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Abstract: We provide an accurate closed-form expression for the expected shortfall of linear portfolios
with elliptically distributed risk factors. Our results aim to correct inaccuracies that originate in
Kamdem (2005) and are present also in at least thirty other papers referencing it, including the
recent survey by Nadarajah et al. (2014) on estimation methods for expected shortfall. In particular,
we show that the correction we provide in the popular multivariate Student t setting eliminates
understatement of expected shortfall by a factor varying from at least four to more than 100 across
different tail quantiles and degrees of freedom. As such, the resulting economic impact in financial
risk management applications could be significant. We further correct such errors encountered
also in closely related results in Kamdem (2007 and 2009) for mixtures of elliptical distributions.
More generally, our findings point to the extra scrutiny required when deploying new methods for
expected shortfall estimation in practice.

Keywords: expected shortfall; elliptical distributions; multivariate Student t distribution; mixtures of
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1. Introduction

Important advantages of expected shortfall (ES) over value at risk (VaR) as a coherent risk
measure (see [1]) have drawn the attention of financial risk managers, regulators and academics alike.
For instance, a key element of a recent proposal by the Basel Committee on Banking Supervision [2] is
moving the quantitative risk metrics system in regard to trading book capital requirement policies
from 99% VaR to 97.5% ES. The surge in interest in ES estimation methods also has been reflected in
the recent and extensive survey by Nadarajah et al. [3], which emphasizes many new developments
and covers over 140 references on the subject. In this context, using elliptically distributed risk factors
emerges as an appealing choice in multivariate settings because elliptical distributions can model
heavy-tailed, and thus riskier, financial return distributions flexibly while remaining analytically
tractable. These benefits, however, require restricting all risk factors to have equally heavy tails.
Although imposing any particular parametric distributional assumptions can be avoided by using
non-parametric approaches to ES estimation, such as those in [4,5] among many others, doing so
requires sacrificing analytical tractability (see [3] for further details). Within the class of elliptical
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models, one popular example is given by the multivariate Student t distribution, which allows for
setting the tail index, and consequently the thickness of the tails, directly as a function of the number
of degrees of freedom.

Further restricting attention to linear portfolios, the main purpose of this paper is to correct the
inaccuracies in Kamdem [6] for the analytical expressions and numerical results for ES in both the
elliptical and the multivariate Student t cases. In particular, the ES expressions derived in [6] for
both the general case of any elliptical distribution and the special case of a multivariate Student t
distribution are too large by a factor of two. Furthermore, we find that the power in the ES formula for
multivariate Student t should be −( ν−1

2 ), rather than −( ν+1
2 ) as derived in [6]. This second error more

than offsets the missing scaling factor of 1/2, implying that fixing both errors will increase estimates of
ES for portfolios of risk factors that are distributed according to a multivariate Student t distribution.
Both the linear and nonlinear errors are propagated in the survey paper by Nadarajah et al. [3] and
are confounded by additional numerical errors found in [6] for the tabulated values for ES in the
multivariate Student t case. More specifically, we find that the inaccurate analytical expression derived
in [6] does not match the reported numerical values in [6] for ES in the multivariate Student t case and
neither one of them matches the correct expression and values we derive.

Including the recent survey by Nadarajah et al. [3], the inaccurate results in [6] have been
referenced in at least 30 subsequent English publications without correction [3,7–36]. Ten more papers
not written in English also cite [6]; our ability to read these papers is limited, but they do not seem to
correct the inaccuracies in [6] either. In particular, while Lu’s Ph.D. thesis [36] contains a stand-alone
derivation of the correct analytical expression for ES in the multivariate Student t case, it still reports
the inaccurate ES expression in [6] for the general elliptical case; it also does not correct any of the
numerical inaccuracies in [6] for the multivariate Student t case. Similarly, the work in [18] provides a
stand-alone derivation of the correct ES expression only for the multivariate Student t case, addressing
neither the general elliptical case nor the need to correct numerical results in [6]. Moreover, in addition
to being incomplete, neither of these implicit corrections of part of the results in [6] has drawn attention
to the errors originating in [6] that have spilled over into all of the above other references. As such,
the inaccuracies in [6] that we aim to correct have yet to be explicitly recognized and acknowledged
more broadly. As evidenced also by their propagation to the recent survey [3] both in the general
elliptical case and the special multivariate Student t case, it is likely for the inaccurate results to be
further utilized and propagated if left uncorrected.

In terms of magnitude of the resulting tail risk measurement errors, applying our correction in
the popular multivariate Student t setting, particularly the derivation of the correct power −( ν−1

2 ) in
addition to applying the necessary scaling factor of 1/2 from the general elliptical case, eliminates
understatement of ES by a factor varying from at least four to more than 100 across different tail
quantiles and degrees of freedom. For the 97.5% quantile specified by [2] and the range of 3–8 degrees
of freedom commonly used in risk management applications, the corrections produce ES estimates
that are around six times larger. Clearly, the resulting economic impact in financial risk management
applications could be significant. As another contribution of our paper, we eliminate such economically
significant inaccuracies that have propagated also in the closely related results in [7,8] for ES in the
case of mixtures of elliptical distributions.

Another viable approach to obtaining the accurate ES expression for linear portfolios in elliptically
distributed risk factors we derive would be to express the returns of such portfolios as corresponding
univariate elliptically distributed random variables and making appropriate substitutions in the
respective ES formula for the univariate case. We show the equivalence of this alternative approach
by specializing the expressions we derive to the univariate Student t case. In response to helpful
direction from an anonymous referee, we further note that Landsman and Valdez [37] (Theorems 1
and 2), preceding the results in [6], have formally advocated this approach for representing ES for
linear combinations of jointly elliptical variables. However, neither [6], nor the recent survey [3] on
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estimation methods for ES or any of the other references mentioned above, have made the connection
provided herein to the results in [37] as an alternative way to correct the errors in [6].

