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Abstract: The popular replication formula to price variance swaps assumes continuity of traded
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1. Introduction

Variance swaps contracts allow a buyer to receive the future realized variance of the price changes
until a specific maturity date against a fixed strike price, paid at maturity. Conventionally, these
price changes are daily log returns of a specific stock, equity index or exchange rate based on the
most commonly-used closing price (or exchange rate reset price). Variance swaps became particularly
popular after Demeterfi et al. showed that a single contract could be statically replicated by a portfolio
of vanilla options Demeterfi et al. (1999). These swaps allow hedge funds to speculate on future
realized volatility and banks to trade the spread between realized and implied volatility, as well as to
hedge their volatility exposure of other positions.

The very popular replication given by Demeterfi et al. by a discrete set of option prices
in Demeterfi et al. (1999) is only one of the possible approximations of the continuous replication
formula from Carr and Madan Carr and Madan (2001). Leung and Lorig investigate static hedging
more generally by a discrete set of forwards, bonds and options prices in Leung and Lorig (2016) and
describe a method to find the optimal discrete quadratic hedge under a cost constraint. This paper
stays in the Carr and Madan framework, but analyzes other possible simple discrete replications for
the variance swap that can be better in terms of direct hedge than the solution from Leung and Lorig,
which is optimal only in terms of quadratic hedging error. This paper then explains the problem of
truncation and explores the effects of tail events, stochastic volatility and jumps on variance swaps
and volatility swaps. It is found that the latter behave significantly differently.

In Fukasawa et al. (2011), Fukasawa et al. describe a practical continuous replication for the
variance swap based on market quotes. While their technique is elegant and their interpolation
methodology is sound, they do not explore the issue of discrete replication or truncation. Their idea
is to propose an alternative standard methodology to the CBOE VIXindex calculation. In practice,
their method produces prices very close to the one obtained by the direct implementation of the
Carr–Madan continuous replication formula as described in this paper.

Jiang and Tian explain the discretization and truncation errors in the calculation of the VIX
index with the CBOE methodology in Jiang and Tian (2007). The VIX index corresponds to a specific
discretization of the continuous replication of a variance swap of maturity in 30 days on the SPX500
index. Although their paper properly sheds light on discretization and truncation errors, it somewhat
contradicts their earlier similar paper Jiang and Tian (2005). In the more recent paper, they explain
that the VIX index is not so close to the theoretical continuous variance, while in the older paper, they
explain that the variance is properly captured as the market strikes are on one side dense enough to
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make the discretization effect negligible and on the other side available for a large enough range so that
truncation is not an issue. The present paper is more concerned about the valuation of standard variance
swaps, whose typical maturity is one year. Truncation and discretization play a more important role,
especially on assets that are less liquid than the SPX500 index. It also focuses on discrete hedging, with
a close look at Demeterfi et al.’s methodology, often considered a standard in the industry. Finally, it
analyzes the behavior of the volatility swap towards truncation and jumps comparatively to the
variance swap. It neglects however any bias related to the fact that the variance is typically monitored
daily instead of continuously in the variance swap contract, analyzed in Broadie and Jain (2008).

In the case of the variance swap, Demeferti et al. show that the effect of jumps on the replication
of the variance swap is approximately cubic in the jump size. Carr and Wu give a more general
expression of the error incurred by ignoring jumps in a replication in Carr and Wu (2008) and suggest
that it can be ignored in the case of the 30-day variance. In this paper, we show that the effect is not
necessarily so small on one-year variance swaps and look comparatively at the effect of jumps on the
volatility swap replication.

2. Variance Swap

The payoff V of a variance swap with volatility strike K and observations at dates ti at maturity
T is:

V(K, 0) = u2 ∑
0<ti≤T

(
ln

Sti

Sti−1

)2
− K2 (1)

where u is a scaling factor. Typically, for an annualization of 252, common in practice, we have
u = 100

√
252/N.

We assume, unless specifically mentioned, no cash dividend on the asset S. Proportional dividends
are however acceptable if the log-returns are adjusted by the dividend value, which is usually the case
for single name equities. A continuous dividend yield is also acceptable.

Let F(t, T) be the forward price of the asset S at maturity T. With an interest rate r and dividend

yield q, F(t, T) = S(t)e
∫ T

t r(τ)−q(τ)dτ . Assuming the absence of arbitrage opportunities and no jumps,
the process F is a martingale and follows:

dF
F

= σ(t, . . . )dW (2)

where the volatility σ is an arbitrary stochastic process. We approximate the discrete variance by the
continuous variance to obtain:

V(0, T) ≈ u2E
[

1
T

∫ T

0
σ2(t, . . . )dt

]
= u2E

[
2
T

(∫ T

0

dF
F
− ln

F(T, T)
F(0, T)

)]
(3)

= u2E
[
− 2

T
ln

F(T, T)
F(0, T)

]
.

