5000 10000 15000 20000

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Iteration 

σ2

Estimate
Upper Bound

(i)

0 5000 10000 15000 20000

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Iteration 

θ

Estimate
Upper Bound

(j)

Figure 3. Traceplots and convergence plots, respectively, for: (a,f): µ; (b,g): β; (c,h): λ; (d,i): σ2 and; (e,j): θ.

Also, the marginal posterior densities for µ, β and λ, respectively, can be analyzed by the Figure 4a–e.
After estimate and analyze the convergence of the model, Figure 5a,b show us, respectively,

the hazard estimate curve, with the T̂max and the Tmax 95% confidence interval; the survival
curves estimated vs empirical and the histograma which are possible to see how well it fits a set
of observations.
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Figure 4. Marginal posteriors densities for: (a) µ, (b) β, (c) λ, (d) σ2 and (e) θ.
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Figure 5. (a) hazard estimate curve, with the T̂max and the Tmax 95% confidence interval, (b) survival
curves and (c) histogram.

Considering the hyerarchical TLL fitting, the T̂max is equals to 546.77 days (18.23 months)
and its 95% confidence interval is given by IC[Tmax, 95%] = (460.04; 652.86) days (see Figure 5a).
Furthermore, the median time up to first calving is equals to 452.48 days (or approximately
15.08 months), and the mean of time is 540.13 days (or approximately 18 months), with standard
deviation equals to 13.34 months.

4. Influence Analysis

In this section we present an analysis of global influence for the data set given, using the TLL
model in a bayesian context.

In few words, the influence analysis is a case-deletion, that we study the effect of withdraw of
the ith element sampled. Several measures of global influence analysis are presented in the literature.
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In this study we are considering two: the generalized Cook’s distance (CD) and the likelihood difference
(LD). The first one, CD, defined as the standard norm of ζi = (µi, βi, λi, σ2

i , θi) and ζ̂ = (µ̂, β̂, λ̂, σ̂2, θ̂),
and the LD are given, respectively, by

CDi(ζ) =
[

ζi − ζ̂
]T [
−L̈(ζ)

] [
ζi − ζ̂

]
, (5)

and
LDi(ζ) = 2

{
l(ζ̂)− l(ζi)

}
. (6)

According to Lee et al. (2006), L̈(ζ) can be approximated by the estimated covariance and variance
matrix. Some possible influence points are identified in the LD plot, Figure 6.

Figure 6. Likelihood distance.

Furthermore, the impact of the identified influential points should be measured. For that,

we consider the relative changes that can be measured as RCζ j =

∣∣∣∣ ζ̂ j−ζ̂ j(I)

ζ̂ j

∣∣∣∣× 100%, j = 1, . . . , p + 1,

where ζ̂ j(I) denotes the MLE of ζ j after the set I of observations has been removed.
Three measures of influential observations are considered: TRC is the total relative changes, MRC

the maximum relative changes and LD the likelihood displacement, see for example (Lee et al. 2006;
Granzotto and Louzada-Neto 2014). Table 4 presents the values when we withdrew from 0.01% to 5%
of the outstand identified points in Figure 6.

By considering the RC’s, 10 most influential points were withdrew and the model was re-fitted.
Again, by using the Metropolis-Hastings technique we generated a chain of 100, 000 observations,
burn in of 10, 000 and lag 10, resulting in a final sample size 10, 000. Tables 5 and 6 shows the posterior
summaries and the 95% credible intervals.

Clearly, the most affected estimate parameter was λ if we compare to the parameters estimated
by using the original dataset. Further, withdrawing 0.1% of sample, i.e., just 17 observations, we do
not lose much information and also improve the fitted model, see Figure 7a–c, that show us the
fitted model.
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Table 4. RC (in %) and the corresponding TRC, MRC and LD(I).

Removed Case Parameter RC TRC MRC LD(I)

µ 8.271

86.438 68.336 142Identify β 5.142

Points λ 68.336
σ2 2.877
θ 1.811

µ 0.844

3.598 1.358 217
β 0.818

0.1% λ 0.123
σ2 0.456
θ 1.358

µ 2.098

8.634 3.219 949
β 2.073

0.5% λ 0.098
σ2 1.144
θ 3.219

µ 3.257

9.782 3.257 1821
β 3.250

1% λ 0.368
σ2 1.700
θ 1.207

µ 5.843

17.064 5.855 3519
β 5.855

2% λ 0.393
σ2 2.911
θ 2.062

µ 8.096

22.086 8.162 5178
β 8.162

3% λ 1.460
σ2 3.111
θ 1.258

µ 10.458

28.558 10.547 6775
β 10.547

4% λ 0.785
σ2 6.566
θ 0.201

µ 12.463

34.232 12.627 8383
β 12.627

5% λ 2.160
σ2 6.277
θ 0.704
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Table 5. Posterior model summary of the hierarchical TLL model parameters.

