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Abstract: It would be useful to develop a reliable method for the cuffless measurement of blood pres-
sure (BP), as such a method could be made available anytime and anywhere for the effective screening
and monitoring of arterial hypertension. The purpose of this study is to evaluate blood pressure mea-
surements through a CardioQVARK device in clinical practice in different patient groups. Methods:
This study involved 167 patients aged 31 to 88 years (mean 64.2 ± 7.8 years) with normal blood pres-
sure, high blood pressure, and compensated high blood pressure. During each session, three routine
blood pressure measurements with intervals of 30 s were taken using a sphygmomanometer with
an appropriate cuff size, and the mean value was selected for comparison. The measurements were
carried out by two observers trained at the same time with a reference sphygmomanometer using a
Y-shaped connector. In the minute following the last cuff-based measurements, an electrocardiogram
(ECG) with an I-lead and a photoplethysmocardiogram were recorded simultaneously for 3 min with
the CardioQVARK device. We compared the systolic and diastolic BP obtained from a cuff-based
mercury sphygmomanometer and smartphone-case-based BP device: the CardioQVARK monitor. A
statistical analysis plan was developed using the IEEE Standard for Wearable Cuffless Blood Pressure
Devices. Bland–Altman plots were used to estimate the precision of cuffless measurements. Results:
The mean difference between the values defined by CardioQVARK and the cuff-based sphygmo-
manometer for systolic blood pressure (SBP) was 0.31 ± 3.61, while that for diastolic blood pressure
(DBP) was 0.44 ± 3.76. The mean absolute difference (MAD) for SBP was 3.44 ± 2.5 mm Hg, and
that for DBP was 3.21 ± 2.82 mm Hg. In the subgroups, the smallest error (less than 3 mm Hg) was
observed in the prehypertension group, with a slightly larger error (up to 4 mm Hg) found among
patients with a normal blood pressure and stage 1 hypertension. The largest error was found in
the stage 2 hypertension group (4–5.5 mm Hg). The largest error was 4.2 mm Hg in the high blood
pressure group. We, therefore, did not record an error in excess of 7 mmHg, the upper boundary
considered acceptable in the IEEE recommendations. We also did not reach a mean error of 5 mmHg,
the upper boundary considered acceptable according to the very recent ESH recommendations. At the
same time, in all groups of patients, the systolic blood pressure was determined with an error of less
than 5 mm Hg in more than 80% of patients. While this study shows that the CardioQVARK device
meets the standards of IEEE, the Bland–Altman analysis indicates that the cuffless measurement
of diastolic blood pressure has significant bias. The difference was very small and unlikely to be
of clinical relevance for the individual patient, but it may well have epidemiological relevance on
a population level. Therefore, the CardioQVARK device, while being worthwhile for monitoring
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patients over time, may not be suitable for screening purposes. Cuffless blood pressure measurement
devices are emerging as a convenient and tolerable alternative to cuff-based devices. However, there
are several limitations to cuffless blood pressure measurement devices that should be considered.
For instance, this study showed a high proportion of measurements with a measurement error of
<5 mmHg, while detecting a small, although statistically significant, bias in the measurement of
diastolic blood pressure. This suggests that this device may not be suitable for screening purposes.
However, its value for monitoring BP over time is confirmed. Furthermore, and most importantly,
the easy measurement method and the device portability (integrated in a smartphone) may increase
the self-awareness of hypertensive patients and, potentially, lead to an improved adherence to their
treatment. Conclusion: The cuffless blood pressure technology developed in this study was tested in
accordance with the IEEE protocol and showed great precision in patient groups with different blood
pressure ranges. This approach, therefore, has the potential to be applied in clinical practice.