An application of the replication formula from Carr and Madan (2001) leads to:

V(K, T) = u2DF(T)
(∫ F(0,T)

0

2
K2 P(K, T)dK +

∫ +∞

F(0,T)

2
K2 C(K, T)dK

)
− DF(T)K2 (4)

where C(K, T) and P(K, T) are respectively undiscounted call and put option prices of strike K and
maturity T, and DF(T) is the discount factor to time T taken from the relevant discount curve.
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3. Volatility Swap

The payoff of a volatility swap of strike K at maturity T is:

Vvol(K, 0) = u

√√√√ ∑
0<ti≤T

(
ln

Sti

Sti−1

)2
− K . (5)

While it is very similar, the replication is not as simple, and only closed-form approximations are
available, such as the one from Carr and Lee (2008). Their replication of the volatility swap initial
value leads to:

Vvol(K, T) ≈ uDF(T)
(
−
∫ F(0,T)

0

√
π

8K3F
[I1(k)− I0(k)] P(K, T)dK

+
∫ +∞

F(0,T)

√
π

8K3F
[I1(k)− I0(k)]C(K, T)dK (6)

+

√
π

2
C(F, T) + P(F, T)

F(0, T)

)
− DF(T)K

where k = ln K
F(0,T) and I0, I1 are order-zero and order-one modified Bessel functions of the first kind.

The last term, which corresponds to a specific quantity of at-the-money straddle options, is the
dominant term. The Carr–Lee replication payoff for the volatility swap looks like a straddle with
modified wings.

4. Continuous Replication in Practice

In reality, the market is composed of a discrete set of option prices for a given maturity.
In order to find the put and call prices for any strike, a volatility surface interpolation method
must be used. Some typical choices are a cubic spline, typically in variance vs. log-moneyness
combined with a linear extrapolation as in Jiang and Tian (2007), a parametric model such as
SVI Gatheral (2004) or some arbitrage-free method such as Andreasen and Huge one-step interpolation
Andreasen and Huge (2010). The integration is truncated before zero at Kmin and before +∞ at Kmax.
The present value of the contract can then be computed by an adaptive Gauss–Lobatto quadrature
Espelid (2003); Gander and Gautschi (2000). Initial values for Kmin and Kmax are computed assuming
that the asset behaves like a geometrical Brownian motion process by:

Kmin = F(0, T)eΦ−1(ε)σ
√

T , (7)

Kmax = F(0, T)e−Φ−1(ε)σ
√

T (8)

where Φ−1 is the inverse cumulative normal function, ε is a tolerance (for example, ε = 10−6) and σ

the at-the-money implied volatility. We then refine Kmax and Kmin by integrating step by step between
(Kmin

n+1 , Kmin
n ) and (nKmax, (n + 1)Kmax) until those integrals have a lower value than the tolerance.

The implementation benefits from a log-transformation y = ln K
F(0,T) . The replication formula

then simplifies to:

V(K, T) =
u2B(0, T)

2T

[∫ 0

ymin

−e−yΦ (−d1(y)) + Φ (−d2(y)) dy

+
∫ ymax

0
e−yΦ (d1(y))−Φ (d2(y)) dy

]
− B(0, T)K2 (9)

with d1(y) = 1
2 σ(y, T)

√
T − y

σ(y,T)
√

T
, d2(y) = d1(y)− σ(y, T)

√
T.
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The above methodology is similar to what is proposed by Jiang and Tian (2007), but we leave
the choice of interpolation open and advocate an adaptive quadrature instead of a trapezoidal
discretization with no clear number of steps on a fixed range.

Fukasawa et al. propose an alternative approach in Fukasawa et al. (2011). While their technique
has several merits with regards to the consistency of their interpolation methodology, it leads to
prices very close to the one obtained by the more direct implementation of the Carr–Madan formula
described above.

5. Discrete Replication

5.1. Derman’s Method

The idea of Demeterfi et al. is to approximate the ln payoff by a piecewise-linear function,
as piecewise-linear functions can be exactly replicated by a stream of call and put options
Demeterfi et al. (1999). The replication formula of Carr and Madan (2001) is not directly used.

We consider a set of increasing call option strikes Kc
i and a set of decreasing put option strikes Kp

i
for i = 0, . . . , n with Kc

0 = Kp
0 = K0.

Because the forward F(0, T) might not fall exactly on a strike, we need to slightly rewrite
Equation (3).

ln
F(T, T)
F(0, T)

= ln
F(T, T)

K0
+ ln

K0

F(0, T)
. (10)

Instead of replicating directly ln F(T,T)
K0

, Demeterfi et al. work directly with the payoff:

f (x) =
x

K0
− 1− ln(

x
K0

) . (11)

Note that the linear term can be omitted, as it can also directly be replicated by shares, but in the
end, this would lead to the exact same price, by linearity.