The paper proceeds as follows. Section 2 derives the correct ES expression in the general elliptical
case. Section 3 deals with the additional correction that needs to be made in the multivariate
Student t case. Section 4 validates the corrected ES expressions via a mapping to the univariate
Student t case. Section 5 conducts an assessment of the resulting economic impact. Section 6 extends the
correction to mixtures of elliptical distributions, and more particularly multivariate Student t mixtures.
Section 7 concludes the paper.

2. Accurate ES in the General Elliptical Case

Following the notations in [6], we consider a linear portfolio with a weight row vector
δ = (δ1, δ2, ..., δn) in n elliptically distributed risky returns X = (X1, ..., Xn) with mean µ, scale matrix
Σ = AA′, and probability density function (pdf) of X taking the form

fX (x) = |Σ|−1/2 g
(
(x− µ)Σ−1 (x− µ)′

)
for some non-negative density generator function g, where, for any square matrix, |·| represents
the determinant.

The expected shortfall at a quantile α associated with the continuous portfolio returns
∆Π ≡ δX′ = δ1X1 + ... + δnXn is then given by

−ESα = E (∆Π|∆Π ≤ −VaRα)

=
1
α

E (∆Π · 1 {∆Π ≤ −VaRα})

=
1
α

∫
{δx′≤−VaRα}

δx′ f (x) dx ,

where VaRα is defined by Pr {∆Π < −VaRα} = α. The notation follows the usual convention of
recording portfolio losses as negative numbers, but stating VaR and ES as positive quantities of money.
For further discussion of ES, including definitions applicable for discontinuous returns, see [38].

After the same two changes of variables as in [6] (Section 2), we arrive at

−ESα =
1
α

∫
{|δA|z1≤−δµ−VaRα}

(|δA| z1 + δµ) g
(
‖z‖2

)
dz

=
1
α

∫
{|δA|z1≤−δµ−VaRα}

|δA| z1g
(
‖z‖2

)
dz + δµ ,

where the norm ‖·‖ is defined as the Euclidean norm. We note that the first change of variables in [6],
y = (x− µ) A−1, transforms the distribution into a spherical distribution with the same generating
function [39] (Corollary 2.1 and Definition 2.2). The spherical distribution is invariant to rotations like
the second change of variables, y = zR, where R is the rotation in [6].

By writing ‖z‖2 = z2
1 + ‖z′‖

2 and introducing spherical coordinates z′ = rξ, ξ ∈ Sn−2, the integral
on the right-hand side above can be expressed as

−ESα = δµ +
|Sn−2|

α

∫ ∞

0
rn−2

[∫ −qα

−∞
|δA| z1g

(
z2

1 + r2
)

dz1

]
dr ,

where |Sn−2| = 2π
n−1

2

Γ( n−1
2 )

is the surface measure of the unit-sphere in Rn−1, Γ(a) =
∫ ∞

0 e−tta−1 dt is the

Gamma function, and qα = δµ+VaRα

|δA| . We can then change the variable z1 to −z1 and the variable r to u
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as given by u = z2
1 + r2, which then implies that du = 2r dr so that dr = du

2r = du
2
√

u−z2
1

and r =
√

u− z2
1.

Substituting the change of variables leads to the following equivalent expression for −ESα,

−ESα = δµ− |Sn−2|
α

∫ ∞

qα

∫ ∞

0
rn−2 |δA| z1g

(
z2

1 + r2
)

dr dz1

= δµ− |Sn−2| |δA|
2α

∫ ∞

qα

∫ ∞

z2
1

z1

(
u− z2

1

) n−3
2 g (u) du dz1 .

Changing the order of the two integrals further yields

−ESα = δµ− |Sn−2| |δA|
2α

∫ ∞

q2
α

∫ √u

qα

z1

(
u− z2

1

) n−3
2 g (u) dz1 du

= δµ− |Sn−2| |δA|
2α

∫ ∞

q2
α

g (u)
∫ √u

qα

z1

(
u− z2

1

) n−3
2 dz1 du .

Because the inner integral simplifies to 1
n−1

(
u− q2

α

) n−1
2 , and by definition |δA| = |δΣδ′|1/2, we obtain

the following final result,

ESα = −δµ + |δA| |Sn−2|
2α

∫ ∞

q2
α

1
n− 1

(
u− q2

α

) n−1
2 g (u) du

= −δµ +
∣∣δΣδ′

∣∣1/2 2π
n−1

2

2αΓ
(

n− 1
2

)
(n− 1)︸ ︷︷ ︸

=2Γ( n+1
2 )

∫ ∞

q2
α

(
u− q2

α

) n−1
2 g (u) du

= −δµ +
∣∣δΣδ′

∣∣1/2 π
n−1

2

2αΓ( n+1
2 )

∫ ∞

q2
α

(
u− q2

α

) n−1
2 g (u) du .

Thus, we have proved the following theorem for ES in the general elliptical case:

Theorem 1. The expected shortfall ESα at quantile α of a linear portfolio δX in elliptically distributed risk
factors X with pdf defined by fX (x) = |Σ|−1/2 g

(
(x− µ)Σ−1 (x− µ)′

)
is given by

ESα = −δµ +
∣∣δΣδ′

∣∣1/2 π
n−1

2

2αΓ( n+1
2 )

∫ ∞

q2
α

(
u− q2

α

) n−1
2 g (u) du , (1)

where qα = δµ+VaRα

|δΣδ′ |1/2 .