Keywords: blood pressure; cuffless; blood pressure measurement; portable ECG monitor;
CardioQVARK device; telemedicine

1. Introduction

Hypertension, or high blood pressure, is one of the major risk factors for stroke, other
cardiovascular diseases (CVD), chronic kidney disease, and dementia. Blood pressure refers
to the pressure exerted on the walls of blood vessels by blood flowing through these blood
vessels. A high blood pressure is the strongest modifiable risk factor for cardiovascular dis-
ease worldwide [1–6]. Monitoring blood pressure (BP) is critical to identify and adequately
treat this important cardiovascular risk factor [7]. A reliable assessment of blood pressure
(BP) allows one to detect any deviations from normal values that may indicate a disease
and can also be used to evaluate the effectiveness of antihypertensive therapy. The gold
standard for evaluation of systolic and diastolic blood pressure is an invasive assessment of
the central arterial blood pressure. Due to the invasive approach, the risk of complications
is significant [8]. Blood pressure devices currently in use are predominantly based on the
oscillometric method. This measurement method provides intermittent readings rather
than continuous monitoring and may deliver inaccurate measurements for various reasons
such as different cuff sizes [9–14]. Non-invasive wireless monitoring systems are an ap-
pealing development that could offer wider applications in different settings and facilitate
telemedicine monitoring of blood pressure.

Photoplethysmography (PPG) is a method of optics based on changes in blood volume
during the heart cycle in peripheral arterioles [15]. The existing pulse transit time (PTT)
method uses an ECG sensor for the heart and a photoplethysmography sensor when mea-
suring other peripheral parts. Photoplethysmography can observe changes in blood flow
by optically detecting light reflected or transmitted from tissues and blood. Based on the R-
peak measured in the electrocardiogram, either the time difference between the start points
of the pulse wave of the photoplethysmography signal or the time difference between the
points when the PPG signal is used; these measurements have maximum values of PTTb
and PTTt, respectively [16,17]. The pulse transit time (PTT) is known to be an indicator
of the BP level and may be the key to cuffless BP measurement [16–18], depending on its
determination from ECG and photoplethysmography data [19–22]. Various models have
been used for BP assessments based on the photoplethysmography method [23]. One study
used a CardioQVARK device, a smartphone case that offers simultaneous recording of
the electrocardiogram and provides a continuous recording of the photoplethysmography
image of the pulse wave. All received data were registered on the server, based on which
an algorithm used to measure blood pressure was built [24]. The IEEE (Institute of Elec-
trical and Electronics Engineers) standards map has previously been used for practical
measurements with the CardioQVARK device [25–27]. The aim of this paper is to validate
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a method for non-invasive blood pressure measurement based on the IEEE Standard for
Wearable Cuffless Blood Pressure Devices [28].

2. Materials and Methods

This is a prospective observational study that was conducted at the I.M. Sechenov First
Moscow State Medical University (Sechenov University, Moscow, Russia), Clinical Hospital
№1 in Moscow, Russia, between December 2020 and November 2021. This study was
conducted according to the guidelines of the Declaration of Helsinki and approved by the
Local Ethics Committee of I.M. Sechenov First Moscow State Medical University (Sechenov
University), protocol code NO. 14–19. All participants gave written informed consent.

2.1. Study Patients

The sample size was determined according to the IEEE Standard for Wearable Cuffless
Blood Pressure Measuring Devices [28]. The inclusion criteria were age >18 years and
written informed consent of the patient. The exclusion criterion was poor quality of the
ECG or pulse wave. This study included patients with a normal blood pressure and patients
with hypertension or a compensated high blood pressure who achieved the target blood
pressure level during the treatment of arterial hypertension with an increase of 2–3 degrees.

2.2. Blood Pressure Measurement and Data Acquisition

In the first phase of the study, the observers were trained. Two observers were trained
in the accurate measurement of blood pressure and familiarized themselves with the data
collection procedure and the operation of the device [28]. In the main study phase, the
blood pressure used in the analysis was measured by a trained observer following the
British Hypertension Society (BHS) protocols [26,27]. Three measurements were taken
in the seated position, and the average value was used as the BP input to determine the
subject’s BP classification. The patient sat quietly for 15 min before the measurement. The
cuff was placed on the left upper arm, 2 cm above the elbow. During each session, we
took 3 cuff blood pressure measurements at 30 s intervals using a sphygmomanometer.
We used a properly sized cuff. The cuff was inflated until the pressure that it exerted on
the underlying arm was high enough to stop blood flow underneath the cuff, such that
no blood flow sounds could be heard. As the cuff pressure was reduced, the pressure
transmitted from the cuff to the walls of the underlying arteries was reduced until blood
flow resumed and the sound of blood flow could again be heard. These sounds can vary in
intensity and usually stop at the point of the lowest pressure within the arteries before the
next pulse arrives. The mean value of 3 measurements was selected for further analysis.
The measurements were carried out by two observers trained at the same time with a
reference sphygmomanometer (using a Y-shaped connector). Systolic blood pressure (SBP)
and diastolic blood pressure (DBP) measurements with the mercury sphygmomanometer
were determined, respectively, using the Phase 1 and Phase 5 Korotkoff sounds. If the
measurements of the two observers were no more than 4 mm Hg from each other, the mean
values of the two observers were used as a reference.

