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Abstract: The pathophysiology of myasthenia gravis (MG) has been largely elucidated over the past
half century, and treatment methods have advanced. However, the number of cases of childhood-
onset MG is smaller than that of adult MG, and the treatment of childhood-onset MG has continued
to be based on research in the adult field. Research on pathophysiology and treatment methods
that account for the unique growth and development of children is now desired. According to an
epidemiological survey conducted by the Ministry of Health, Labour and Welfare of Japan, the
number of patients with MG by age of onset in Japan is high in early childhood. In recent years, MG
has been reported from many countries around the world, but the pattern of the number of patients
by age of onset differs between East Asia and Western Europe, confirming that the Japanese pattern
is common in East Asia. Furthermore, there are racial differences in autoimmune MG and congenital
myasthenic syndromes according to immunogenetic background, and their pathophysiology and
relationships are gradually becoming clear. In addition, treatment options are also recognized in
different regions of the world. In this review article, I will present recent findings focusing on the
differences in pathophysiology.

Keywords: autoimmunity; childhood-onset; genetic background; myasthenia gravis; neuromuscular
junction; pathophysiology

1. Introduction

Myasthenia gravis (MG) is understood to be a neuromuscular disorder caused by an
immune disturbance at the neuromuscular junction, which results in symptoms such as
muscle weakness and fatigue. In 1964, Elmqvist et al. reported abnormalities in miniature
endplate potential (MEPP), which they identified as a pathophysiology of the neuromuscu-
lar junction [1]. In 1973, Jim Patrick et al. demonstrated that the immunization of rabbits
with the acetylcholine receptor (AChR) can induce a myasthenic state similar to that in
humans [2]; as expected from clinical findings by Simpson in 1960 [3], it became clear that
MG is an autoimmune disease of the neuromuscular junction.

This autoimmune disease, MG, can be divided into an ocular MG and a generalized
MG based on its clinical manifestations, and it has been noted that the clinical features of
MG differ between children and adults. Furthermore, it is now clear that the dysfunction
of the AChR assembly that develops at the neuromuscular junction is not only caused by
acquired immune abnormalities but also by congenital genetic abnormalities. What has
become clear from the reports presented on these various perspectives from various regions
of the world is that each ethnic group has its own slightly different pathophysiology and
that treatment is carried out within the medical culture of that region. This presentation
will provide an overview of this diversity from the perspective of a Japanese pediatrician
who has been practicing clinically.
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2. Epidemiological Study

Epidemiological studies on this disease have been reported for a long time, but mostly
on adult MG in Europe and the United States. Grob et al. studied 1976 MG patients
from 1940 to 2000 and reported that the generalized type accounted for 1730 patients
(87.6%), that there were gender differences in clinical characteristics, and that most of
the severe cases died within 1–2 years after onset in the early 20th century [4]. After the
development of various treatment methods, the number of patients who died despite
ventilatory management was reported to be 6% by Grob et al. [4], 3.5% by C Zhang et al.
in China [5], and 0.26% by Yoshikawa et al. in Japan [6]. On the other hand, Oosterhuis
reported that the remission rate of MG was 30% after 15 years for the ocular MG and
18% after 20 years for the generalized MG [7]. Carr et al. summarized 55 epidemiological
studies reported from various countries from 1950 to 2007 [8] and found that the frequency
of MG varied greatly from country to country. Dresser et al. found the incidence to be
4.1–30/million in Europe, 3–9.1/million in North America and Japan, 0.155–0.366/million
in China [9], 38.8/million in Argentina [10], and 18.1/million in Korea [11]. At the same
time, Carr et al. reported that the prevalence of MG had been increasing in more recent
studies than in older studies [8]. Similarly, in Korea, the incidence of MG has shown a
tendency to change over the years [11], and in an Italian report, both early-onset MG
(EOMG) and late-onset MG (LOMG) had incidences of 14/million around 1990, but in
2007, the incidences of EOMG and LOMG were 3/million and 37/million, respectively [12].
Osserman and Genkins reported that MG in children accounts for 11% of all cases [13],
and Chiu et al. reported a difference in incidence between Taiwanese and Caucasian
patients [14]. In Japan, epidemiological surveys were conducted in 1973, 1987, and 2006
by the Research Group on Neurological Intractable Diseases sponsored by the Ministry of
Health, Labor, and Welfare, and the prevalence per 100,000 population increased from 5.1 in
1987 to 11.8 in 2006 and 23.1 in 2018 [6,15]. This phenomenon is probably due not only to the
aging of the population but also to the fact that although the disease is inherently difficult to
diagnose, advances in research have made diagnosis relatively easy and treatment methods
more advanced.

