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Abstract: Cannabinoids are abundant signaling compounds; their influence predominantly arises
via engagement with the principal two G-protein-coupled cannabinoid receptors, CB1 and CB2.
One suggested theory is that cannabinoids regulate a variety of physiological processes within
the cells of skeletal muscle. Earlier publications have indicated that expression of CB1 receptor
mRNA and protein has been recognized within myotubes and tissues of skeletal muscle from both
murines and humans, thus representing a potentially significant pathway which plays a role in
the control of skeletal muscular activities. The part played by CB1 receptor activation or inhibition
with respect to these functions and relevant to targets in the periphery, especially skeletal muscle,
is not fully delineated. Thus, the aim of the current research was to explore the influence of CB1
receptor stimulation and inhibition on downstream signaling of the nuclear receptor, NR4A, which
regulates the immediate impacts of arachidonyl-2′-chloroethylamide (ACEA) and/or rimonabant in
the cells of skeletal muscle. Murine L6 skeletal muscle cells were used in order to clarify additional
possible molecular signaling pathways which contribute to alterations in the CB1 receptor. Skeletal
muscle cells have often been used; it is well-documented that they express cannabinoid receptors.
Quantitative real-time probe-based polymerase chain reaction (qRT-PCR) assays are deployed in
order to assess the gene expression characteristics of CB1 receptor signaling. In the current work, it
is demonstrated that skeletal muscle cells exhibit functional expression of CB1 receptors. This can
be deduced from the qRT-PCR assays; triggering CB1 receptors amplifies both NR4A1 and NR4A3
mRNA gene expression. The impact of ACEA is inhibited by the selective CB1 receptor antagonist,
rimonabant. The present research demonstrated that 10 nM of ACEA notably amplified mRNA gene
expression of NR4A1 and NR4A3; this effect was suppressed by the addition of 100 nM rimonabant.
Furthermore, the CB1 receptor antagonist led to the downregulation of mRNA gene expression of
NR4A1, NR4A2 and NR4A3. In conclusion, in skeletal muscle, CB1 receptors were recognized to
be important moderators of NR4A1 and NR4A3 mRNA gene expression; these actions may have
possible clinical benefits. Thus, in skeletal muscle cells, a possible physiological expression of CB1
receptors was identified. It is as yet unknown whether these CB1 receptors contribute to pathways
underlying skeletal muscle biological function and disease processes. Further research is required to
fully delineate their role(s).
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1. Introduction

Studies have shown that several physiological functions played by the majority of
tissues are regulated by cannabinoids [1]. The same is the case for skeletal muscles [2,3].
It has been established that the endocannabinoid system (ECS) works as a complicated
endogenous signaling system that is comprised of at least two cannabinoid receptors
together with their endogenous ligands as well as enzymes that bring about biosynthesis
and degradation of ligands [4]. Receptors of cannabinoids are members of the G-protein
coupled receptors superfamily and they have been grouped as CB1 and CB2 receptors
that participate in adenylate cyclase regulation [5]. A number of cells and tissues such
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as skeletal muscles express cannabinoid receptors [6–8]. The role of CB1 receptor as the
main receptor bringing about the outcomes of the endocannabinoid system in metabolic
processes. CB1 receptors have proven to be the most commonly expressed GPCRs in case
of brain tissue [9], though they are also found in peripheral tissues like skeletal muscle,
pancreas, liver and adipose tissue [10,11]. Conversely, CB2 receptors are mostly found to
be expressed by constituents of immune system. In particular, they are expressed inside
thymus, tonsils and spleen [12,13].

One of the largest tissues of human body is the skeletal muscle. In the case of rats,
it constitutes majority of the body weight [14–17]. In general, it has been recognized as
the main site of metabolism of fatty acids and glucose [18–23]. The role of skeletal muscle
in sustaining body glucose homeostasis has proven to be very important [24]. Moreover,
skeletal muscle serves as site of insulin resistance as well. As this tissue is capable of
oxidizing fatty acid and glucose, its role in metabolic disorders is also important [25]. A
number of scientists sometimes refer skeletal muscle as an endocrine organ considering
discharge of inflammatory mediators by this tissue [17]. Taken together, skeletal muscle is
essentially involved in glycemic control, sustaining glucose homeostasis and in regulating
metabolic reactions of human system [24]. The skeletal muscle may perform the abovemen-
tioned functions through the endocannabinoid system; yet this possibility has not been
investigated thoroughly.