Within one minute of the cuff-based measurement series, an I-lead ECG with simulta-
neous photoplethysmocardiogram was recorded over 3 min with a CardioQVARK device
(Figure 1). ECG signals were recorded from the fingers using one ECG lead. The sensors
provided a continuous recording of the photoplethysmography image of the pulse wave,
synchronized with the electrocardiogram cycles. The algorithm we used in this study
was based on simultaneous evaluation of the electrocardiogram and pulse transit time
parameters, which were recorded with a smartphone case. The device and application were
combined into one unit and registered with the Federal Service for Surveillance in Health-
care № RZN 2019/8124 on 15 February 2019. Detailed characteristics and the working
algorithm of the CardioQVARK device have been previously reported [24].
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Figure 1. Characteristics of the CardioQVARK device. The left side presents the electrode for I-lead
ECG registration, and the right side shows the monitor for the photoplethysmography PPG. The
device is presented together with an example of a recording.

2.3. Statistical Analysis

We compared the systolic and diastolic blood pressure obtained from the cuff-based
mercury sphygmomanometer and smartphone-case-based BP device (CardioQVARK
monitor).

Descriptive statistics for the numerical data included the mean (M), standard deviation
(SD), median, minimum, maximum, and 2.5, 25, 75, and 97.5 percentiles. Normality was
assessed using a Shapiro–Wilk test. For categorical data, the proportions and absolute
values were determined.

A blood pressure assessment with the Korotkoff method was used as the reference
method.

The statistical analysis plan was obtained from the Institute of Electrical and Electronics
Engineers Standard for Wearable Cuffless Blood Pressure Measuring Devices [28].

Bland–Altman plots were used to estimate the precision of cuffless measurements. The
mean difference (MD), mean absolute difference (MAD), and mean absolute percentage
difference (MAPD) (CI) were calculated with a 95% confidence interval:

MD =
∑n

i=1 newi − re fi

n

MAD =
(∑n

i=1|newi − re fi|)
n

MAPD =
100× (∑n

i=1|newi − re fi|/re fi)

n
.

Cumulative percentages and cumulative distribution functions were estimated for the
MAD. Cumulative percentages were calculated for MADs of ≤5, ≤10, and ≤15 mmHg.
Histograms were drawn for a visual assessment of the MD.

Statistical analysis was conducted using SPSS v. 23 and R v.4.0. The Bland–Altman plot
was used to test agreement between the two measurement methods, where the cuff-based
mercury sphygmomanometer method was the reference method.
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3. Results

This study included 167 patients, 64 women and 102 men, from 31 to 88 years of age
(mean 64.2 ± 7.8 years). In total, 61.1% were males (Table 1). In addition, gender, date of
birth, medical history, and medications were recorded on the case report form (Table 2).
Patients with different BP levels were included (Table 1).

Table 1. Blood pressure in cohort patients as measured by oscillometric measurements.

Current SBP
(mm Hg)

Mean SBP in Group
(mm Hg) Number of Patients Age Male

(%)

All 130.5 ± 23.0 167 65.3 ± 11.3 61.1
≥160 168.9 ± 10.7 22 67.0 ± 10.5 41.0

140–159 146.6 ± 4.9 41 63.3 ± 11.3 68.3
120–139 127.8 ± 6.2 51 66.4 ± 10.9 60.8

<120 104.7 ± 8.8 53 65.2 ± 12.1 64.1

Current DBP
(mm Hg)

Mean DBP in group
(mm Hg) Number of Patients Age Male

(%)

All 81.5 ± 13.8 167 65.3 ± 11.3 61.1
≥100 108.3 ± 6.6 18 61.7 ± 12.2 55.5

90–100 92.3 ± 2.8 29 65.1 ± 10.4 58.6
80–89 82.5 ± 2.5 52 65.3 ± 10.4 63.5
<80 69.0 ± 6.9 68 66.5 ± 12.2 61.9

Systolic blood pressure (SBP), diastolic blood pressure (DBP).