Figure 1a shows the payoff and the piecewise-linear approximation.
The slope of each segment leads to call and put option weights wc(Kc

i ), wp(Kp
i ):

wc(K0) =
f (Kc

1)− f (K0)

Kc
1 − K0

(12)

wc(Kc
i ) =

f (Kc
i+1)− f (Kc

i )

Kc
i+1 − Kc

i
−

i−1

∑
j=0

wc(Kc
i ) (13)

wp(K0) = −
f (Kp

1 )− f (K0)

Kp
1 − K0

(14)

wp(Kp
i ) = −

f (Kp
i+1)− f (Kp

i )

Kp
i+1 − Kp

i
−

i−1

∑
j=0

wp(Kc
i ) (15)

and the final discrete replication formula is:

V(0, T) = u2 2
T

(
1− F(0, T)

K0
+ ln

F(0, T)
K0

)
+ u2 2

T
DF(T)

(
n

∑
i=0

wc(Kc
i )C(K

c
i , T) +

n

∑
i=0

wp(Kp
i )P(Kp

i , T)

)
(16)
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Figure 1. Different replications using Strikes 60–140 by an increment of 10 for a forward F(0, T) = 100.
(a) Derman’s method: payoff from Equation (11) vs. its piecewise linear approximation; (b) trapezoidal
method: integrand of Equation (4) vs. its trapezoidal discretization.

5.2. Trapezoidal Method

Instead of approximating the payoff by a piecewise-linear function, we can directly integrate
Equation (4) by the Trapezoidal method as is done in Jiang and Tian (2007). For simplicity, we will
assume here that the strikes are equidistributed: Ki+1 − Ki = h. The method can easily be generalized.

V(0, T) = u2 2
T

(
ln

F(0, T)
K0

)
+ u2 2h

T
DF(T)

(
C(K0, T)

2K2
0

+
n−1

∑
i=1

C(Kc
i , T)

(Kc
i )

2 +
C(Kc

n, T)
2(Kc

n)
2

)
(17)

+ u2 2h
T

DF(T)

(
P(K0, T)

2K2
0

+
n−1

∑
i=1

P(Kc
i , T)

(Kp
i )

2
+

P(Kp
n , T)

2(Kp
n)2

)

The call and put replication weights are thus:

wc
i = u2 2h

T(Kc
i )

2 for i = 1, ..., n− 1 and wc
0 = u2 h

TK2
0

, wc
n = u2 h

T(Kc
n)

2 , (18)

wp
i = u2 2h

T(Kp
i )

2
for i = 1, ..., n− 1 and wp

0 = u2 h
TK2

0
, wp

n = u2 h
T(Kp

n)2
. (19)

While both approximations involve a piecewise-linear approximation, a different function is
approximated in each case. Figure 1b shows the function being approximated with the trapezoidal
method, while Figure 1a shows the function being approximated with Derman’s method.
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5.3. Simpson

We can go further and use a more precise quadrature, for example Simpson’s quadrature, if we
assume that the strikes are equidistributed with width h and n is even.

V(0, T) = u2 2
T

(
ln

F(0, T)
K0

)
+ u2 2h

3T
DF(T)

(
n

∑
i=0

wi
C(Kc

i , T)
(Kc

i )
2 +

n

∑
i=0

wi
P(Kc

i , T)
(Kp

i )
2

)
(20)

with:
w0 = wn = 1 and w2i+1 = 4, w2i = 2 . (21)

Similarly, we could also change Derman’s method by shifting the segments to the midpoints and
obtain a more accurate quadrature.

A slightly more sophisticated method than applying the Simpson quadrature on the replication
formula is to represent the integrand by a Hermite cubic spline (where the derivatives at each node are
estimated by the parabola on three points). Then, the integral can be computed in closed form as it is
just the integral of a cubic polynomial.

5.4. Leung and Lorig Optimal Quadratic Hedge

The optimal quadratic hedge for the log-contract using the discrete sets of put and call options of
strikes Kp

k and Kc
k is the solution of:

(wc
k, wp

k )k=0,...,n = min
wc ,wp∈Rn+1

E
[

Vlog(T)−
n

∑
k=0

wc
kC(Kk, T) + wp

k P(Kk, T)

]2
 (22)

where Vlog(t) = ln F(t,T)
F(0,T) is the value of the log contract at time T.

Leun and Lorig show that it is also the solution of the following linear problem
Leung and Lorig (2016):

ψW = γ (23)

where W is the vector composed of
(
(wc

k)k=0,...,n, (wp
k )k=0,...,n

)
, ψ is the matrix with elements ψi,j and

γ the vector with elements γi defined by:

ψi,j = E
[
Zi(T)Zj(T)

]
, (24)

γi = E
[

Zi(T)Vlog(T)
]

(25)

with Zi(T) = Ci(Ki, T) for i = 0, . . . , n, and Zi(T) = Pi−n−1(Ki−n−1, T) for i = n + 1, . . . , 2n + 2.
In particular, it makes use of the theoretical value of the log-contract. The expectations in Equations (24)
and (25) can be computed by integrating over the probability density for the model considered.

6. Numerical Examples

6.1. Replication Comparison in an Ideal Black–Scholes World

In order to compare the various discrete replications, we consider a simple use case with strikes
ranging from 60–140 by an increment of 10; the asset spot is at 100; the maturity is of one year;
and there is no interest rate and no dividend rate. In particular, the at-the-money option is included in
the replication. Including interest rates or shifting the spot would not change the conclusion.