NR4A is a subfamily of the orphan nuclear receptor superfamily consisting of three
members, Nur77 (NR4A1), Nurr1 (NR4A2) and NOR1 (NR4A3) [26]. Several recent studies
have demonstrated that NR4A receptors are key transcriptional regulators implicated
in various biological processes, such as inflammation, lipid and glucose metabolism,
insulin sensitivity, energy balance, and cell proliferation and differentiation [27,28]. These
studies have focused on NR4A mainly in the liver, adipose, and skeletal muscle [29,30].
There is growing evidence to suggest that the activation of NR4A leads to an increase
in the gene expression of intracellular downstream signaling pathways that potentially
participate in the regulation of glucose and fatty acid metabolism and cell growth in skeletal
muscle [31,32]. The NR4A family is also reported to play metabolic roles in all major insulin-
sensitive target tissues. For example, NR4A1 is reported to be a factor in regulating glucose
and lipid metabolism in muscle [33,34]. Cross-talk between the cannabinoid CB1 receptor
and NR4A signaling may potentially represent an important yet unknown mechanism
contributing to the regulation of skeletal muscle functions. Thus, further studies using L6
skeletal muscle cells as a cell model to understand the molecular signaling involved in the
cross-talk are highly significant.

The CB1 receptor was found to be expressed in skeletal muscle [2], cannabinoid
receptor ligands were shown to produce a CB1 receptor-dependent reduction in cAMP
levels in transfected CHO cells [35] and different regions of the rat brain [36], and cAMP
was found to be involved in an increased expression of NR4A in skeletal muscle [7,20,36,37].
Therefore, CB1 receptors can potentially affect the nuclear receptor subfamily 4, group
A (NR4A), through the cAMP or Gβγ pathway in rat L6 skeletal muscle cell myotubes.
Consequently, CB1 receptors may potentially modulate glucose and fatty acid metabolism
and inflammation in skeletal muscle tissue. To address this issue, an investigation of
the signaling events (NR4A family) underlying the activation and inhibition of the CB1
receptor in rat L6 skeletal muscle cells took place. The purpose of this work was to explain
the potential signaling underlying the cannabinoid CB1 receptor modulation on NR4A
mRNA gene expression.

2. Materials and Methods

Tocris Bioscience (Bristol, UK) supplied the insulin, arachidonyl-2′-chloroethylamide
(ACEA), and rimonabant, while Santa Cruz (Dallas, TX, USA) provided the dimethyl-
sulphoxide reagent. Thermo Scientific Company (Waltham, MA, USA) supplied the Max-
ima Probe qPCR Master Mix (2X) and Thermo Scientific RevertAid First Strand cDNA
Synthesis, while Qiagen (Hilden, Germany) was the provider of the RNeasy Mini Total
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RNA Purification kits and RNase-Free DNase Set. Applied Biosystem (Waltham, MA, USA)
provided Trizol and charcoal stripped serum, while FBS (fetal bovine serum) was obtained
from Capricorn Scientific (Ebsdorfergrund, Germany). Sigma Company (Saint Louis, MO,
USA) supplied horse serum, and Ham-F 10 was obtained from PAA Company (Cambridge,
UK). Dulbecco’s modified essential medium (DMEM) was supplied by Caisson (Denver,
CO, USA).

2.1. Cell Culture

The American Type Culture Collection (Manassas, VA, USA) provided the L6 skeletal
muscle cell line from rats along with the myoblast cell line, originating from cells which
had been maintained in the form of an attached monolayer culture in DMEM which had a
high glucose level (4500 mg/L) with L-glutamate which had been supplemented by 10%
(v/v) heat-inactivated FBS and 100 µg/mL of penicillin-streptomycin. Incubation of the
cells took place at a temperature of 37 ◦C using a 5% carbon dioxide atmosphere at 90%
humidity. Passaging of the cells occurred at around 60–70% confluency, while changing
of the medium was carried out thrice weekly, as shown in Figure 1. The confluent cells
underwent 14 days of further culturing in 25 cm2 flasks in order to allow myotubes to
form, in alignment with the protocols outlined in my previous publications [15–17], albeit
with minor modifications (Figure 1). After around two weeks of culturing, the 70–90%
confluent myotubes were then exposed to 2% (v/v) delipidated serum for a period of 5 h
before undergoing starvation for a further 19 h. Figure 1 then shows that the cells were
treated for varying periods of time (1, 3, 5, and 24 h) with vehicle (0.1% DMSO), rimonabant
100 nM, ACEA 10 nM, and insulin 100 nM. The ACEA and rimonabant cells had undergone
pre-treatment using rimonabant for 10 min before adding ACEA. After the treatment, the
cells were washed using ice-cold PBS, before lysing using Trizol (2 mL per flask).