Table 2. Cohort characteristics.

Characteristic Number of Patients
(N = 167) % (From N)

Age: median 66 years [59.5; 73]
Ischemic heart disease 75 44.9
Arterial hypertension 144 86.3

Heart failure 68 40.7
LV EF < 55% 36 21.6
LV EF < 40% 14 8.4

LV DD in grades 2 and 3 31 18.6
Diabetes 72 43.1
Smokers 39 23.4

Vessel wall stiffness 35 21.0
Using statins 99 59.3

Using antihypertension drugs 139 83.2
Using diuretics 71 42.5

LV = left ventricular, EF = ejection fraction, DD = diastolic dysfunction.

The mean systolic blood pressure (SBP) among our patients was 130.5 ± 23.0 mm Hg
(range 88–191 mm Hg), and the mean diastolic blood pressure (DBP) was 81.5 ± 13.8 mm Hg
(range 54–122 mm Hg) after applying the cuff-based mercury sphygmomanometer (Table 2).
The mean SBP was 128.3 ± 17.9 mm Hg (range 87–188 mm Hg), and the mean DBP was
79.2 ± 11.2 mm Hg (range 56–121 mm Hg) when measured using the CardioQVARK monitor.

The aim of this paper was to validate a method for non-invasive blood pressure
measurements based on the IEEE Standard for Wearable Cuffless Blood Pressure Devices.
The IEEE Standard for Wearable Cuffless Blood Pressure Devices foresees a two-phase
validation process. The first phase (Table 3) requires a minimum of 20 subjects, and the
second phase requires an additional 25 subjects (a total of at least 45 subjects is required).
In each stage, the measurement error must be evaluated separately for the entire group
and in each age subgroup to determine systolic and diastolic blood pressure. The error is
estimated based on the mean difference (MD), mean absolute difference (MAD), and mean
absolute difference in percentage (MAPD) and then ranked using the ANSI/AAMI SP10
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and BHS scales [29,30]. In the case of sufficient rankings, the method can be recommended
for use. Vascular compliance is a key determinant of wave propagation in the vascular
system. Hence, pulse wave velocity measurements are used as a method for detecting
vessel stiffness using the VaSera VS-1500N [31] (Table 2). The VaSera VS-1500N device
non-invasively measures blood pressure in four limbs with simultaneous recording of ECG,
PCG, and pulse waves in the carotid, femoral arteries, and arteries of the four limbs. Thus,
a sphygmometer makes it possible to study the distensibility of the arteries and the degree
of blood flow disturbance in the vessels of the patient’s lower extremities.

Table 3. First phase of validation process.

Number of Subjects: 45 (20 Subjects for Phase 1; 25 Subjects for Phase 2)

Blood Pressure Ranges:

Blood Pressure
Classification

Systolic Blood
Pressure (mmHg)

Diastolic Blood
Pressure (mmHg) Subjects in Phase 1 Subjects in Phase 2

Normal <120 and <80 5 ≥6
Prehypertension 120–139 or 80–89 5 ≥6

Stage 1 hypertension 140–160 or 90–100 5 ≥6
Stage 2 hypertension ≥160 or ≥100 5 ≥6

Gender:
At least 22 males and 22 females

Age:
All subjects must be 18 to 65 years old.

An analysis of the device accuracy is presented in Table 4 according to the IEEE-SA
Standards.

Basic descriptive statistics for errors are provided in the Appendix A in Tables A1–A5.
The Bland–Altman analysis showed that the SBP and DBP values calculated using the

BP device without a cuff matched the values measured using a mercury sphygmomanome-
ter with a cuff (Figures 2–5).
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Table 4. Device accuracy report.