2.1. Characteristics of Childhood Onset; Frequency and Peak Age of Onset in Childhood

In 1987, Chiu et al. investigated the frequency of MG patients according to age of onset
in Taiwanese and Caucasian patients and found that pediatric MG with onset at an age of
20 years or younger accounted for 42.6% in Taiwanese and 23.3% in Caucasian subjects [14].
Most pediatric MG was ocular myopathy in Taiwanese subjects, whereas there was almost
no ocular MG in Caucasians; when limited to a prepubertal age of 10 years or younger, the
incidence was 23.6% in Taiwanese and 3.5% in Caucasian patients, a remarkable difference.
In Japan, the Research Group for the Investigation of Neurological Intractable Diseases
of the Ministry of Health, Labor and Welfare conducted an epidemiological survey, and
as shown in Figure 1, a reproducible peak of onset in childhood at the age of 5 years or
younger was identified in addition to an adult peak in the 20- to 50-year-old age group [6,15]
(Figure 1). Epidemiological studies were subsequently conducted in various parts of the
world, allowing comparisons to be made on a regional basis. Surveys in Europe and the
United States have not found this childhood peak [8,9,14] has been observed not only in
Japan but also in China [16,17], Taiwan [18], and Korea [19], making it a characteristic of
the East Asian race. Regarding where to delimit the age for discussing childhood onset,
MF Finnis et al. in the UK defined childhood as 19 years of age or younger [20]; Popperud
in Norway defined childhood as 18 years of age or younger [21]; Cheng-Che Chou et al. in
Taiwan defined childhood as 20 years of age or younger [18]; and Gui et al. in China defined
it as 14 years of age or younger [17]. It should be noted that the criteria for childhood
differ among reports. In this paper, I will define childhood as 18 years of age or younger,
including post-pubertal age.
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Another characteristic of childhood-onset MG is the ratio of ocular muscle type to
generalized MG. As shown in Table 1, ocular MG accounts for a higher proportion of
childhood MG in East Asia than in the West [14–19,21,23–25] (Table 1). Vecchio et al., in a
study in the UK, where other ethnic groups congregate, found that the ocular muscle type
in childhood-onset MG with onset before age 16 was 92% for Afro-Caribbeans, 29% for
Arabians, 62.5% for Asians, and 42.3% for Caucasians, with significant racial differences
among races other than Caucasians and East Asians [24]. In addition, cases initially thought
to be ocular MG do not often shift to generalized MG in East Asians, even after a clinical
course is followed [16–20]. In contrast, Western ocular MG has a high rate of transition to
the generalized MG [9,21], and the transition often occurs within the first 2 years after onset.
Thus, a comparison of pediatric MG in East Asia and the West revealed several differences.

Table 1. Comparison of childhood-onset MG: Ocular MG is often in Asia.

Author
(Reference) Year Nation Number of

Patients OMG Onset Age
(yr)

OMG to
GMG

Spontaneous
Remission

Asia

Murai [15] 2011 Japan 268 80% <10

Lee HN [19] 2016 Korea 88 97% <18

Huang X [16] 2013 China 327 75% <18 19.9% 3.4%

Gui [17] 2015 China 424 83% <14 11.8%

Yang L [25] 2022 China 343 96% <14 13.4%

Chou CC [18] 2019 Taiwan 54 83% <20 4.8% 24.1%

Western

Popperud [21] 2017 Norway 63 59% <18

Mansukhani [23] 2019 USA 146 23% <19 31.3%

Vecchio [24] 2020 UK 74 51% <16 23%

2.2. Immunogenetic Studies

This racial difference in epidemiologic frequency may be due to immunogenetic differ-
ences, and several HLA differences have been reported for autoimmune MG; Vandiedonck
et al. reported a strong correlation between MG with thymic hyperplasia and the 8.1 HLA
haplotype [26]. HLA-A1-B8-DR3 is assigned to the 8.1 ancestral haplotype; Popperud et al.
examined this in Norwegians [27] and found a strong correlation between this ancestral hap-
lotype 8.1 (AH8.1; A*01-B*08-C*07-DRB1*03:01-DQB1*02:01), as well as alleles correlated
strongly with juvenile MG. At the same time, he reported that the frequency of HLA-
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B*8-DRB1*04:04 was high in early-onset MG in Europe at the age of 40 years or younger,
and HLA-DRB1*15:01 alleles were high in late-onset MG at the age of 60 years or older.
This was especially the case for HLA-DRB1*04:04, which was predominantly high only in
prepubertal-onset cases, and it was reported that HLA types differ between older-onset and
younger-onset cases [27]. High frequencies of HLA-DRB1*03 have been reported from Swe-
den [28], Portugal [29], and Tunisia [30], and Ancestral haplotype 8.1 is a major factor in MG
development in Europe. In East Asia, HLA-A*0207, HLA-B*4601, HLA-DRB1*0403, HLA-
DRB1*0901, and HLA-DRB1*1602 have been reported from China as HLAs with a high
frequency in infants [31]. HLA-DR9 and DRw13 are more frequent in childhood-onset MG,
and the frequency is even higher in HLA-DR9/DRw13 heterozygotes [32]. Shinomiya et al.
reported that pediatric MG correlates well with HLA-DRB1*1302/DQA1*0102/DQB1*0604
and HLA-DRB1*0901/DQA1*0301/DQB1*0303 [33]. The DR13 haplotype is thought to
have a close evolutionary relationship with the DR3 haplotype, which is thought to be
related to Caucasian MG [34]. Although East Asia presents different HLA types from West-
ern Europe, there may be a related immunogenetic background. On the other hand, we
examined HLA in 71 Japanese MG patients, including both adults and children, and found
that HLA-DRw9 was more frequent in the ocular MG and HLA-DRw8 in the generalized
MG [35]. In 53 MG patients, including both children and adults, the relationship between
HLA and the clinical course was investigated, and the group with HLA-DRw8 had higher
AChR antibody titers with some autoantibodies. In contrast, the HLA-DRw9 group had
relatively low AChR antibody titers and no autoantibodies [36]. It seems certain that a
high proportion of children with MG in East Asia present with ocular MG and a high
frequency of HLA-DR9 (HLA-DRB1*09;01). The relationship between these phenomena,
which differ greatly between East Asia and Western Europe, and the onset of MG is an
issue to be investigated in the future.