Remark 1. From [6] (Theorem 2.1), qα is the unique solution of a transcendental equation; the specific equation
will depend on the type of elliptical distribution.

Comparing the above result to the corresponding expressions in [6] (Equation (4.1) in Theorem 4.1)
as well as in [3] (Equation (15) in Section 3.20), we conclude that our second term on the right-hand
side of Equation (1) is smaller by a factor of 2. In particular, this corrects a two-fold overstatement
of ES in the zero-mean case of typical interest in many short-term financial risk management
applications. To highlight the difference, the formulas are compared for the zero-mean unit-scale case
(i.e., δµ = 0, |δΣδ′|1/2 = 1) in Figure 1 on the following page, where the factor has been increased in
size and colored red.
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π
n−1

2

αΓ( n+1
2 )

∫ ∞

q2
α

(
u− q2

α

) n−1
2 g (u) du︸ ︷︷ ︸

Kamdem [6]

π
n−1

2

2αΓ( n+1
2 )

∫ ∞

q2
α

(
u− q2

α

) n−1
2 g (u) du︸ ︷︷ ︸

Theorem 1

Figure 1. Comparison of the formula for expected shortfall for an elliptical distribution at quantile α,
ESα, from Theorem 4.1 in [6] with the accurate one from Theorem 1 for the zero-mean unit-scale case.

3. Accurate ES in the Multivariate Student t Case

The formula in Equation (1) can be specialized to derive ESα for any specific distribution in
the family of multivariate elliptical distributions, by replacing g (u) with the appropriate generating
function. A special case commonly used in risk management applications is given by the multivariate
Student t distribution, which for a specified degrees of freedom ν, has the following pdf,

fX (x) =
Γ( ν+n

2 )

Γ( ν
2 )
√
|Σ| (νπ)n

(
1 +

(x− µ)Σ−1 (x− µ)′

ν

)− (n+ν)
2

.

We note that the pdf of a multivariate Student t distribution can be defined different ways; we are
both following [6] and using what [40] (p. 1) calls “the most common and natural form” of the pdf of

a multivariate Student t distribution. Substituting g (u) = Γ( ν+n
2 )

Γ( ν
2 )
√

(νπ)n

(
1 + u

ν

)− (n+ν)
2 into Equation (1)

above further specializes the obtained general expression for ES to the multivariate Student t case,
so that

ESα = −δµ +
∣∣δΣδ′

∣∣1/2 π
n−1

2

2αΓ( n+1
2 )

Γ( ν+n
2 )

Γ( ν
2 )
√
(νπ)n

∫ ∞

q2
α

(
u− q2

α

) n−1
2
(

1 +
u
ν

)− (n+ν)
2 du

= −δµ +
∣∣δΣδ′

∣∣1/2 1

2α
√
(ν)nπ

Γ( ν+n
2 )

Γ( ν
2 )Γ(

n+1
2 )

∫ ∞

q2
α

(
u− q2

α

) n−1
2
(

1 +
u
ν

)− (n+ν)
2 du .

By [6] (Lemma 2.1), where B (a, b) = Γ(a)Γ(b)
Γ(a+b) is the Euler Beta function, we have the

following equality

∫ ∞

q2
α

(
u− q2

α

) n−1
2
(

1 +
u
ν

)− (n+ν)
2 du = ν

n+ν
2

(
q2

α + ν
)−( ν−1

2 )
B
(

ν− 1
2

,
n + 1

2

)
.

Substituting the equality into the prior equation yields in turn:

ESα =− δµ +
∣∣δΣδ′

∣∣1/2 1

2α
√
(ν)nπ

Γ( ν+n
2 )

Γ( ν
2 )Γ(

n+1
2 )

ν
n+ν

2

(
q2

α + ν
)−( ν−1

2 )
B
(

ν− 1
2

,
n + 1

2

)

=− δµ +
∣∣δΣδ′

∣∣1/2 1

2α
√
(ν)nπ

Γ( ν+n
2 )

Γ( ν
2 )Γ(

n+1
2 )

ν
n+ν

2

(
q2

α + ν
)−( ν−1

2 ) Γ( ν−1
2 )Γ( n+1

2 )

Γ( n+ν
2 )

=− δµ +
∣∣δΣδ′

∣∣1/2 ν
ν
2

2α
√

π

Γ( ν−1
2 )

Γ( ν
2 )

(
q2

α + ν
)−( ν−1

2 ).

(2)

With this, we obtain the following result for ES in the multivariate Student t case:
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Theorem 2. The expected shortfall ESα at quantile α of a linear portfolio δX in risk factors X having multivariate

Student t distribution with pdf fX (x) =
Γ( ν+n

2 )
Γ( ν

2 )
√
|Σ|(νπ)n

(
1 + (x−µ)Σ−1(x−µ)′

ν

)− (n+ν)
2

is given by

ESα = −δµ + esα,ν ·
∣∣δΣδ′

∣∣1/2 , (3)

with

esα,ν =
ν

ν
2

2α
√

π

Γ( ν−1
2 )

Γ( ν
2 )

(
q2

α,ν + ν
)−( ν−1

2 )
(4)

and
qα,ν =

δµ + VaRα

|δΣδ′|1/2 , (5)

where qα,ν is uniquely determined by solving a transcendental equation given by [6] (Theorem 2.2)
and [3] (Section 3.20).