We first consider the case of constant low volatility of 10%, so that our strike range captures well
the distribution of the asset. We then compute the Derman weights according to Equations (12)–(15),
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the trapezoidal weights according to Equations (18) and (19) and the Simpson weights according to
Equations (20) and (21). The replication weights given by the trapezoidal method are close to the
weights from Derman’s method, but the weights from Simpson’s method are very different (Table 1).

Table 1. Variance swap replication weights. LL stands for the optimal quadratic hedging solution of
Leung and Lorig.

Option Strike Derman Trapezoidal Simpson LL

PUT 60 0 27.78 18.52 49.40
PUT 70 41.24 40.82 54.42 44.34
PUT 80 31.50 31.25 20.83 29.13
PUT 90 24.85 24.69 32.92 27.73
PUT 100 10.72 10 6.67 208.10

CALL 100 9.38 10 6.67 −192.67
CALL 110 16.60 16.53 22.04 19.82
CALL 120 13.94 13.89 9.26 12.37
CALL 130 11.87 11.83 15.78 12.63
CALL 140 0 5.10 3.40 11.22

Yet another choice of weights is given by Leung and Lorig’s optimal quadratic hedging solution,
using the five put and five call options as discrete hedges Leung and Lorig (2016).

With each discrete replication, we compute the one-year variance swap price in Table 2. We also
add the price obtained by continuous replication as described in Section 4, using a cubic spline
interpolation. In the case of the flat market volatility considered here, the interpolation choice does not
really matter. Simpson’s method results in a price much closer to the continuous integration. If we
increased the number of strikes, we would see Simpson’s method converging faster to the continuous
replication price than the Derman or trapezoidal methods. We see that with just 10 options, it is possible
to replicate a flat surface quite well in theory, if we go beyond a simple trapezoidal approximation.

Table 2. Prices in volatility obtained by static replication of a variance swap under low volatility (10%).

Method Price in Vol Error

Continuous 10.0000 0.0000
Derman 10.8264 0.8264

Trapezoidal 10.7986 0.7986
Simpson 10.0055 0.0055

LL 10.1691 0.1691

Leung and Lorig’s (LL) optimal quadratic hedge results in a worse static hedge. If we move
in time, or equivalently, if the volatility changes, the replication with the initial LL weights stays
further away from the true market price than the replication with the initial Simpson weights.
Conversely, the Simpson replication has a much larger quadratic hedging error than the LL replication.

We then compute the discrete weights, variance swap prices under a higher volatility of 40%
in Table 3. We add the variance swap price obtained by continuous replication with an adaptive
integration range, as well as with the range truncated to the interval spanned by discrete option strikes,
[60, 140]. The range of strikes becomes too narrow to replicate the log payoff properly: much of the
distribution is cut-off as mentioned in (Demeterfi et al. 1999, p. 27). As a result, none of the discrete
replications give a correct price on a simple flat surface. Derman’s method provides an intuitive
explanation: a linear approximation is used in the wings, while the payoff f from Equation (11) is very
far from being linear. This leads to a potentially large error. Effectively, with the discrete replication,
we are pricing a corridor variance swap with bounds at the first and last strike instead of a true
variance swap Carr and Lewis (2004).
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Table 3. Prices in volatility obtained by static replication of a variance swap under high volatility (40%).

Method Price Error

Continuous 40.00 0.00
Truncated 37.18 2.82
Derman 36.51 3.49

Trapezoidal 37.32 2.68
Simpson 37.18 2.82

LL 40.01 0.01

The replication from Leung and Lorig is not impacted by the truncation as its weights are
calculated using the theoretical continuous variance swap price. Instead of increasing the volatility,
we could also have increased the time to maturity and would have obtained the same effect.

With the approximate replication method of Carr and Lee (2007), truncating the domain of
integration has a much lower effect on a newly-issued volatility swap, as its equivalent payoff is much
more linear in the wings. As an illustration, we price a volatility swap by replication, truncating the
integration between (40, 160) (see Table 4).

Table 4. Volatility swap replication under high volatility (40%).

Method Price Error

Continuous 40.00 0.00
Truncated 40.23 0.23

6.2. Replication Comparison on the SPX500

We now consider a variance swap expiring on 18 January 2019. We start with the market SPX500
option quotes as of 23 January 2018 given in Appendix A (this corresponds to a maturity T = 0.986301
in the ACT/365-day count convention; the corresponding USD LIBOR rate is r = 2.23%). We exclude
options with zero bid or ask price as they are not liquid. We then calibrate the Heston stochastic
volatility model Heston (1993) against the mid price of those options; this results in the parameters of
Table 5. Instead of directly replicating the actual market, we compute the vanilla option prices under
the calibrated Heston model for each market strike and use those as the basis of the various variance
swap replications. This allows us to compare the replication price with an exact reference price. In the
real world, there is no need to go through the Heston model and the variance swap replication is
directly computed out of the market option prices.