2.3. Gender Difference

Several studies have looked at gender differences related to the onset of MG. Murai
et al. reported that the female-to-male ratio was 1.6 for cases of onset between 0 and 4 years
of age, 1.5 for cases of onset between 5 and 9 years, 2.3 for cases of onset between 10 and
49 years of age, and 1.3 for cases of onset between 50 and 64 years of age [15]. According
to a report by Huang et al. from China, this ratio is almost 1 for children with onset of
disease under 14 years of age. Still, there are more women with onset of disease between
15 and 59 years of age, and on the contrary, more men with onset of disease after 60 years
of age [16]. Furthermore, Finnis et al. reported that in childhood-onset MG, there was no
difference between men and women in prepubertal cases, but this ratio was 4.5 in pubertal
and 4.5 in postpubertal cases [20]. Although there are subtle differences depending on the
report, there is almost no difference between men and women in the prepubertal period,
but after the pubertal period, there are more women, and as they grow older, there are
more men.

In 1966, Vincent P. Perlo et al. studied the frequency according to age of onset in
1355 MG patients and reported that there was a young female peak and an elder male
peak, two peaks that differed according to sex [37]. In a systematic review, Carr et al. also
showed a clear difference in age of onset via a beautiful figure [8]. Similarly, surveys in
Japan have shown a pattern of different peak incidences in men and women [6,15], but with
each passing year, life expectancy increases and the pattern of gender differences becomes
harder to discern. In 1980, Compston et al. added HLA analysis and reported that the
younger female group had higher AChR antibody titers; more HLA-A1, B8, and/or DRw3;
and more thymic hyperplasia, whereas the elder male group had lower antibody titers and
more HLA-A3, B7, and/or DRw2 [38]. Ancestral haplotype 8.1, which is more common in
younger females, may be associated with the fact that various autoimmune diseases are
more frequent in women of this age.
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3. Pathophysiology of Myasthenic State

The pathophysiology of childhood MG, especially MG with post-pubertal onset, is
basically similar to that of adults. In some cases, such as neonatal transient MG and con-
genital joint contractures, there is a pathophysiology specific to children, and there are
problems with steroid administration and the timing of thymectomy during maturation.
An understanding of the pathophysiology of MG in the growing pediatric population is
desirable for selecting treatment. Myasthenia caused by impaired signaling at the neuro-
muscular junction can be broadly divided into acquired MG and congenital myasthenic
syndrome (CMS). The pathophysiology, generally known as MG, refers to acquired MG,
in which the AChR at the neuromuscular junction is reduced by immunological mecha-
nisms [39]. Most often, this is caused by anti-AChR antibodies, which will be discussed
next. It is said that complement is also involved in this process, which is accompanied by
the morphological destruction of the neuromuscular junction. On the other hand, CMS is a
genetic pathophysiology that is caused by a defect in the production of a protein involved
in signal transduction at the neuromuscular junction.

3.1. Formation of Neuromuscular Junction

The neuromuscular junction must be well-formed for this neuromuscular signaling
to be rapid and reliable. In denervated rat muscle, which was once used as an antigen
in the measurement of AChR antibodies, denervation significantly alters the distribution
of AChR in the postsynaptic membranes. There are two types of AChRs: the fetal type
and the adult type. The adult type AChR consists of α, β, ε, and δ-subunit, while the
fetal type consists of α, β, γ, and δ-subunit. Both are transmembrane proteins with an
ion channel [40]. Surgical denervation and/or presynaptic blockade of neuromuscular
transmission amplifies the subunit mRNA of junctional and extra-junctional AChR and
increases both types of AChR in muscle cells [40]. Extra-junctional AChRs produced and
distributed at the denervated post-synapses are reported to have γ-subunits instead of
ε-subunits, as described above [41].

AChR proteins synthesized in muscle cells and extensively deployed and seeded
in the postsynaptic membrane must be assembled at specific locations to form neuro-
muscular junctions. This requires stimulation from nerves, and a number of proteins are
involved. (Figure 2) Nerve terminals secrete agrin, which binds to LRP4 and activates the
MuSK molecule. Furthermore, the complex forms a dimer and activates Dok-7 in muscle
cells. When the AChE/ColQ protein binds to the MuSK protein molecule, the complex
is further activated and stabilized, and AChRs that were widely and thinly distributed
in the surrounding area are gathered in the vicinity of MuSK to form neuromuscular
junctions [42–44].
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In addition to these, several other proteins have been reported to be involved in
the formation of this AChR group. When these proteins malfunction, neuromuscular
communication is impaired. Mutations that prevent the formation of normal protein
molecules and, thus, impair neuromuscular communication are called CMS. The so-called
acquired MG is mainly caused by autoantibodies that disrupt signal transduction at the
neuromuscular junction, resulting in MG symptoms. The AChR and MuSK antibodies can
be clearly identified as the causes of MG symptoms because the method of measurement
is well established, the antibodies have been proven in many patient sera, and the same
condition can be reproduced in animals by passive transfer. Recently, Lrp4 and agrin
antibodies have been added to this group. Autoantibodies against various other proteins
involved in neuromuscular junction formation are still under investigation. Sooner or later,
it may become possible to identify genetic abnormalities associated with such proteins and
to identify autoantibodies against them in patient sera.