Group Valid N MAD (mmHg) MAPD (%) MD (mmHg) CP MAD ≤ 5
mmHg (%)

CP MAD ≤ 10
mmHg (%)

CP MAD ≤ 15
mmHg (%)

Total group SBP 167 3.44 [3.05, 3.82] 2.68 [2.4, 2.96] −0.05 [−0.7, 0.6] 85.6% 98.2% 99.4%
Total group DBP 167 3.21 [2.78; 3.64] 3.97 [3.43; 4.51] −1.02 [−1.65; −0.38] 83.8% 98.2% 98.8%

Normal SBP 47 3.32 [2.86; 3.77] 3.24 [2.79; 3.69] −0.3 [−1.38; 0.78] 91.5% - -
Normal DBP 47 3.06 [2.28; 3.85] 4.66 [3.46; 5.85] 1.02 [−0.14; 2.18] 87.2% 97.9% 100%

Prehypertension SBP 51 2.94 [2.22; 3.66] 2.34 [1.78; 2.91] 1.29 [0.25; 2.33] 86.3% 98.0% 100%
Prehypertension DBP 51 2.78 [2.01; 3.56] 3.55 [2.49; 4.61] −0.94 [−2.01; 0.13] 88.2% 98.0% 98.0%

Stage 1 SAH 43 3.7 [2.97; 4.42] 2.56 [2.06; 3.05] −0.35 [−1.71; 1.01] 83.7% 100% -
Stage 1 DAH 43 3.3 [2.52; 4.09] 3.72 [2.86; 4.58] −2.74 [−3.72; −1.77] 81.4% 100% -
Stage 2 SAH 26 4.19 [2.69; 5.69] 2.53 [1.61; 3.46] −1.73 [−3.9; 0.44] 76.9% 92.3% 96.2%
Stage 2 DAH 26 4.15 [2.71; 5.59] 3.99 [2.72; 5.25] −2.0 [−4.08; 0.08] 73.1% 96.2% 96.2%

Systolic blood pressure (SBP), diastolic blood pressure (DBP), systolic arterial hypertension (SAH), diastolic arterial hypertension (DAH), cumulative percentage (CP), mean difference
(MD), mean absolute difference (MAD), and mean absolute percentage difference (MAPD). MD, MAD, and MAPD are presented with 95% confidence intervals (CIs).
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4. Discussion

Developing cuffless methods for the remote monitoring of blood pressure is a valu-
able undertaking since such technologies have the potential to improve blood pressure
control. We previously tested a new algorithm for BP determination using ECG and PPG
parameters recorded with a smartphone case against oscillometric BP measurements taken
in a large sample of hypertensive patients [24]. In the present study, we compared mea-
surements using a CardioQVARK device with measurements using a cuff-based mercury
sphygmomanometer according to the standards of The Institute of Electrical and Electronics
Engineers for Wearable and Cuffless Blood Pressure Measuring Devices [14,18,20]. This
study included patients of different age groups and with different blood pressure levels
(Table 1) and overcame some of the limitations of our previous study [24].

The mean difference between the measurements using CardioQVARK and those using
the cuff-based mercury sphygmomanometer for systolic blood pressure was−0.05 ± 4.25 mm
Hg, while the difference for diastolic blood pressure was −1.02 ± 4.15 mm Hg. The mean
absolute difference (MAD) for systolic blood pressure was 3.44 ± 2.5 mm Hg, while that
for diastolic blood pressure was 3.21 ± 2.82 mm Hg.

In the subgroups, the smallest error (less than 3 mm Hg) was observed in the pre-
hypertension group, with a slightly larger error (up to 4 mm Hg) found among normal
blood pressure and stage 1 hypertension patients. The largest error was observed in the
stage 2 hypertension group (4–5.5 mm Hg). The largest error was 4.2 mm Hg in the high
blood pressure group. We, therefore, did not record an error in excess of 7 mmHg, the
upper boundary considered acceptable for the IEEE recommendations. We also did not
reach a mean error of 5 mmHg, the upper boundary considered acceptable according to the
recent ESH recommendations [32]. At the same time, in all groups of patients, the systolic
pressure was correctly determined with an error of less than 5 mm Hg in more than 80%
of patients.

Overall, while this study shows that the CardioQVARK device meets the standards of
the IEEE, the Bland–Altman analysis indicates that the cuffless measurement of diastolic
blood pressure retains a significant bias. The difference was very small and unlikely to be
of clinical relevance for the individual patient, but this may well have epidemiological rele-
vance on a population level. Therefore, the CardioQVARK device, while being worthwhile
for monitoring patients over time, may not be suitable for screening purposes.
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An algorithm proven to correctly determine blood pressure was integrated into a
mobile phone case [24]. The great advantage of such a method is that the patient requires
no additional devices, only a smart phone. Cuffless blood pressure measurement devices
are emerging as a convenient and tolerable alternative to cuff-based devices [33]. However,
there are several limitations to cuffless blood pressure measurement devices that should
be considered. For instance, this study showed a high proportion of measurements with a
measurement error of <5 mmHg, while detecting a small, although statistically significant,
bias in the measurement of diastolic blood pressure. This suggests that this device may
not be suitable for screening purposes. However, its value for monitoring BP over time
is confirmed [34,35]. Furthermore, and most importantly, the easy measurement method
and the device portability (integrated in a smartphone) may increase the self-awareness of
hypertensive patients and, potentially, lead to an improved adherence to their treatment.