Remark 2. Accurate numerical values of qα,ν for different α and ν of interest are reproduced in Table A1 in the
appendix as tabulated also by [6] (Section 2.2).

A close inspection of our expression for esα,ν in Equation (4) above in comparison to the
corresponding equations in [6] (Theorem 4.2) and [3] (Section 3.20) reveals a difference of 1 in the

power of the last term
(
q2

α,ν + ν
)−( ν−1

2 ) in addition to the extra scaling factor by 2 inherited from the
correction made above in the general elliptical case. In particular, the correct power of that term is
−( ν−1

2 ) rather than −( ν+1
2 ). This nonlinear error is larger than the missing scaling factor. Combined,

these two corrections eliminate an understatement of ES by a factor of (q2
α,ν+ν)

2 > 1 in the zero-mean
multivariate Student t setting with ν ≥ 2 degrees of freedom of particular interest in many applications.
Again to highlight the difference, the formulas are compared for the zero-mean unit-scale case in
Figure 2, where the different power term is colored red in addition to the scaling factor being increased
in size and colored red. If ν > 2, the zero-mean unit-scale case can be transformed to unit-variance by

further multiplying by
√

ν−2
ν .

ν
ν
2

α
√

π

Γ( ν−1
2 )

Γ( ν
2 )

(
q2

α,ν + ν
)−( ν+1

2 )

︸ ︷︷ ︸
Kamdem [6]

ν
ν
2

2α
√

π

Γ( ν−1
2 )

Γ( ν
2 )

(
q2

α,ν + ν
)−( ν−1

2 )

︸ ︷︷ ︸
Theorem 2

Figure 2. Comparison of the formula for expected shortfall for the multivariate Student t distribution
at quantile α, ESα, from Theorem 4.2 in [6] with the accurate one from Theorem 2 for the zero-mean
unit-scale case.

Before conducting a numerical assessment of this combined effect of correcting the two separate
inaccuracies in the ES expressions found in the general elliptical case and the multivariate Student t case
overlooked in both [3,6], we first provide an alternative way to reconcile our results through the
univariate Student t case.

4. Comparison to the Univariate Student t Case

The ES expression in Theorem 2 holds for any linear portfolio. In particular, it should hold if only
a single asset is held, for example if δ = [1, 0, · · · , 0]. Consequently, the formula for expected shortfall
for the multivariate Student t should reproduce the formula for a univariate Student t.



J. Risk Financial Manag. 2017, 10, 5 7 of 14

The results in [41] (Section 2.2.2) show that the expected shortfall for a zero-mean unit-scale
univariate Student t random variable is given by

ESα =
1

α
√

π
√

ν

Γ( ν+1
2 )

Γ( ν
2 )

(
1 +

q2
α

ν

)−( ν+1
2 ) (

ν + q2
α

ν− 1

)
.

Note that we can restrict attention to the zero-mean unit-scale case without loss of generality given the
affine properties of ES for Student t or any elliptical distribution.

Collecting terms and using known identities allows us to equivalently express this as

ESα =
1

α
√

π

Γ( ν+1
2 )

Γ( ν
2 )

(
ν + q2

α

)−( ν+1
2 )

ν
( ν

2 )
(

ν + q2
α

ν− 1

)
=

1
α
√

π

ν−1
2 Γ( ν−1

2 )

Γ( ν
2 )

(
ν + q2

α

)−( ν+1
2 )

ν
( ν

2 )
(

ν + q2
α

ν− 1

)
=

1
α
√

π

Γ( ν−1
2 )

2Γ( ν
2 )

(
ν + q2

α

)−( ν−1
2 )

ν
( ν

2 )

=
ν

ν
2

2α
√

π

Γ( ν−1
2 )

Γ( ν
2 )

(
q2

α + ν
)−( ν−1

2 ).

(6)

This result matches exactly our Equation (4) from Theorem 2 with n = 1 for the zero-mean unit-scale
case. Equations (23) and (27) in Landsman and Valdez [37] present a seemingly different closed-form
ES expression for univariate Student t distribution. Although it is not the same as Equation (6),
substituting with known equalities and rearranging terms makes it identical to Equation (6) in line
with the accuracy of our expression specialized to the univariate case.

Conversely, combining this expression from the univariate case with the location-scale properties
of the multivariate Student t distribution (as an elliptical distribution) with respect to δµ and |δΣδ′|1/2

can also be used to reconcile our expressions in Theorem 2 with the ones that can be obtained
following the approach by [37] (Theorems 1 and 2), which precedes the inaccurate results in [6]
that we correct. The consistency of our results in the univariate case also readily applies to general
elliptical distributions. By contrast, the formulas contained in both [3,6] for elliptical distributions and
multivariate Student t distributions are not consistent with the respective univariate formulas.

5. Economic Impact of the Correction

In order to assess the resulting economic impact, we study numerically the combined effect of
the above corrections of the inaccuracies in the ES expressions found in [3,6] as well as additional
numerical errors we uncover in the respective tabulated values in [6]. For ν ≥ 2, without loss of
generality, it suffices to restrict attention to the zero-mean unit-scale multivariate Student t setting as
from Equation (3) it follows that the key value needed for computing ES for multivariate Student t
risk factors is esα,ν defined in Equation (4). We therefore compare values of esα,ν calculated with
the accurate formula derived in Sections 2 and 3, the inaccurate formula in [6] (Theorem 4.2) and [3]
(Section 3.20), as well as the corresponding inaccurately tabulated numerical values in [6] (Section 4.1)
based on the same underlying values of q2

α,ν replicated in Table A1 in the appendix.
In particular, we tabulate in Table 1 on the next page the accurate (panel A) and inaccurate