Table 5. Heston parameters calibrated against SPX500 options.

v0 κ θ σ ρ

0.001006 2.4056 0.04264 0.8121 −0.7588

Under the Heston model, the forward price F follows:

dF
F

=
√

vdWF , (26)

dv = κ(θ − v)dt + σ
√

vdWv (27)
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where WF and Wv are Brownian motions correlated with correlation ρ, and the continuous variance
swap price of maturity T and strike K has a simple expression:

V(K, T) = DF(T)u2
[

θ +
v0 − θ

κT

(
1− e−κT

)]
− DF(T)K2 . (28)

We consider two different interpolations for the continuous replication: a spline in variance against
log-moneyness and Andreasen and Huge arbitrage-free interpolation Andreasen and Huge (2010).
The extrapolation choice does not matter here: even if the integration is truncated to the interval
spanned by the market option strikes, that is [1275, 3600]. This interval is large enough for the tails to
be accurately represented. Note that this is not necessarily the case for more illiquid stocks.

The discretization has a direct impact on the error (Table 6), even though the range of strikes is
relatively dense (78 distinct strikes). With a Hermite-spline discretization of the Carr–Madan integrand
represented by Equation (4), the price error is 0.20% compared to a price error under 0.03% for the
continuous approach. The choice of market volatility interpolation does not however matter too much
in the continuous replication.

Table 6. Variance swap prices based on SPX500 options under the Heston model parameters
from Table 5.

Method Price Price in Vol Error in Vol

Heston 261.44 16.17 0.00
Continuous/Spline 260.51 16.14 0.03
Continuous/Andreasen–Huge 261.03 16.16 0.01
Discrete Cubic Hermite 254.95 15.97 0.20
Discrete Trapezoidal 246.52 15.70 0.47

6.3. Jumps Effect

Beside the problem of replicating the log contract with vanilla options in practice, another
important issue of the variance swap is its difference compared to the log contract assuming jumps
(cubic returns cannot be ignored anymore). This is a popular explanation for the single name variance
swap market collapse in 2008, as jumps are more pronounced in single name stocks. In the same
period, the volatility swap market has increased.

We will see why with the example of the Bates model Bates (1996) as it includes jumps in the asset
along with stochastic volatility. In the Bates model, the asset follows:

dF
F

= −λk̄dt +
√

vdWF + dZ (29)

dv = κ(θ − v)dt + σ
√

vdWv (30)

where WF and Wv are Brownian motions correlated with correlation ρ, λ is the annual frequency of
jumps, Z is a Poisson process with intensity λ and k is the random percentage jump conditional on a jump
occurring with the log-normal distribution of jumps sizes k̄ such that ln(1 + k) ∼ N(ln(1 + k̄)− 1

2 δ2, δ2).
k̄ thus corresponds to the jump mean, and a higher value will translate to larger jumps, while δ is the
jump volatility. The additional drift term λk̄ in Equation (29) comes from the no-arbitrage condition.

Sometimes, the Bates model jump parameters are given according the Merton jump model
specification, that is using the parameter α = ln(1 + k̄)− 1

2 δ2. Bates parameters lead to a simpler
characteristic function, but for the purpose of variance swap and volatility swaps, Merton’s parameters
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lead to simpler pricing formulae. Under the Bates model, the strike that makes the value of
continuously-monitored variance swap zero is Broadie and Jain (2008):

K2 = θ +
v0 − θ

κT

(
1− e−κT

)
+ λ

(
α2 + δ2

)
. (31)

To compute the price of a continuously-monitored volatility swap, Broadie and Jain (2008) use
the identity:

√
x =

1
2
√

π

∫ ∞

0

1− e−sx

s
3
2

ds (32)

to obtain:

K =
1

2
√

π

∫ ∞

0

1− eA(s)−B(s)v0+λTC(s)

s
3
2

ds (33)

with:

A(s) =
2κθ

σ2 ln
2g(s)e

1
2 (g(s)+κ)T

(g(s) + κ)
(
eg(s)T − 1

)
+ 2g(s)

, (34)

B(s) =
2s
(

eg(s)T − 1
)

T(g(s) + κ)
(
eg(s)T − 1

)
+ 2g(s)T

, (35)

C(s) =
√

Te−
sα2

T+2sδ2

√
T + 2sδ2

− 1 , (36)

g(s) =

√
κ2 +

2sσ2

T
. (37)

Note that in absence of jumps, that is with λ = 0, Equation (3) also corresponds to the
price of a zero coupon under the Cox–Ingersoll–Ross (CIR) model Gatheral (2006). Written as is,
Equation (3) does not behave well numerically since the integrand explodes around zero. The variable
transformation y = s2 allows restoring a good behavior around zero; we then have:

K =
1√
π

∫ ∞

0

1− eA(y2)−B(y2)v0+λTC(y2)

y2 dy (38)

and:

lim
y→0

1− eA(y2)−B(y2)v0+λTC(y2)

s2 = θ + λ
(

α2 + δ2
)
+

θ − v0

κT

(
e−κT − 1

)
, (39)