Limitations

There are some limitations to this study. First, our study used the IEEE Standard
for Wearable Cuffless Blood Pressure Devices to validate the non-invasive blood pressure
measurement method instead of the ESC, the corresponding clinical society with recent rec-
ommendations (2023) and more stringent criteria. Second, the sample size was determined
according to the IEEE Standard for Wearable Cuffless Blood Pressure Devices (this number
is lower than the sample size currently recommended in the most recent ESH recommenda-
tions) [32]. Thirdly, the use of the proposed device is limited in epidemiological studies to
evaluate cut-off values for screening, for which small BP differences have been shown to
potentially have a significant public health impact. The device may be adequate for blood
pressure monitoring over time, however. Finally, the blood pressure measurements were
consecutive and not simultaneous. However, the comparatively brief interruption in time
likely did not lead to a substantial loss of information.

5. Conclusions

In this study, the cuffless blood pressure measuring technology we developed was
tested according to the IEEE protocol and showed a high accuracy in groups of patients
with different blood pressure ranges. This approach, therefore, has the potential to be
applied in clinical practice.
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Appendix A

Table A1. Overall group characteristics.

Mark Valid, n Min Mean ± Standard Deviation 2.5% Median and 25/75% 97.5% Max

SBP Korotkov 167 88 130.5 ± 22.94 91.15 130.0 [114.0; 145.5] 173.55 195
DBP Korotkov 167 55 81.51 ± 13.74 60 81.0 [72.0; 90.0] 112 121

SBP Quark 167 90 130.45 ± 22.86 93.15 130.0 [114.5; 145.0] 171.7 201
DBP Quark 167 56 80.5 ± 12.63 60 80.0 [72.0; 85.5] 109.85 120

MD SBP 167 −16 −0.05 ± 4.25 −7.85 0.0 [−3.0; 3.0] 7 14
MAD SBP 167 0 3.44 ± 2.5 0 3.0 [2.0; 4.5] 8.85 16

MAPD SBP 167 0 2.68 ± 1.85 0 2.31 [1.38; 3.46] 6.64 10.14
MD DBP 167 −18 −1.02 ± 4.15 −7.85 −1.0 [−3.5; 1.0] 6.85 16

MAD DBP 167 0 3.21 ± 2.82 0 3.0 [1.0; 4.0] 9 18
MAPD DBP 167 0 3.97 ± 3.53 0 3.23 [1.64; 5.49] 11.09 23.53

Table A2. Subgroup with normotension (according to IEEE guidelines).

Mark Valid, n Min Mean ± Standard Deviation 2.5% Median and 25/75% 97.5% Max

SBP Korotkov 47 88 103.32 ± 8.24 89.3 103.0 [97.5; 109.5] 117.7 119
DBP Korotkov 47 55 66.06 ± 5.76 57.45 64.0 [61.5; 70.5] 76.7 77

SBP Quark 47 90 103.02 ± 7.91 91.15 100.0 [97.5; 110.5] 117.7 121
DBP Quark 47 56 67.09 ± 5.67 59.15 67.0 [63.0; 70.5] 79.4 83

MD SBP 47 −7 −0.3 ± 3.64 −6 −1.0 [−4.0; 3.0] 5 6
MAD SBP 47 1 3.32 ± 1.53 1 3.0 [2.0; 4.5] 6 7

MAPD SBP 47 0.88 3.24 ± 1.51 0.9 3.12 [1.99; 4.26] 6.3 6.67
MD DBP 47 −5 1.02 ± 3.92 −4,85 0.0 [−2.0; 4.0] 7.7 15

MAD DBP 47 0 3.06 ± 2.64 0 3.0 [1.0; 4.0] 7.7 15
MAPD DBP 47 0 4.66 ± 4.03 0 3.9 [1.74; 6.58] 12.81 22.06

Table A3. Subgroup with prehypertension (according to IEEE guidelines).