3.2. Changes at the Neuromuscular Junction
3.2.1. Decreased AChR at the Neuromuscular Junction

Synapses at the neuromuscular junctions are inherently narrow. Degranulated acetyl-
choline molecules diffuse to the postsynaptic membrane on the opposite muscle side and
then bind to AChRs present at the postsynaptic membrane. In 1973, Fambrough et al.
took muscle biopsies of eight MG patients and measured the AChR density around the
neuromuscular junction [39]. They reported that the AChR density was reduced by 11–30%
in MG compared to normal subjects. In the same year, Patrick et al. demonstrated that
this disease was an autoimmune disease by immunizing rabbits several times with AChR
extracted from the electric organ of Torpedo and reproducing pathophysiology with symp-
toms of muscle weakness similar to those in humans [2]. In 1974, Almon et al. reported
that the binding activity of α-bungarotoxin to AChR was decreased in at least 5 of the
15 MG patients when patient serum was added to AChR extracted from rat leg muscles [45].
In 1975, Bender et al. morphologically demonstrated that α-bungarotoxin bound to the
muscle tissue of MG is eliminated by reacting to patient serum [46]. This indicates that
the AChRs present in the postsynaptic membranes react with the patient’s serum, causing
their density to decrease at the MG patient’s own neuromuscular junction. Thus, a series
of studies on the pathogenesis of MG was published in the mid-1970s, establishing that
MG is an autoimmune disease caused by antibodies in the patient’s blood acting to disrupt
signaling at the neuromuscular junction.

3.2.2. Structural Destruction of the Neuromuscular Junction

Engel et al. reported that normal neuromuscular junctions have narrow synaptic clefts
and well-constructed synaptic folds. In contrast, in MG, the synaptic cleft is enlarged, the
synaptic folds disappear, and the debris floats in the enlarged synaptic cleft [47]. This is
caused by complement reactions to the autoantibodies described below.

3.3. Autoantibodies against the Neuromuscular Junction

In acquired MG, autoantibodies against the neuromuscular junction are formed, which
attack the neuromuscular junction, resulting in impaired neuromuscular communication
and muscle weakness. AChR is a membrane protein with a molecular weight of approxi-
mately 290,000 that is present on the surface of muscle cells, spans the membrane, and is
composed of five subunits of four types: two α, β, γ (or ε), and δ subunits. More than half
of the autoantibodies present in patient sera are antibodies that target what is called the
main immunogenic region, the α subunit of AChR [48].

There are three possible mechanisms by which AChR antibodies cause the reductions
in AChR on postsynaptic membranes at the neuromuscular junction in MG, involving
binding antibodies, blocking antibodies, and complements [49].
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3.3.1. Involvement of AChR Antibodies

First, binding antibodies often recognize the α-subunit of AChR, and the Fab portion
of the antibody binds to the AChR and bridges the two AChRs, thereby accelerating their
uptake into muscle cells and increasing their decay rates [49–51]. The ratio of decayed
and lost AChRs to newly produced AChRs determines how much density of AChRs is
represented on the muscle cell surface. Generally, AChR antibodies are binding antibodies.

Second, the blocking antibodies recognize and bind to the ACh binding site or its
vicinity in the α-subunit of AChR. This prevents ACh from binding to AChR [49,52,53].
The α-subunit is a linear protein consisting of 437 amino acids, each of which has various
electric charges and, thus, assumes a three-dimensional structure that penetrates the muscle
cell membrane four times. The N-terminal 210 amino acids are completely outside the
membrane, and Ach, with a molecular weight of 146, and antibodies, with a molecular
weight of approximately 150,000, react with that part of the subunit. AChR is composed of
two α-subunits and one each of β, γ (or ε), and δ. The ACh binding sites are located at the
contact sites of the α/γ (or α/ε) and α/δ subunits [54].

Third, there is a mechanism by which the complement acts to disrupt the morphology
of the neuromuscular junction [47,55]. The morphological changes at the neuromuscular
junction caused by the complement are characterized by a wide synaptic gap and a coarse
distribution of AChRs, which allows for little information exchange [56]. When the com-
plement repeats the reaction up to C9, it forms a membrane attack complex (MAC) and
destroys the membrane [55]. When the presence of the complement is confirmed at the
neuromuscular junction [57], and the complement component C3 is removed using snake
venom, this synaptic destruction is no longer seen and symptoms improve [58].

3.3.2. Neonatal Transient Myasthenia Gravis and Fetal Myasthenia

Some infants born to MG mothers develop neonatal transient MG [59–62]. IgG anti-
bodies are also transferred to the fetus via the placenta except for subclass IgG2, whereas
most AChR antibodies are IgG1 and IgG3. Therefore, if the mother’s antibody titer is
high, the antibodies are naturally transferred to the fetus, and symptoms should appear.
However, only 10–12% of newborns develop MG, and most are asymptomatic despite
having AChR antibodies in their blood [63]. Idiopathic thrombocytopenic purpura, in
which maternal autoantibodies are similarly transferred to the fetus and cause postnatal
symptoms, also occurs at a frequency of 20% [64] to 17.8% [65]. However, it is not well
understood why neonates do not develop the disease.

This neonatal transient MG declines over time because it does not occur due to
antibodies produced by the child on its own but to the transplacental transfer of maternal
antibodies. Even if symptoms appear in the first few days of life, they gradually subside
with continued treatment and management during the weeks of symptoms.

In rare cases, if the maternal antibodies are specific, transfer to the fetus in high
concentrations, and are strong enough to inhibit movement in utero, the fetus may develop
a pathophysiology called congenital joint contracture (arthrogryposis congenita) [66,67].
There exist antibodies against the γ-subunit of fetal AChR, which inhibit the response of
ACh to its receptor, slow down the ion channel response, and impair signal transduction
at the neuromuscular junction. Moreover, a monoclonal antibody (mAb 131) against fetal
AChR with such a function has been reported [68].