(panel B) values of esα,ν as well as their ratio (panel D) across different tail quantiles α = 0.01, 0.025,
0.05 and degrees of freedom ν = 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 200, 250. It stands out that the ratio(
q2

α,ν + ν
)
/2 of the accurate versus inaccurate values reported in panel D of Table 1 is quite large and

varies from at least just above four (for α = 0.05 and ν = 3 or 4) to more than 100 (for ν ≥ 200). The later
discrepancies occur as the results should be converging to the results for a Gaussian distribution;
the results in panel A are converging to the Gaussian ones unlike the values in panel B.
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Table 1. Numerical comparison of the accurate versus inaccurate expressions for expected shortfall in the multivariate Student t case. The table reports the accurate
analytical (panel A), inaccurate analytical (panel B), and inaccurate numerically tabulated (panel C) values of esα,ν, the multivariate Student t distribution governing
the individual risky returns in a linear, mean-zero, and unit-scale portfolio, as well as the respective ratios of accurate versus inaccurate analytical (panel D) and
accurate analytical versus inaccurate numerically tabulated (panel E) values across different tail quantiles α = 0.01, 0.025, 0.05 (different rows) and degrees of freedom
ν = 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 200, 250 (different columns). The accurate analytical expression in panel A reflects the derivations in this paper (Theorems 1 and 2).
The inaccurate expression in panel B is originally due to Kamdem [6] (Theorem 4.2) and is reproduced in Nadarajah et al. [3] (Section 3.20), while the inaccurate values
in panel C are the ones numerically tabulated in [6] (Section 4.1).

ν 2 3 4 5 6 7 8 9 10 100 200 250

Panel A: The accurate analytical esα,ν = ν
ν
2

2α
√

π

Γ( ν−1
2 )

Γ( ν
2 )

(
q2

α,ν + ν
)−( ν−1

2 ) derived in Sections 2 and 3 above

es0.010,ν 14.071 7.004 5.221 4.452 4.033 3.770 3.591 3.462 3.363 2.722 2.694 2.688
es0.025,ν 8.832 5.040 3.994 3.522 3.256 3.087 2.970 2.884 2.819 2.379 2.358 2.354
es0.050,ν 6.164 3.874 3.203 2.890 2.711 2.595 2.514 2.515 2.891 2.093 2.078 2.075

Panel B: The inaccurate analytical esα,ν = ν
ν
2

α
√

π

Γ( ν−1
2 )

Γ( ν
2 )

(
q2

α,ν + ν
)−( ν+1

2 ) in [6] (Theorem 4.2) and [3] (Section 3.20)

es0.010,ν 0.557 0.593 0.579 0.546 0.508 0.472 0.438 0.408 0.381 0.052 0.026 0.021
es0.025,ν 0.861 0.768 0.682 0.607 0.543 0.490 0.446 0.409 0.377 0.046 0.023 0.019
es0.050,ν 1.171 0.908 0.750 0.638 0.555 0.490 0.439 0.409 0.453 0.041 0.021 0.016

Panel C: The inaccurate numerically tabulated esα,ν in [6] (Section 4.1)

es0.010,ν 5.572 5.931 5.788 5.456 5.080 4.716 4.382 4.082 3.814 0.516 0.264 0.209
es0.025,ν 8.611 7.678 6.822 6.068 5.433 4.903 4.460 4.086 3.768 0.458 0.231 0.185
es0.050,ν 11.712 9.075 7.497 6.380 5.546 4.901 4.388 3.971 3.626 0.407 0.205 0.164

Panel D: Ratio
(
q2

α,ν + ν
)
/2 of the accurate analytical esα,ν (panel A) to the inaccurate analytical esα,ν (panel B)

es0.010,ν 25.253 11.808 9.020 8.161 7.938 7.994 8.195 8.480 8.819 52.795 102.750 127.741
es0.025,ν 10.256 6.564 5.854 5.804 5.994 6.296 6.659 7.059 7.482 51.968 101.944 126.939
es0.050,ν 5.263 4.269 4.272 4.530 4.888 5.295 5.729 6.143 6.378 51.378 101.365 126.363

Panel E: Ratio of the accurate analytical esα,ν (panel A) to the inaccurate numerically tabulated esα,ν (panel C)

es0.010,ν 2.525 1.181 0.902 0.816 0.794 0.799 0.819 0.848 0.882 5.279 10.203 12.860
es0.025,ν 1.026 0.656 0.585 0.580 0.599 0.630 0.666 0.706 0.748 5.197 10.195 12.696
es0.050,ν 0.526 0.427 0.427 0.453 0.489 0.529 0.573 0.633 0.797 5.138 10.134 12.635
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Importantly, in the case of α = 0.025, the minimum ratio of the accurate to inaccurate values of ES
is about 6. Given that moving the quantitative risk metrics system in regard to trading book capital
requirement policies from 99% VaR to 97.5% ES (i.e., in our notation α = 0.025) is a key element of the
recent proposal by [2], the numerical results imply that the correction would eliminate at least a six-fold,
and potentially much larger, understatement of risk per unit of standard deviation or volatility in the
popular zero-mean multivariate Student t setting. Clearly, the resulting economic impact in financial
risk management applications could be significant.

Noting again the magnitude and potential economic impact of our correction, one could look for
possible reasons as to why such large inaccuracies in the otherwise quite popular multivariate Student t
setting could have gone unnoticed. One important observation to make in this regard is that, as recently
noted by [42] among others, the literature on backtesting ES is fairly new, thereby leaving a potential
loophole for any such errors in ES computations to go unnoticed for a while because financial industry
applications may not yet perform routine and powerful enough ES backtesting.