1− eA(y2)−B(y2)v0+λTC(y2)

s2 ∼ 1
y2 as y→ ∞ . (40)

We consider three sets of Bates parameters: the first one is a somewhat extreme example
where jumps are very pronounced, and their effect easily observable; the second one is the result
of a calibration of the Eurostoxx 50 index on October 2003 by Schoutens et al. (2003); and the
third one is the result of the calibration against S&P500 option prices on 2 November 1993 by
Broadie and Jain (2008) (Table 7). We also assume zero interest and dividend rates. From those
parameters, we compute a dense set of vanilla option prices of a maturity of one year, which will
be used for replication-based or local volatility-based pricing. The local volatility model offers an
alternative to the model-independent Carr–Lee replication, which will also take into account the
volatility smile and not the jumps and is commonly used to price exotics Windcliff et al. (2006).
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Table 7. Bates parameters.

Name v0 κ θ σ ρ λ k̄ δ

Extreme 0.04 1.15 0.04 0.39 −0.64 0.6 −0.12 0.15
Schoutens et al. 0.0576 0.4963 0.2286 0.0650 −0.99 0.1382 0.1791 0.1346
Broadie and Jain 0.00988 3.99 0.014 0.27 −0.79 0.11 −0.12 0.15

In order to compare the value of the variance (respectively volatility) swap under the Bates
model with the value of the same variance or volatility swap under the Dupire local volatility model
Dupire (1994), we rely on a Monte Carlo simulation of each model with daily time steps, as there is no
closed-form formula or simple quadrature technique to compute the price of a volatility swap under
the local volatility model. As an indication, we also give the prices of the continuously-monitored
variance and volatility swaps using the closed-form formulae for the Bates model, as well as the
continuous replication formula for the variance swap and the Carr–Lee correlation-immune replication
for the volatility swap Carr and Lee (2008). Table 8 shows that the local volatility Monte Carlo prices
are very close to the continuous replication prices, and the Bates Monte Carlo prices are very close to
the closed-form formulae. The effect of the discreteness of the observations is small, and our Monte
Carlo simulation is accurate.

Table 8. Evolution of variance swap prices under extreme Bates parameters, varying the jump parameters.

Parameters λ = 0 λ = 0.6

k̄ = −0.12 k̄ = −0.24 k̄ = −0.48

Bates 400.0 651.1 1024.7 3189.8
Replication 400.0 629.0 948.3 2612.9
Relative difference 0.0% −3.39% −7.46% −18.09%

Monte Carlo

Bates 399.0 655.3 1033.0 3205
Local volatility 398.3 626.1 943.3 2577
Relative difference −0.18% −4.46% −8.68% −19.59%

In theory, when there are no jumps (λ = 0), the variance swap prices should be the same
under local volatility and Bates models as the variance swap payoff can be perfectly replicated by
a continuous stream of vanilla options. We can see that when the jump mean k̄ increases, the difference
in the variance swap prices computed with Bates and local volatility increases by the same scale:
the variance swap contract is indeed very dependent on jumps (Table 8).

Under the extreme parameter set, the volatility swap is slightly less influenced by jumps, and more
importantly, the effect of jumps is opposite: assuming jumps in the model decrease the price of
a volatility swap (Table 9). Note that without jump, the price under local volatility and the price
under Bates are different, as contrary to the variance swap, the volatility swap cannot be exactly
statically replicated.
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Table 9. Evolution of volatility swap prices under extreme Bates parameters, varying the jump parameters.

Parameters λ = 0 λ = 0.6

k̄ = −0.12 k̄ = −0.24 k̄ = −0.48

Bates 18.74 23.35 28.22 45.63
Carr–Lee 18.56 24.16 30.20 51.61
Relative difference −0.8% 3.64% 7.26% 13.30%

Monte Carlo

Bates 18.69 23.37 28.28 45.7
Local volatility 19.38 24.48 29.94 48.7
Relative difference 3.69% 4.75% 5.87% 6.56%

The jump mean is of opposite sign in the parameter set from Schoutens et al. (2003), and now, the
continuous replication overestimates the price of the variance swap (Figure 2a).
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Figure 2. Effect of jumps on the price of variance and volatility swaps using the Bates parameters from
Schoutens et al. (2003). (a) Variance swap prices; (b) volatility swap prices.

The price of the volatility swap under continuous replication increases as much as the price of
the variance swap, while at the same time, the theoretical (Bates) volatility swap price increases less.
With the Schoutens et al. parameters, the volatility swap replication is more sensitive to jumps than
the variance swap, even though the actual theoretical volatility swap price is less sensitive to jumps.

With the parameters from Broadie and Jain (2008), the jump mean is negative, and as expected,
the variance swap replication underestimates the theoretical variance swap value, while the volatility
swap replication will overestimate the theoretical volatility swap value when the size of the jump
increases (Figure 3b).