3.3.3. Antibody against Muscle-Specific Tyrosine Kinase (MuSK)

When AChR antibodies are negative, the disease is called seronegative MG. In 2001,
Hoch et al. reported that MuSK antibodies are present in 70% of seronegative MG, which
accounts for 20% of generalized MG [69]. McConville et al., in the same group, reported
that in 66 patients with seronegative MG, 27 (41%) were positive for MuSK antibodies, 11
of whom had prominent bulbar symptoms [70]. Several subsequent reports have shown
that about 20% of Caucasian MG patients have seronegative MG, of which 30–40% of the
generalized type are positive for MuSK antibodies [71,72]; 38% of adult seronegative MG
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cases were reported to be positive for MuSK antibodies by the Mayo Clinic [73]. On the
other hand, a survey of adult MG in Asia showed that 21% of generalized type seronegative
MG in South Asia [74], 26.4% in China [75], and 26.7% in Korea [76] were positive for the
MuSK antibody.

It was reported that MuSk antibodies were positive in 12 (6.7%) of 180 patients who
underwent antibody assays with childhood MG with onset before 14 years of age in China,
but the details are not clear [25], and we have not been able to find any reports of pediatric
MuSK-MG from Korea. There is a report from Taiwan stating that only 1 of 36 AChR
antibody-negative patients with juvenile MG was positive for the MuSK antibody [18]. In
Japan, Ohta et al. reported that 27% of 85 patients with generalized type seronegative MG
had MuSK-MG [77], but the epidemiology of pediatric MuSK-MG is poorly investigated,
as only case reports of pediatric cases can be found [78,79]. Thus, subtle differences in the
frequency of the disease exist according to region and race.

However, in a report looking at the relationship between MuSK-MG and HLA,
Niks et al. reported that MuSK was correlated with HLA-DR14-DQ5 in Dutch people [80],
and Kanai et al. reported that HLA-DRB1*14 and DQB1*05 were correlated in Japanese
people [81]. Subsequently, Hong et al. reported that HLA-DQB1*05, DRB1*14, and DRB1*16
were correlated in a meta-analysis including the reports of Niks and Kanai, indicating that
common HLA types are involved beyond racial differences [82].

The subclass of MuSK antibodies consists mainly of IgG4, which, like AChR antibodies,
crosses the placenta to cause symptoms. Neonatal transient MG has been reported from
mothers with MuSK-MG [83]. It is rare in MuSK-MG in the ocular muscle type [84,85].

MuSK is responsible for the assembly of AChRs on the postsynaptic membrane in
collaboration with several protein molecules to facilitate efficient signal transduction at
the neuromuscular junction. (Figure 2) MuSK antibodies have an adverse effect on AChR
assembly and reduce functional AChRs, but histopathology does not confirm the loss of
AChRs [86]. While the main subclasses of AChR antibodies are IgG1 and IgG3, MuSK
antibodies are mainly the IgG4 subclass and IgG monovalent, which crosses the placenta
but has no complement binding properties. Konectzny et al. examined the sera of 14 MuSK-
MG patients and found that the MuSK antibodies were predominantly IgG4 monovalent
with some IgG1-3. MuSK antibodies do not cause the intracellular uptake of MuSKs but
instead impair agrin-induced AChR assembly, resulting in MG symptoms [87,88].

The most common sites of symptoms of MuSK-MG are the face, neck, articulatory
swallowing, and respiratory muscles, where muscle weakness and atrophy occur. However,
it has been suggested that the neuromuscular junction structure of these muscles may be
different from that of others or that the low expression of MuSK in the scapulohyoid muscle
may result in different responses [89]. MuSK-MG presents with bulbar symptoms, which
may become more severe with anticholinesterase agents, whereas the thymus gland is nor-
mal, and therefore, thymectomy is not generally performed. Thus, the pathophysiologies
of MuSK-MG and AChR antibody-positive MG are different.

MuSK, a protein present at the neuromuscular junction, is essential in order for AChRs
to assemble at the neuromuscular junction; when MuSK is deficient or when antibodies
block MuSK’s natural function, AChRs fail to form clusters, resulting in the inefficient
transmission of information from the nerve and the development of MG pathophysiology.
Subsequently, several antibodies other than AChR and MuSK antibodies have been shown
to cause MG.

3.3.4. Double or Triple Seronegative MG

When the AChR antibody is negative, it is called seronegative MG, but when both the
AChR and MuSK antibodies are negative, the name “double seronegative MG” is used.
When the LRP4 antibody is also negative, “triple seronegative MG” is used. Rodriguez
Cruz et al. reported that of 42 MG patients considered to be double seronegative by the
immunoprecipitation method, 16 (38.1%) were positive for AChR antibodies according to
cell-based assay [90]. In order to test negative for AChR antibodies, it may be necessary to
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confirm the result not only by immunoprecipitation but also by cell-based assay. Recently, a
study has been reported to measure MuSK antibodies using a cell-based assay [91], but this
is still in the research stage and needs to be accumulated in the future. In the same paper
reported by Rodriguez Cruz, 26 patients were also considered negative by the cell-based
assay method, and LRP4 antibodies were negative in all 21 patients who could be tested [90].
However, Pevzner et al. reported that serum from 12 of 13 double-negative MG patients
showed protein deposition at the neuromuscular junction in mice, and in 4 patients, AChR
assembly on cultured muscle cells was suppressed by more than 50% [92]. Higuchi et al.
reported that 9 of 300 AChR antibody-negative patients had Lrp4 antibodies, and 3 of these
9 patients were also positive for MuSK antibodies [93]. LRP4 antibody-positive MGs are
present among double seronegative MGs, but they vary from 2–45% depending on the
region [94,95].

Recently, antibodies against agrin have also been investigated, and agrin antibodies
have been detected in double and triple seronegative MGs by measuring AChR, MuSK,
and LRP4 antibodies [96–99]. LRP4 and agrin, together with MuSK, play a major role in
the formation of AChR clusters. The presence of these antibodies prevents the complex
formation of MuSK and LRP4, which in turn inhibits AChR assembly and disrupts signaling
at the neuromuscular junction.