Another possibility to keep in mind is that instead of using the inaccurate expressions in [3,6],
one could alternatively take directly the values of esα,ν tabulated in [6] (Section 4.1), and reproduced
in panel C of Table 1. These numerical values happen to be offset by yet another separate mistake by
a factor of 10, thereby mechanically, but still inaccurately, shifting the discrepancy in the opposite more
conservative direction across much of the range of tabulated different tail quantiles and degrees of
freedom. To illustrate this, panel E reports the ratio of the accurate analytical values (panel A) to the
inaccurate numerically tabulated values (panel C). In particular, the magnitude of ES underestimation
when using the wrongly tabulated values in panel C still remains very large for ν much larger than 10.
However, for most other values of ν, there is at least some partial cancellation effect with all other
errors as a result of this third inaccuracy in [6]; the result for 97.5% ES specified by [2] and the range
of 3–8 degrees of freedom commonly used in risk management applications would be to bring most
discrepancies down to the order of 0.6, thereby shifting the direction of the numerical errors from
underestimation to overestimation of ES.

Last but not least, as pointed out above, the accurate ES expressions we provide can also be
obtained following the alternative approach by Landsman and Valdez [37] preceding [6]. Thus,
although the inaccurate results in [6] have spread across [3,7–36], it cannot be ruled out that, at least in
some cases, the errors in [6] could have been avoided by following [37] instead.

All in all, partial offsetting of different errors, challenges with ES backtesting, as well as the
potential use of viable alternative approaches such as [37] could have played a role for ES discrepancies
of even such large magnitude and potential economic impact as the ones we report in panel D of
Table 1 to elude detection for some time. Our findings provide a word of caution about the scrutiny
required when deploying any new methods for ES estimation in practice, as may be happening as
a result of the proposed new guidelines issued by the Basel Committee on Banking Supervision [2].

6. Accurate ES for Mixtures of Elliptical Distributions and Multivariate Student t Mixtures

As another useful application, we further eliminate similar economically significant inaccuracies
that have propagated also in closely related results for ES in the case of mixtures of elliptical
distributions studied by [7,8]. Distribution mixtures are known to provide another flexible and
tractable way for modelling an even richer set of heavy tailed distributions in risk management
applications. In particular, using a similar derivation to [6], both [7,8] provide inaccurate closed-form
ES expressions for the general case of mixtures of elliptical distributions as well as the special case of
multivariate Student t mixtures with identical variance–covariance matrix Σi = Σ . The expressions
for ES in [7,8] have inherited the omission of the scaling factor 1/2 corrected above. Therefore, for the
sake of completeness, we provide accurate ES expressions first for the general case of multivariate
elliptical distribution mixtures (Theorem 3) and then also for the special case of multivariate Student t
mixtures (Theorem 4).
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Theorem 3. The expected shortfall ESα,{βi}m
i=1,{gi}m

i=1
at quantile α of a linear portfolio δX in risk factors X

following a mixture of elliptical distributions with pdf fX (x) = ∑m
i=1 βi |Σi|−1/2 gi

(
(x− µi)Σ−1

i (x− µi)
′
)

,
where ∑m

i=1 βi = 1 is given by

ESα,{βi}m
i=1,{gi}m

i=1
=−

m

∑
i=1

βi (δµi) +
π

n−1
2

2αΓ
(

n+1
2

) m

∑
i=1

βi
∣∣δΣiδ

′∣∣1/2

×
∫ ∞

q2
α,i

(
u− q2

α,i

) n−1
2 gi (u) du,

(7)

where qα,i = (δµi + VaRα,i) / |δΣiδ
′|1/2 and VaRα,i is defined by Pr {δY < −VaRα,i} = α with Y following

an elliptical distribution with pdf fY (y) = |Σi|−1/2 gi

(
(y− µi)Σ−1

i (y− µi)
′
)

.

As above, we further specialize this result for the special case of multivariate Student t mixtures
with µi = µ and Σi = Σ for i = 1, 2, ..., m.

Theorem 4. The expected shortfall ESα,{βi}m
i=1,{νi}m

i=1
at quantile α of a linear portfolio δX in

risk factors X following a mixture of multivariate Student t distributions with pdf fX (x) =

∑m
i=1 βi

Γ
(

νi+n
2

)
Γ(

νi
2 )
√
|Σ|(νiπ)n

(
1 + (x−µ)Σ−1(x−µ)′

νi

)− (n+νi)
2

, where ∑m
i=1 βi = 1 is given by

ESα,{βi}m
i=1,{νi}m

i=1
= −δµ + esα,{βi}m

i=1,{νi}m
i=1
·
∣∣δΣδ′

∣∣1/2 , (8)

with

esα,{βi}m
i=1,{νi}m

i=1
=

m

∑
i=1

βi
ν

νi
2

i
2α
√

π

Γ( νi−1
2 )

Γ( νi
2 )

(
q2

α,{βi}m
i=1,{νi}m

i=1
+ νi

)−( νi−1
2

)
(9)

and

qα,{βi}m
i=1,{νi}m

i=1
=

δµ + VaRα,{βi}m
i=1,{νi}m

i=1

|δΣδ′|1/2 , (10)

where qα,{βi}m
i=1,{νi}m

i=1
=

(
δµ + VaRα,{βi}m

i=1,{νi}m
i=1

)
/ |δΣδ′|1/2 , VaRα,{βi}m

i=1,{νi}m
i=1

is defined by

Pr
{

δX < −VaRα,{βi}m
i=1,{νi}m

i=1

}
= α and qα,{βi}m

i=1,{νi}m
i=1

is uniquely determined by solving a transcendental
equation given by Corollary 3.8 in [8].