The replication price can be seen as the price when there is no jump, using the implied volatilities
(or equivalently, option prices) from the Bates model with jumps. This allows easily comparing on
one side the effect of the jump mean on the theoretical volatility and variance swaps prices and on the
other side the effect of the jump assumption on the volatility and variance swap prices. While overall,
the volatility swap is less sensitive to the jump mean than the variance swap, it is more sensitive to the
assumption of jumps, as the spread between the replication and the theoretical value becomes larger
when the jump size increases in mean absolute value. In fact, a rough approximation on Ito’s lemma
for semi-martingales suggests that the volatility swap replication error is quadratic with the jump size,
as contrary to the variance swap case, the quadratic term does not cancel out (see Carr and Wu (2008)).
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Contrary to what is suggested in Carr and Wu (2008), we find that the jumps have a sizeable
effect on the prices of both variance and volatility swaps under the Bates model calibrated to different
markets, possibly because they explore the 30-day volatility, while we look at the one-year effect.
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Figure 3. Effect of jumps on the price of variance and volatility swaps using the Bates parameters from
Broadie and Jain (2008). (a) Variance swap prices; (b) volatility swap prices.

7. Conclusions

A discrete replication can be useful to obtain an estimate of how much a hedge of a variance
swap would cost. However, we have seen that there exists different possible strategies, and those can
lead to relatively different hedging prices. More importantly, typical discrete replications significantly
underestimate tail events. This leads to an artificially low variance swap price and invalidates the
simple discrete hedging strategy effectiveness in practice. Finally, we have shown through the example
of the Bates model that this can be compounded with the effect of jumps: discrete or continuous
replication assumes no jumps and will again underestimate the price in cases of jumps with negative
mean size. In contrast, the volatility swap is less sensitive to tail events. Its replication overvalues the
price regardless of the jump mean size sign, while the variance swap replication overvalues the price
with jumps of positive mean size and undervalues with jumps of negative mean size.
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Appendix A. SPX500 Option Chain

Table A1. SPX500 options expiring on 18 January 2019 as of 23 January 2018. The SPX500 spot is
2839.19, and the forward is estimated at 2858.41 from the put-call parity.

Call Strike Put

Bid Ask Bid Ask

1542.7 1556.9 1275 0.05 3.2
1518.4 1532.6 1300 0.3 3.4
1494.2 1508.3 1325 0.4 3.5
1469.9 1484 1350 0.55 3.7
1445.7 1459.7 1375 0.75 3.9
1421.5 1435.5 1400 0.95 4.1
1397.3 1411.2 1425 1.2 4.3
1373.1 1387 1450 1.45 4.6

1349 1362.8 1475 1.7 4.8
1324.9 1338.6 1500 2 5.1
1300.8 1314.4 1525 2.3 5.4
1276.7 1290.3 1550 2.6 5.8
1252.6 1266.2 1575 2.95 5.7
1228.6 1242.1 1600 3.3 6.5
1204.6 1218 1625 3.7 6.9
1180.6 1194 1650 4.2 7.3
1156.6 1170 1675 4.6 7.8
1132.7 1146 1700 5.1 8.3
1108.8 1122.1 1725 5.6 8.8

1085 1098.2 1750 6.2 9.4
1061.2 1074.3 1775 6.8 10
1037.4 1050.5 1800 7.5 10.7
1013.7 1026.8 1825 8.2 11.3

990.1 1003 1850 8.9 12.1
966.8 979.7 1875 9.7 12.9
942.9 955.7 1900 10.6 13.8
919.4 932.1 1925 11.5 14.6
895.9 908.6 1950 12.4 15.6
872.5 885.2 1975 13.5 16.6
849.6 862.1 2000 14.5 17.7

826 838.5 2025 15.7 18.9
802.8 815.2 2050 16.9 20.2
779.7 792 2075 18.1 21.5
757.1 769.3 2100 19.5 22.9
733.8 746 2125 20.9 24.5

711 723.1 2150 22.5 26.2
688.3 700.3 2175 24.1 27.8
665.6 677.6 2200 25.9 29.7
643.1 655 2225 27.7 31.6

Call Strike Put

Bid Ask Bid Ask

620.8 632.5 2250 29.7 33.7
598.5 610.2 2275 31.8 35.9
576.4 588 2300 34 38.2
554.5 565.9 2325 36.4 40.7
532.7 544 2350 38.9 43.3

511 522.2 2375 41.6 46.1
489.6 500.6 2400 44.4 49
468.2 479.2 2425 47.4 52.2
447.2 458 2450 50.7 55.5
426.2 436.9 2475 54.1 59
405.6 416.1 2500 57.7 62.8
385.1 395.5 2525 61.5 66.7
364.9 375.2 2550 65.7 71
344.9 355 2575 70 75.5
325.2 335.1 2600 74.6 80.2
305.8 315.6 2625 79.5 85.2
286.8 296.3 2650 84.8 90.6

268 277.4 2675 90.4 96.3
249.7 258.9 2700 96.3 102.4
231.8 240.8 2725 102.6 108.8
214.3 223.1 2750 109.4 115.8
197.2 205.9 2775 117.4 123.2
180.8 189.2 2800 124.4 131.1
164.8 173 2825 132.7 139.6
149.4 157.4 2850 141.6 148.7
134.7 142.4 2875 151 158.4
120.7 128.2 2900 161.2 168.8
107.3 114.7 2925 172.1 180