In general, four conditions are needed to determine whether autoantibodies are re-
sponsible for the disease [100,101]. Regarding AChR antibodies, all of these conditions
are satisfied: (1) antibodies can be identified in patient sera, (2) the passive immunization
of patient sera causes characteristic pathophysiology, (3) the active immunization with
antigens causes disease, and (4) the removal of antibodies improves symptoms.

Looking at antibodies against MuSK, LRP4, and agrin for conditions (1) through (3),
Shigemoto et al. induced MG symptoms in rabbits by immunizing them with MuSK protein.
Pathophysiology showed a reduction in AChR clusters at the neuromuscular junction [102],
while Viegas et al. created a MuSK-MG pathophysiology in mice by active immunization
with the MuSK protein as well as passive immunization with the MuSK antibody [103].

Similarly, Shen et al. actively immunized mice with the extracellular domain of
the LRP protein to induce MG symptoms and passively immunized mice with serum
from rabbits immunized with the LRP4 protein to induce the same MG symptoms [95].
Ulsoy et al. [104] and Mori et al. [105] also observed MG symptoms in mice immunized
with LRP4 and created autoimmune animals. LRP4 antibodies belong mainly to IgG1 and
have complement activity [93].

Yu et al. suppressed MuSK phosphorylation and AChR assembly by passively im-
munizing mice with immunoglobulin generated from MG patient sera with LRP4/agrin
antibodies [106], and Yan et al. immunized mice with agrin to induce the development of
MG symptoms [98].

The pathophysiology of acquired MG is thought to be caused by the formation of
autoantibodies against protein substances at the neuromuscular junction. The autoan-
tibodies that are currently recognized are against AChR, MuSK, Lrp4, and agrin. All
four auto-antibodies appear to meet all of the strict criteria.

There are many other proteins involved in AChR assembly, and several antibod-
ies against these proteins have been identified. It remains to be verified whether these
antibodies are really involved in the pathogenesis of the disease.

3.4. Congenital Myasthenic Syndrome (CMS)

CMS is characterized by pathological muscle weakness and fatigability caused by an
inborn defect of a protein molecule at the neuromuscular junction and is usually diagnosed
at the age of 2 years or younger. In addition, CMS is often associated with muscle atrophy
and small deformities, so it is important to distinguish CMS from MG as well as from
muscular dystrophy and congenital myopathy. Repeated nerve stimulation is essential for
definitive diagnosis, and careful and repeated nerve stimulation is desirable in cases of
muscle weakness and atrophy without elevated CK [107].
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A report from the U.K. showed a high prevalence of 1.5 per million for childhood-onset
autoimmune MG in those aged 18 years or younger, compared with 9.2 per million for
CMS [108]. The Mayo Clinic reported an incidence rate of 1.2 per million for autoimmune
MG and 2.3 per million for CMS in childhood-onset MG under 19 years of age [23]. No
epidemiologic reports of CMS have been seen from Asia, only sporadic reports. From
Japan, Azuma et al. reported 4 patients with ColQ abnormalities and 5 of their mutations
and 5 patients with AChR abnormalities and 6 of their mutations, for a total of 9 patients
and 11 of their mutations; however, underdiagnosis is considered highly likely [109]. Thus,
to compare the frequency of childhood MG between Europe and East Asia, autoimmune
MG is more common in East Asia and less common in Europe and the United States.
Conversely, CMS shows a contrasting pattern of onset, being more common in the West
and less common in East Asia, with racial differences also present.

CMS is a phenomenon caused by genetic abnormalities in various proteins at the
neuromuscular junction that are necessary for neuromuscular signaling to occur, resulting in
impaired protein synthesis. Ohno and others have recently reported a review of 35 different
genetic abnormalities [110]. The final stage of AChR assembly may involve other unknown
proteins, and further studies are needed.

3.5. Disease Classification: Ocular and Generalized MG

MG can be broadly classified into ocular MG and generalized MG. In children, ocular
MG is common, accounting for 78.2% of cases, and is also known to have low AChR
antibody titers and a high percentage of negative titers [111]. In a 2006 epidemiological
survey from Japan, 80.6% of cases with onset at less than 5 years of age and 61.5% of cases
with onset at 5 to 10 years of age were ocular MG [15]. Sero-negative MG is more common
in pediatric patients with ocular MG [111]. Whether or not antibodies are truly absent is a
major issue, and Tsujihata et al. confirmed the deposition of anti-AChR antibodies at the
neuromuscular junction of the limb muscles by performing limb muscle biopsies of patients
with ocular MG [57]. Patients who were thought to have seronegative MG were revealed to
have seropositive MG, as antibody titers were detectable against cell-bound AChR due to
differences in assay methods [90,112]. In Japan, Oda reported in 1993 that the cell-bound
AChR assay using human ocular muscle as an antigen could identify antibodies in ocular
MG serum that were negative by means of the radioimmunoprecipitation method [113].

Since the pathophysiology of MG is thought to be caused by autoantibodies, it is
thought that even when symptoms are present only in the ocular muscles, antibodies are
deposited in other muscles throughout the body, although they are not yet developed due
to a threshold for onset. The AChR antibody deposition at the limb muscle’s neuromuscular
junction, shown above (by Tsujihata), illustrates this idea [57].