Remark 3. Accurate numerical values of q
α,{βi}2

i=1,{νi}2
i=1

for different α, β1 ,β2 (= 1− β1) ,ν1 and ν2 of
interest are reproduced in Table A2 in the appendix as tabulated also in [7] (Tables 1 and 2) and [8] (Tables 2
and 3).

The difference between Equation (7) and the corresponding equations in [7] (Theorem 4.1) and [8]
(Theorem 5.1) is the scaling factor of two in the denominator. Likewise, the difference between
Equation (9) and the corresponding equation in [7] (Theorem 4.2) and [8] (Theorem 5.4) is only the scaling
factor of two in the denominator. Importantly, there is no additional error in the power of the last term,
unlike the one encountered in [6] and corrected in Section 3. Nonetheless, the numerically tabulated
values for ES in [7,8] differ from the accurate ones by a significantly larger scaling factor than two.

To illustrate these additional numerical errors, we tabulate the correct and incorrect analytically
obtained values of ES for a mixture of multivariate Student t distributions, respectively, in panel A and
panel B of Table 2 on the next page; the ratio of the accurate values in panel A to the inaccurate ones in
panel B is reported in panel D and is exactly 1/2 as expected. However, the numerically tabulated
values in both [7,8], which are reproduced in panel C of Table 2, are completely different from those
in either panel B or panel A of Table 2. It is unclear how [7,8] have generated these values because
they cannot be obtained from the formula in Theorem 4.2 in [7] and Theorem 5.4 in [8]. Furthermore,
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they do not match the accurate formula we provide in Theorem 4 either. In addition, the values in
Table 4 of [8] are exactly the same as the incorrect ones in [6] reflecting the inaccurate tabulation of ES
in the case of a multivariate Student t distribution. Panel E of Table 2 reports the ratios of the accurate
values in panel A to the inaccurate numerically tabulated ones in panel C. With most ratios in panel E
significantly larger than one, the correction we provide can eliminate very large and economically
significant underestimation of ES also for the considered mixtures of distributions in Theorems 3
and 4 above.

Table 2. Numerical comparison of the accurate versus inaccurate expression for expected shortfall
in the case of a multivariate Student t mixture. The table reports the accurate analytical (panel A),
inaccurate analytical (panel B), and inaccurate numerically tabulated (panel C) values of esα,β,ν1,ν2 ,
the mixture of multivariate Student t distributions governing the individual risky returns in a
linear, mean-zero, and unit-scale portfolio, as well as the respective ratios of accurate versus
inaccurate analytical (panel D) and accurate analytical versus inaccurate numerically tabulated
(panel E) values across different tail quantiles α = 0.01 and 0.001 (left and right panel), different
mixture weights β = 0.25, 0.30, 0.35, 0.40, 0.45, 0.50 (different rows), and different pairs of degrees of
freedom (ν1, ν2) = (2, 3) , (3, 4) , (4, 6) , (7, 15) (different columns). The accurate expression in panel A
reflects the derivations in this paper (Theorems 3 and 4). The inaccurate expression in panel B is
originally due to [7] (Theorem 4.2) and [8] (Theorem 5.4), while the inaccurate values in panel C are the
ones numerically tabulated in [7] (Tables 3 and 4) and [8] (Tables 5 and 6).

(ν1, ν2)
α = 0.01 α = 0.001

(2, 3) (3, 4) (4, 6) (7, 15) (2, 3) (3, 4) (4, 6) (7, 15)

Panel A: The accurate analytical esα,β,ν1,ν2 derived in Section 6

esα,0.25,ν1,ν2 8.994 5.709 4.366 3.290 24.981 11.474 7.510 4.790
esα,0.30,ν1,ν2 9.372 5.803 4.430 3.327 26.634 11.795 7.699 4.882
esα,0.35,ν1,ν2 9.745 5.896 4.492 3.362 28.220 12.105 7.879 4.969
esα,0.40,ν1,ν2 10.111 5.988 4.554 3.398 29.743 12.406 8.052 5.051
esα,0.45,ν1,ν2 10.471 6.078 4.614 3.432 31.210 12.697 8.218 5.128
esα,0.50,ν1,ν2 10.825 6.168 4.674 3.466 32.625 12.979 8.377 5.201

Panel B: The inaccurate analytical esα,β,ν1,ν2 derived in [7,8]

esα,0.25,ν1,ν2 17.987 11.418 8.732 6.580 49.961 22.949 15.020 9.580
esα,0.30,ν1,ν2 18.745 11.606 8.859 6.653 53.269 23.590 15.398 9.764
esα,0.35,ν1,ν2 19.489 11.792 8.984 6.725 56.440 24.211 15.759 9.937
esα,0.40,ν1,ν2 20.222 11.976 9.108 6.795 59.486 24.811 16.104 10.101
esα,0.45,ν1,ν2 20.942 12.157 9.229 6.864 62.420 25.393 16.435 10.256
esα,0.50,ν1,ν2 21.650 12.336 9.348 6.932 65.251 25.957 16.753 10.402