Removed Case Parameter Mean Standard Deviation Percentiles

25% 50% 75%

µ −19.343 1.269 −20.522 −20.327 −17.975

Identify β 3.200 0.130 3.062 3.285 3.319

Points λ −0.258 0.519 −0.813 0.153 0.232
σ2 926.00 840.30 348.70 664.10 1224.00
θ 202.40 204.70 59.08 139.20 282.00

µ −18.016 0.129 −18.098 −18.015 −17.933
β 3.068 0.021 3.055 3.068 3.082

0.1% λ −0.814 0.012 −0.822 −0.814 −0.806
σ2 904.20 826.40 334.50 651.90 1207.20
θ 196.10 194.80 56.84 137.20 270.50

µ −18.240 0.135 −18.336 −18.238 −18.146
β 3.107 0.022 3.091 3.106 3.122

0.5% λ −0.816 0.012 −0.824 −0.816 −0.808
σ2 910.40 842.80 339.00 643.80 1203.30
θ 205.20 203.70 61.83 142.40 284.10

µ −18.447 0.131 −18.536 −18.441 −18.352
β 3.142 0.021 3.127 3.142 3.157

1% λ −0.818 0.012 −0.826 −0.818 −0.810
σ2 915.40 853.70 337.50 647.80 1221.70
θ 196.40 195.20 56.19 136.90 273.10

µ −18.909 0.144 −19.007 −18.907 −18.811
β 3.222 0.023 3.206 3.221 3.238

2% λ −0.818 0.013 −0.827 −0.818 −0.810
σ2 926.30 826.60 353.60 667.40 1235.00
θ 202.90 199.40 60.53 143.40 279.70

µ −19.312 0.142 −19.410 −19.304 −19.222
β 3.292 0.023 3.277 3.291 3.308

3% λ −0.827 0.012 −0.835 −0.827 −0.819
σ2 928.10 849.10 352.20 668.20 1215.20
θ 196.30 193.30 56.37 139.00 275.50

µ −19.734 0.154 −19.834 −19.737 −19.641
β 3.364 0.025 3.350 3.365 3.381

4% λ −0.821 0.013 −0.830 −0.821 −0.813
σ2 959.20 858.50 365.20 698.70 1267.90
θ 198.40 195.60 58.00 137.50 277.00

µ −20.092 0.175 −20.221 −20.093 −19.967
β 3.428 0.028 3.407 3.428 3.448

5% λ −0.832 0.013 −0.842 −0.833 −0.824
σ2 956.60 854.00 372.90 704.10 1259.10
θ 200.20 198.30 59.91 141.00 273.20
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Table 6. 95% Credible Interval of parameters estimated.

Removed Case Parameter Equal-Tail Interval HPD Interval

µ −20.709 −17.754 −20.713 −17.760

Identify β 3.026 3.351 3.027 3.352

Points λ −0.833 0.293 −0.837 0.284
σ2 104.300 3096.600 43.226 2603.000
θ 5.211 746.000 0.143 601.600

µ −18.2762 −17.7678 −18.2845 −17.7776
β 3.0289 3.11 3.0283 3.1093

0.1% λ −0.8365 −0.7896 −0.8372 −0.7906
σ2 94.0797 3151.6 40.6435 2574.8
θ 5.2045 728.6 0.1098 586.3

µ −18.4967 −17.9843 −18.4981 −17.9863
β 3.0654 3.1476 3.0664 3.1483

0.5% λ −0.8391 −0.7905 −0.84 −0.7918
σ2 98.81 3143.7 28.4125 2605.9
θ 5.1449 745.1 0.0156 613.7

µ −18.7121 −18.205 −18.7066 −18.2029
β 3.103 3.1855 3.1015 3.1829

1% λ −0.8407 −0.793 −0.8421 −0.7948
σ2 102.2 3172.8 34.7775 2578.2
θ 4.6184 727.6 0.0235 591.8

µ −19.1832 −18.6319 −19.184 −18.6338
β 3.1769 3.266 3.1779 3.2663

2% λ −0.8415 −0.7927 −0.8428 −0.7944
σ2 106.2 3111.3 39.5096 2606.1
θ 5.4845 729.9 0.0306 600.2

µ −19.5917 −19.0343 −19.5817 −19.0259
β 3.247 3.3364 3.2482 3.3373

3% λ −0.8504 −0.8013 −0.851 −0.8023
σ2 107.5 3224.1 30.9968 2597.3
θ 4.8582 710.8 0.0153 578.9
µ −20.0252 −19.4068 −20.0321 −19.4161
β 3.312 3.4113 3.3143 3.4124

4% λ −0.8458 −0.7955 −0.8459 −0.7958
σ2 111 3307.1 50.2358 2671.5
θ 5.2325 734.3 0.0631 604.8

µ −20.4078 −19.7676 −20.418 −19.7839
β 3.3762 3.4789 3.3778 3.4802

5% λ −0.8572 −0.8055 −0.8581 −0.8066
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Figure 7. (a) Hazard estimate curve, with the T̂max, (b) survival curves and (c) histogram.
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5. Concluding Remarks

In this paper study the model propose by Granzotto and Louzada-Neto (2014), the TLL
distribution, in a Bayesian context. The two levels hierarchical TLL model was formulated by using
the half-Cauchy as a prior to the parameter of discrepancy.