In East Asia, ocular MG is more common in children, and most adults also present
with ocular muscle symptoms and later develop the generalized type. Why is the ocular
MG more common, and why is the ocular muscle more likely to be affected [88,114]?
Comparing the neuromuscular junction of the limb muscles with that of the ocular muscles,
there are several electrophysiological differences. The ocular muscles require rapid and
complex movements of the eyeballs, as well as fixation. Furthermore, the AChR subunits
are different, and it is known that ε is replaced by γ in the AChR subunit of the ocular
muscle, whereas the limb muscle AChRs originally consisted of α, β, ε, and δ [115]. The
γ-subunit forms the fetal AChR, and in rodents, many muscles are replaced by the epsilon
form within the first week or so after birth [116]. However, this replacement does not
occur in the ocular muscles. It has been reported that the neuromuscular junction of ocular
muscles has a more complex morphology than that of limb muscles [117], with ε-subunits
in simple innervated neuromuscular junctions such as the soleus muscle and γ-subunits in
multiple innervated neuromuscular junctions of the external ocular muscle [116–118]. These
differences in the neuromuscular junction accommodate the fine and complex movements
of the eye, and the absolute differences in muscle size and thickness create the so-called
“safety factor”, or margin of safety, which explains why the ocular muscles with less margin
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are more prone to symptoms. It has been explained that symptoms are more likely to occur
in the ocular muscles with less room to spare [119,120].

3.6. Childhood Thymus and Thymic Selection

MG is often associated with thymic abnormalities such as thymoma and thymic hyper-
plasia. Without distinguishing between thymoma and thymic hyperplasia, Yoshikawa et al.
reported that 22.1% of cases were thymoma in Japanese patients [6], and the same was
true for 20.1% of Korean patients [11]. Murai et al. reported 32.0% as thymoma and 38.4%
as thymic hyperplasia. In MG in children under 9 years of age, thymoma comprised
4.9%, and thymic hyperplasia was 16.8% less common than in adults [15]. Similarly, in
China, thymoma and thymic hyperplasia comprised 14.8% and 66.4%, respectively, while
thymoma made up 2.9% and thymic hyperplasia 86.5% in pediatric MG cases aged 14 years
or younger [16]. Popperud et al. reported that 50 of 63 pediatric MG patients under the age
of 18 had undergone thymectomy. Of the 21 prepubertal patients, 13 had thymectomy and
7 (54%) had thymic hyperplasia, and of the 42 postpubertal patients, 37 had thymectomy
and 23 (62%) had thymic hyperplasia. No thymoma was reported either before or after
puberty [21], and Heckman et al. also reported that thymoma is rare in children [121]. Thus,
the critical difference is whether the thymus is a tumor or hyperplasia in both children and
adults. If it is a thymoma, removal is the treatment of choice.

The thymus gland is an organ that all humans are born with, and it plays a major role in
the development of immunity that is able to distinguish between self and non-self [122,123].
If it were not present, we would have primary immunodeficiency.

The thymus gland usually atrophies after completing its work of establishing im-
munity at a young age, and most disappear by about age 40 [122,124,125]. Therefore, if
thymectomy is indicated in children, it should be performed after puberty. Thymoma,
which occurs more frequently in adults, has a different implication. Since the thymus
gland, which should be atrophied, is instead enlarged and harms the person as a tumor, its
removal is considered to be the appropriate treatment.

3.7. Involvement of Cellular Immunity

The involvement of HLA was mentioned above as an influence of one’s immuno-
genetic background. In particular, HLA-DR is MHC-class II, which expresses antigen
peptides bound to its pocket on the surfaces of antigen-presenting cells and reacts with
the TCR of T cells. As an experimental model, Berman and Patrick examined the murine
system using various types of mice [126]. The results showed that C57BL/6(B6), which
is Th1-dominant, is used as an experimental model for MG instead of Balb/c, which is
Th2-dominant. The mouse MHC, H-2 complex, is haplotype-b in B6 and haplotype-d in
Balb/c. Christadoss et al. have shown that the differences in MG-susceptibility between
species of mice are due to differences in T-cell activity in response to the same antigenic
stimuli and that the MG-susceptibility of the H-2 gene is linked and that it is controlled by
the I-A subregion of the MHC linked to the H-2 gene [127].

McIntyre and Seidman have created a B6.C-H-2bm12 (bm12) mouse with three mu-
tations in the I-Aβ of the B6 mouse [128]. This bm12 mouse, with only three mutations
in I-A, had a greatly reduced incidence of MG development [129]. This is reported to be
due to a significant effect on the epitope repertoire of murine CD4+ T-cells sensitized to
AChR [130,131]. Wu et al. created systemic MG by immunizing HLA-DR3 transgenic mice
with human AChR epsilon-subunit [132].

We reported a case of a patient who developed chronic myeloid leukemia (CML) and
received an HLA-matched bone marrow transplant from her sister, who was doing well but
developed graft-versus-host disease (GVHD) and then MG due to neglected medications
during treatment [133]. CML treatment with intense chemotherapy and radiotherapy may
result in thymic damage, which may lead to the release of abnormal lymphocytes into the
peripheral circulation and the development of autoimmunity. GVHD is said to be caused
by an immune imbalance due to decreased Tregs [134].
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MG is also more likely to occur when autoimmune diseases are present in the family.
The frequency of MG increases markedly in twins [135]. These events may indicate that
MHC antigens expressed on antigen-presenting cells are transmitted within the family,
making the family susceptible not only to MG but also to other autoimmune diseases.