Panel C: The inaccurate tabulated esα,β,ν1,ν2 in [7] (Tables 3 and 4) and [8] (Tables 5 and 6)

esα,0.25,ν1,ν2 6.366 1.294 0.243 0.003 20.896 3.033 0.577 0.007
esα,0.30,ν1,ν2 7.019 1.410 0.279 0.003 23.164 3.323 0.666 0.007
esα,0.35,ν1,ν2 7.647 1.523 0.314 0.004 25.271 3.588 0.716 0.008
esα,0.40,ν1,ν2 8.251 1.631 0.348 0.004 27.239 3.837 0.776 0.009
esα,0.45,ν1,ν2 8.834 1.737 0.380 0.005 29.089 4.071 0.831 0.009
esα,0.50,ν1,ν2 9.396 1.839 0.410 0.005 30.835 4.290 0.881 0.010

Panel D: Ratio 1/2 of the accurate values of esα,β,ν1,ν2 in Panel A to those in Panel B

esα,0.25,ν1,ν2 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
esα,0.30,ν1,ν2 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
esα,0.35,ν1,ν2 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
esα,0.40,ν1,ν2 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
esα,0.45,ν1,ν2 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
esα,0.50,ν1,ν2 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Panel E: Ratio of the accurate values of esα,β,ν1,ν2 in Panel A to those in Panel C

esα,0.25,ν1,ν2 1.413 4.412 17.967 1096.633 1.195 3.783 13.016 684.271
esα,0.30,ν1,ν2 1.335 4.116 15.877 1108.833 1.150 3.550 11.560 697.414
esα,0.35,ν1,ν2 1.274 3.871 14.306 840.575 1.117 3.374 11.005 621.088
esα,0.40,ν1,ν2 1.225 3.671 13.085 849.375 1.092 3.233 10.376 561.167
esα,0.45,ν1,ν2 1.185 3.499 12.143 686.400 1.073 3.119 9.889 569.756
esα,0.50,ν1,ν2 1.152 3.354 11.400 693.180 1.058 3.025 9.508 520.110
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7. Conclusions

Elliptically distributed risk factors are popular in financial risk management applications
because they can model heavy tails while still offering a great deal of flexibility and analytical
tractability. Our accurate closed-form expressions for the expected shortfall of linear portfolios with
elliptically-distributed risk factors correct major inaccuracies in the results by Kamdem [6] for both the
general elliptical case and the special multivariate Student t case. The inaccurate results in [6] have
been referenced by at least thirty other papers [3,7–36], including the recent comprehensive survey of
ES estimation methods by Nadarajah et al. [3]. We note that our accurate results can be reconciled also
following the alternative approach by Landsman and Valdez [37], Theorems 1 and 2, preceding the
inaccurate derivations by [6] and all of these other studies referring to [6]. In terms of its magnitude,
our correction in the zero-mean multivariate Student t setting eliminates potential understatement
of ES by a factor varying from at least four to more than 100 across different tail quantiles and
degrees of freedom. As such, the economic impact from using our accurate ES expressions in financial
risk management applications with elliptically-distributed risk factors can be significant. We also
eliminate economically significant inaccuracies that have further propagated in the closely related
results in [7,8] for ES of mixtures of elliptical distributions.

Another important application for the accurate closed-form results for ES with elliptically
distributed, or mixtures of elliptically distributed, risk factors is gauging the statistical precision
of non-parametric ES estimation methods relying on Monte Carlo simulations in the spirit of the
analysis in [43]. In particular, the ability to study the performance of alternative non-parametric ES
estimators in controlled experiments for multivariate heavy-tailed settings with accurately known
analytical results can help provide some useful guidance in the context of the proposal by the Basel
Committee on Banking Supervision [2] to move the quantitative risk metrics system in regard to trading
book capital requirement policies from 99% VaR to 97.5% ES. More generally, our findings point to the
extra scrutiny required when deploying new methods for ES estimation in practice, especially also in
light of the widely acknowledged separate challenges with backtesting expected shortfall.
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Appendix

Table A1. Accurate numerical values of qα,ν for different α and ν in the case of multivariate Student t.
The table reproduces numerical values of qα,ν for different α and ν of interest as tabulated in [6]
(Section 2.2) for the purposes of computing expected shortfall.

ν 2 3 4 5 6 7 8 9 10 100 200 250

q0.010,ν 6.965 4.541 3.747 3.365 3.143 2.998 2.896 2.821 2.764 2.364 2.345 2.341
q0.025,ν 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228 1.984 1.972 1.969
q0.050,ν 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.812 1.660 1.660 1.653 1.651
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Table A2. Accurate numerical values of q
α,{βi}2

i=1,{νi}2
i=1

for different α,β1, β2 (= 1− β1) , ν1, and ν2 in

the case of multivariate Student t mixture. The table reproduces numerical values of q
α,{βi}2

i=1,{νi}2
i=1

for

different α,β1, β2 (= 1− β1) , ν1, and ν2 of interest as tabulated in [7] (Tables 1 and 2) and [8] (Tables 2
and 3) for the purposes of computing expected shortfall.

(ν1, ν2)
α = 0.01 α = 0.001

(2, 3) (3, 4) (4, 6) (7, 15) (2, 3) (3, 4) (4, 6) (7, 15)

qα,0.25,ν1,ν2 5.103 3.940 3.291 2.700 13.558 8.014 5.775 4.051
qα,0.30,ν1,ν2 5.221 3.980 3.321 2.720 14.221 8.177 5.883 4.111
qα,0.35,ν1,ν2 5.341 4.019 3.351 2.740 14.874 8.338 5.990 4.169
qα,0.40,ν1,ν2 5.463 4.059 3.381 2.760 15.517 8.497 6.094 4.226
qα,0.45,ν1,ν2 5.585 4.099 3.412 2.780 16.148 8.654 6.196 4.282
qα,0.50,ν1,ν2 5.709 4.139 3.442 2.800 16.767 8.808 6.296 4.335
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