Techniques of influential analysis were used to identify and measure the influence of the
outstanding observed points. It is important to observe that the re-fitted model presents a reduction in
the estimated likelihood value plus a reduction in the estimated standard deviation, which shortens
the range of the confidence interval obtained for the most probable time up to first calving.

Finally, considering the final fitted model, the T̂max changes to 547.71 against 546.77 days
(18.26 months) and its 95% confidence interval is given by IC[Tmax, 95%] = (15.56; 21.47) months.
The median time up to first calving is equals to 452.41 days (or approximately 15.08 months), and
the mean of time is 538.54 days (or approximately 17.95 months), with standard deviation equals to
13.11 months.

Author Contributions: All authors contributed equally to this manuscript insomuch that Francisco Louzada
and Vera L. D. Tomazella worked in the theoretical part and Carlos A. dos Santos and Daniele C. T. Granzotto
provided the simulation and application.

Conflicts of Interest: The authors declare no conflict of interest.

References

Aryal, Gokarna R., and Chris P. Tsokos. 2009. On the transmuted extreme value distribution with applications.
Nonlinear Analysis 71: 1401–7.

Aryal, Gokarna R., and Chris P. Tsokos. 2011. Transmuted Weibull distribution: A generalization of the Weibull
probability distribution. European Journal of Pure and Applied Mathematics 4: 89–102.

Barlow, Richard E., and Rafael A. Campo. 1975. Total Time on Test Processes and Applications to Failure Data Analysis.
Berkeley: California University Berkeley Operations Research Center.

Bennett, Steve. 1983. Log-logistic regression models for survival data. Journal of the Royal Statistical Society Series C:
Applied Statistics 32: 165–71.

Chen, Ming-Hui, Joseph G. Ibrahim, and Debajyoti Sinha. 2001. Bayesian Survival Analysis. Springer Series
in Statistics. New York: Springer.

Chen, Ming-Hui, and Joseph G. Ibrahim. 2006. The relationship between the power prior and hierarchical models.
Bayesian Analysis 1: 551–74.

Daniels, Michael J. 1998. A prior for the variance in hierarchical models. The Canadian Journal of Statistics/La Revue
Canadienne de Statistique 27: 567–78.

Fachini, B. Juliana, Edwin M. M. Ortega, and Francisco Louzada. 2008. Influence diagnostics for polyhazard
models in the presence of covariates. Statistical Methods and Applications 17: 413–33.

Gelman, Andrew. 2006. Prior distributions for variance parameters in hierarchical models. Communications in
Statistics. Theory and Methods 1: 515–33.

Gelman, Andrew, and Donald B. Rubin. 1992. Inference from iterative simulation using multiple sequences.
Statistical Science 7: 457–511.

Granzotto, Daniele Cristina Tita, and Louzada-Neto Francisco. 2014. The Transmuted Log-Logistic distribution:
modeling, inference and an application to a polled tabapua race time up to first calving data. Communications
in Statistics—Theory and Methods 44: 3387–402.

Lee, Sik-Yum, Bin Lu, and Xin-Yuan Song. 2006. Assessing local influence for nonlinear structural equation
models with ignorable missing data. Computational Statistics & Data Analysis 50: 1356–77.

Ortega, Edwin M. M., Heleno Bolfarine, and Gilberto A. Paula. 2003. Influence diagnostics in generalized
log-gamma regression models. Computational Statistics and Data Analysis 42: 165–86.

Pereira, Jonas C. C. 2000. Contribuição genética do Zebu na pecuária bovina do Brasil. Informe Agropecuário
21: 30–38.



J. Risk Financial Manag. 2018, 11, 13 12 of 12

Polson, Nicholas G., and James G. Scott. 2012. On the half-Cauchy prior for a global scale parameter. Bayesian
Analysis 7: 887–902.

Shaw, William T., and Ian R. C. Buckley. 2007. The alchemy of probability distributions: Beyond Gram-Charlier
expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. arXiv. arXiv:0901.0434.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Hierarchical TLL Model
	Application to Real Data
	Influence Analysis
	Concluding Remarks