MG is a T-cell-dependent, antibody-producing autoimmune disease. As such, treat-
ment has included steroids, immunosuppressive agents, and, more recently, various biolog-
ical agents, which are more easily implemented in treatment and more effective. However,
the use of such drugs in children is limited by the difficulty of conducting clinical trials
to confirm their safety [136,137]. Immunosuppressive agents such as azathioprine and
cyclophosphamide have been used for severe cases in Japan, but they are not actively used
because they are not covered by insurance. Currently, tacrolimus and ciclosporin A are
the two calcineurin inhibitors that are covered by insurance, and eculizumab, a biologic,
has recently become available for use in pediatric patients. Eculizumab is a C5 inhibitor of
complement that prevents MAC (membrane attack complex) formation and the destruction
of neuromuscular junctions. The calcineurin inhibitor, on the other hand, is quite effective,
although it does not act directly on antibody production but rather suppresses T-cell activity
upstream of it.

3.8. Lymphorrhage

MG is a T-cell-dependent disease in which antibody production occurs and neuromus-
cular signaling is disturbed. Autoantibodies against various proteins involved in AChR
assembly, mainly AChR antibodies, are thought to be involved in this pathophysiology,
including anti-MuSK, anti-LRP4, and anti-agrin antibodies. However, seronegative MG
actually exists and accounts for 10% of generalized MG [138]. Oda fixed ocular muscle
AChR to wells and measured AChR antibody titers in the serum of patients with ocular MG
but reported that some cases were still negative [113]. A comparison of soluble IL2 receptor
(sIL2R), a marker of T-cell activation, with AChR antibody titers showed a significant
negative correlation, with lower antibody titers resulting in higher sIL2R [139]. This result
suggests that T-cells may be activated in MG cases with low AChR antibody titers. In
ocular MG, antibody titers are low, and T-cells may be activated. In cases where a patient
is diagnosed with seronegative MG and no antibody is found, no matter the activity of
the known antibodies, are there still antibodies that have not been found? Or are they just
antibodies that are below the sensitivity of measurement? Lymphorrhage used to be a
major issue in the days when many MG patients died and were autopsied [140], but since
then, there has been controversy regarding the existence and pathological significance of
lymphorrhage. In 1963, Fenichel et al. performed muscle biopsies on 37 MG patients and
divided the tissues into three groups: 15 cases in the normal group, 11 cases in the small
muscle group showing denervated muscle, and 12 cases in the lymphocytic infiltration
group. Most of the biopsied muscles were quadriceps muscles, and the time from onset to
biopsy was 1 to 8 years in most cases. Lymphocytic infiltration was seen at a high rate in
muscle biopsies as well as autopsies and was more common in cases with a short period
of time after onset and thymic abnormalities [141,142]. Pascuzzi and Campa biopsied the
tricep muscles and found lymphorrhage in the muscle endplate, pointing to the possibility
that cellular immunity is involved in the pathogenesis of MG [143]. Furthermore, Maselli
et al. biopsied the anconeus muscles of eight MG patients and found cellular infiltration of
the neuromuscular junction in seven patients [144]. On the other hand, Nakano et al. found
inflammatory cell infiltration around the endplate in 12 of 30 patients, but the degree was
mild, less than 10% of the endplate. They claimed that lymphorrhage was a nonspecific
phenomenon [145]. Most of the muscle biopsy sites were external intercostal muscles.

In studies producing MG pathology in experimental animals, infiltration of lympho-
cytes around the neuromuscular junction has been seen in the acute phase, which occurs
after antigen injection in rats. In the chronic phase, when AChR antibody titers rise, this
lymphocytic infiltration disappears and morphological destruction of the neuromuscu-
lar junction is observed [146]. The same phenomenon is seen in the immunization of
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extracted and purified AChR [146], as well as in the passive transfer of AChR antibodies in
serum [147–149].

In the mid-20th century, steroids began to be used, and a dramatic change in treatment
occurred. Until then, there was no treatment available to deal with the rapidly progressing
pathology of MG, so muscle tissue was viewed during autopsy at the end of the natural
course of the disease. The literature of the time recorded the pathological findings in detail.
The advent of anti-cholinesterase agents, ACTH, and thymectomy extended the clinical
course of the disease. The use of steroids has saved many lives, deaths from MG have almost
disappeared, and muscle tissue specimens are often obtained from localized muscle tissue
such as the pectoralis major and intercostal muscles at the time of thymectomy. As studies
using experimental models have shown, the pathophysiology is variable. The scene of the
pathophysiology presented by the patient may differ depending on the time since the onset
of the disease, and the judgment of the pathophysiology may differ depending on the object
being viewed. The classic literature has repeatedly shown the importance of lymphorrhage.
We believe that in some cases of seronegative ocular muscle type, lymphorrhage may occur
in the ocular muscles, leading to the onset of the disease.

4. Conclusions

Recent progress in epidemiological studies of childhood myasthenia and treatment
methods has allowed for the collection of reports from various regions of the world. The
results of these studies have revealed subtle differences in the frequency of autoimmune
MG and CMS between racial and regional groups, as well as in the pathophysiology of
myasthenia and treatment methods, based on the history of medical care in each country
and region.

Research on the pathophysiology of myasthenia has made great strides in the past
half century, and there are now a variety of treatment options available, including the
administration of immunosuppressive and biologic preparations. This review did not
address treatment but outlined the pathophysiology of myasthenia in general. A thorough
understanding of this condition is important for its treatment. Children differ significantly
from adults in that they are growing and developing. The frequency of childhood MG
is clearly lower than that of adult-onset MG, and the basic diagnosis and treatment are
often chosen to mimic those of adult MG, assuming that the pathophysiology of the
disease mirrors that in adults. However, it is clear, as mentioned above, that there is
a pathophysiology unique to pediatric MG, and treatment methods should be selected
accordingly. This paper has discussed some of the ways in which pediatric MG differs
from adult MG. However, the reason for these differences still needs to be investigated.
Immunogenetic background and the development of the nervous and immune systems
may play a role. I believe that we must advance research in this unresolved field.
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