95.2 102 2950 183.8 191.9
83.1 90 2975 196.3 204.7

74 79 3000 209.7 218.3
53.3 59.5 3050 238.3 247.8

38 43.6 3100 271.9 281.9
26.3 31.2 3150 308.4 319.1
17.8 20.9 3200 348.2 359.5

8.2 11.3 3300 435.3 447.5
3.5 6.7 3400 528.2 540.9

1.35 4.5 3500 623.7 636.6
1 1.8 3600 720.2 733.3

References

Andreasen, Jesper, and Brian Norsk Huge. 2010. Volatility interpolation. Available online: https://ssrn.com/
abstract=1694972 or http://dx.doi.org/10.2139/ssrn.1694972 (accessed on 1 July 2016).

Bates, David S. 1996. Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options.
Review of Financial Studies 9: 69–107.

Broadie, Mark, and Ashish Jain. 2008. The effect of jumps and discrete sampling on volatility and variance swaps.
International Journal of Theoretical and Applied Finance 11: 761–97.

Carr, Peter, and Dilip Madan. 2001. Towards a theory of volatility trading. In Option Pricing, Interest Rates and Risk
Management, Handbooks in Mathematical Finance. Cambridge: University Press, pp. 458–76.

Carr, Peter, and Keith Lewis. 2004. Corridor variance swaps. Risk Magazine 17: 67–72.

https://ssrn.com/abstract=1694972
https://ssrn.com/abstract=1694972
http://dx.doi.org/10.2139/ssrn.1694972


J. Risk Financial Manag. 2018, 6, 11 15 of 15

Carr, Peter, and Liuren Wu. 2008. Variance risk premiums. The Review of Financial Studies 22: 1311–41.
Carr, Peter, and Roger Lee. 2007. Realized volatility and variance: Options via swaps. Risk 20: 76–83.
Carr, Peter, and Roger Lee. 2008. Robust Replication of Volatility Derivatives. Available online: http://www.cims.

nyu.edu/working_paper_series (accessed on 1 July 2016).
Dupire, Bruno. 1994. Pricing with a smile. Risk 7: 18–20.
Demeterfi, Kresimir, Emanuel Derman, Michael Kamal, and Joseph Zou. 1999. More than you ever wanted to

know about volatility swaps. Goldman Sachs Quantitative Strategies Research Notes 41: 1–56.
Espelid, Terje O. 2003. Doubly adaptive quadrature routines based on Newton—Cotes rules. BIT Numerical Mathematics

43: 319–37.
Fukasawa, Masaaki, Isao Ishida, Nabil Maghrebi, Kosuke Oya, Masato Ubukata, and Kazutoshi Yamazaki. 2011.

Model-free implied volatility: from surface to index. International Journal of Theoretical and Applied Finance
14: 433–63.

Gatheral, Jim. 2004. A Parsimonious Arbitrage-Free Implied Volatility Parameterization with Application to the Valuation
of Volatility Derivatives. Presentation at Global Derivatives & Risk Management; Madrid: Merrill Lynch.

Gatheral, Jim. 2006. The Volatility Surface: A Practitioner’s Guide. Hoboken: Wiley, vol. 357.
Gander, Walter, and Walter Gautschi. 2000. Adaptive quadrature revisited. BIT Numerical Mathematics 40: 84–101.
Heston, Steven L. 1993. A closed-form solution for options with stochastic volatility with applications to bond

and currency options. Review of Financial Studies 6: 327–43.
Jiang, George J., and Yisong S. Tian. 2005. The model-free implied volatility and its information content. The Review

of Financial Studies 18: 1305–42.
Jiang, George J., and Yisong S. Tian. 2007. Extracting model-free volatility from option prices: An examination of

the VIX index. The Journal of Derivatives 14: 35–60.
Leung, Tim, and Matthew Lorig. 2016. Optimal static quadratic hedging. Quantitative Finance 16: 1341–55.
Schoutens, Wim, Erwin Simons, and Jurgen Tistaer. 2003. A perfect calibration! Now what? In The best of Wilmott.

Hoboken: Wiley, p. 281.
Windcliff, Heath A., Peter A. Forsyth, and Kenneth R. Vetzal. 2006. Pricing methods and hedging strategies for

volatility derivatives. Journal of Banking & Finance 30: 409–31.

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.cims.nyu.edu/working_paper_series
http://www.cims.nyu.edu/working_paper_series
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Variance Swap
	Volatility Swap
	Continuous Replication in Practice
	Discrete Replication
	Derman's Method
	Trapezoidal Method
	Simpson
	Leung and Lorig Optimal Quadratic Hedge

	Numerical Examples
	Replication Comparison in an Ideal Black–Scholes World
	Replication Comparison on the SPX500
	Jumps Effect

	Conclusions
	SPX500 Option Chain
	References