Mark Valid, n Min Mean ± Standard Deviation 2.5% Median and 25/75% 97.5% Max

SBP Korotkov 51 112 126.06 ± 6.68 114.5 125.0 [121.0; 131.0] 138 138
DBP Korotkov 51 68 79.75 ± 4.52 68.5 80.0 [78.0; 82.0] 87.5 88

SBP Quark 51 116 127.35 ± 7.1 118 125.0 [122.5; 131.0] 140.75 152
DBP Quark 51 70 78.8 ± 3.97 71.25 79.0 [77.0; 81.0] 85 90

MD SBP 51 −6 1.29 ± 3.66 −4 1.0 [−1.0; 3.0] 7.75 14
MAD SBP 51 0 2.94 ± 2.54 0 2.0 [1.0; 4.0] 7.75 14

MAPD SBP 51 0 2.34 ± 2.0 0 1.67 [0.82; 3.25] 6.68 10.14
MD DBP 51 −9 −0.94 ± 3.78 −6 −1.0 [−3.0; 1.0] 4.75 16

MAD DBP 51 0 2.78 ± 2.72 0 2.0 [1.0; 4.0] 8.25 16
MAPD DBP 51 0 3.55 ± 3.73 0 2.6 [1.27; 4.82] 10.17 23.53

Table A4. Subgroup with stage 1 hypertension (according to IEEE guidelines).

Mark Valid, n Min Mean ± Standard Deviation 2.5% Median and 25/75% 97.5% Max

SBP Korotkov 43 120 143.84 ± 7.46 123.2 145.0 [140.5; 150.0] 154 155
DBP Korotkov 43 79 87.07 ± 5.6 79.05 88.0 [81.5; 91.0] 98 99

SBP Quark 43 118 143.49 ± 8.89 121.45 142.0 [140.0; 150.0] 157.9 162
DBP Quark 43 77 84.33 ± 5.35 78 84.0 [80.0; 87.0] 97 97

MD SBP 43 −10 −0.35 ± 4.36 −8.9 −1.0 [−3.5; 3.5] 7 8
MAD SBP 43 0 3.7 ± 2.33 0.05 4.0 [2.0; 5.0] 8.95 10

MAPD SBP 43 0 2.56 ± 1.58 0.03 2.65 [1.36; 3.37] 6.37 6.49
MD DBP 43 −10 −2.74 ± 3.12 −8.95 −3.0 [−4.0; 0.0] 2.95 4

MAD DBP 43 0 3.3 ± 2.52 0 3.0 [1.5; 4.0] 8.95 10
MAPD DBP 43 0 3.72 ± 2.75 0 3.45 [1.64; 4.82] 9.93 10.99
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Table A5. Subgroup with stage 2 hypertension (according to IEEE guidelines).

Mark Valid, n Min Mean ± Standard Deviation 2.5% Median and 25/75% 97.5% Max

SBP Korotkov 26 150 166.27 ± 11.44 150 163.0 [161.0; 170.0] 192.5 195
DBP Korotkov 26 90 103.73 ± 8.86 90 102.0 [98.0; 111.0] 119.75 121

SBP Quark 26 144 164.54 ± 13.81 146.5 160.0 [155.75; 168.75] 196.62 201
DBP Quark 26 86 101.73 ± 9.05 86 102.0 [96.25; 108.75] 116.88 120

MD SBP 26 −16 −1.73 ± 5.27 −14.75 −1.5 [−3.75; 2.75] 4.75 6
MAD SBP 26 0 4.19 ± 3.64 0.62 3.0 [2.0; 4.0] 14.75 16

MAPD SBP 26 0 2.53 ± 2.24 0.33 1.9 [1.19; 2.66] 9.09 10
MD DBP 26 −18 −2.0 ± 5.05 −11.12 −2.5 [−4.0; 0.75] 7.38 8

MAD DBP 26 0 4.15 ± 3.49 0.62 3.0 [2.0; 5.75] 11.75 18
MAPD DBP 26 0 3.99 ± 3.07 0.52 3.11 [1.93; 5.46] 11.11 15.13
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