2.2. Extraction of RNA and Synthesis of cDNA

The L6 skeletal muscle cells of rats were placed in 25 cm2 flasks and scraped in 2 mL of
ice-cold Trizol, whereupon the RNA was separated and isolated in line with the guidelines
of the manufacturer. RNeasy purification columns (Qiagen, Hilden, Germany) were then
used to carry out the RNA clean-up and on-column DNase digestion. A spectrophotometer
(JENWAY Genova Nano, Stafford, UK) was then used to assess the concentration and purity
of the RNA. In order to carry out the cDNA synthesis, a quantity of 500 ng of total RNA
underwent reverse transcription via RevertAid First Strand cDNA Synthesis in a process
taking 5 min using a total volume of 20 µL at a temperature of 25 ◦C, before the temperature
was increased to 42 ◦C for the subsequent one-hour period. Finally, termination of the
reaction took place for 5 min at 70 ◦C. Gene expression was then quantified using the
relative standard curve approach on the basis of the TaqMan quantitative real-time PCR
(qRT-PCR). For this process, the preparation of the samples was carried out using a total
reaction volume of 25 µL (comprising 13 µL Maxima Probe qPCR Master Mix 2× reagent,
1.5 µL of forward primer (10 µM), 2.5 µL Probe (2 µM), 1.5 µL of reverse primer (10 mM),
5 µL of water, and 5 µL of cDNA). A 7500 fast real-time PCR system (Applied Biosystems,
Waltham, MA, USA) was employed to complete the qRT-PCR analysis, while the determi-
nation of the gene expression was made by considering the relationship to the reference
gene, TATA. Primer Express software (Applied Biosystems, USA) was used in the case
of probes and primers for all genes, as shown in Table 1, with the design and synthesis
performed by Integrated DNA Technologies, Inc. (Coralville, IA, USA). The standard curve
approach was employed, using a slope ranging from−3.2 to−3.6 with R2 values exceeding
99%, reflecting efficiency of amplification approaching 100%.
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Figure 1. Images depicting L6 skeletal muscle myoblasts from rats, differentiated into L6 skeletal muscle myotubes (pas-
sage 7). (a) Myoblasts obtained on day 3 of the tissue culture in 10% FBS Ham F-10 media (10×). (b) Cells obtained on 
day 4 of the tissue culture in 6% horse serum Ham F-10 media (10×). (c) Myotubes obtained on day 5 of the tissue culture 
in 2% horse serum Ham F-10 media (10×). (d) Myotubes obtained after 4 h of tissue culture in 2% delipidated serum 
Ham F-10 media (10×). (e) Myotubes obtained after one hour of cell starvation in only Ham F-10 media (10×). (f) Myo-
tubes obtained after 19 h of cell starvation in only Ham F-10 media (10×). 
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Figure 1. Images depicting L6 skeletal muscle myoblasts from rats, differentiated into L6 skeletal muscle myotubes (passage
7). (a) Myoblasts obtained on day 3 of the tissue culture in 10% FBS Ham F-10 media (10×). (b) Cells obtained on day 4 of
the tissue culture in 6% horse serum Ham F-10 media (10×). (c) Myotubes obtained on day 5 of the tissue culture in 2%
horse serum Ham F-10 media (10×). (d) Myotubes obtained after 4 h of tissue culture in 2% delipidated serum Ham F-10
media (10×). (e) Myotubes obtained after one hour of cell starvation in only Ham F-10 media (10×). (f) Myotubes obtained
after 19 h of cell starvation in only Ham F-10 media (10×).



Pathophysiology 2021, 28 461

Table 1. List of gene primer and probe sequences.

Gene Sequences (5′ → 3′) Amplicon Size (bp)

NR4A1
Probe 5′-CTTTATCCTCCGCCTGGCCTACCGA-3′

Forward primer 5′-TGTTGCTAGAGTCCGCCTTTC-3′

Reverse primer 5′-CAGGCCTGAGCAGAAGATGAG-3′
95

NR4A2

Probe
5′-TACGCTTAGCATACAGGTCCAACCCAGTG-3′

Forward Primer 5′-CCAAAGCCGATCAGGACCT-3′

Reverse primer 5′-GACCACCCCATTGCAAAAGAT-3′
116

NR4A3
Probe: 5′-ACTGTCCCACCGACCAGGCCACT-3′

Forward Primer: 5′-GACGCAACGCCCAGAGAC-3′

Reverse primer 5′-TAGAACTGCTGCACGTGCTCA-3′
92

TATA-BOX

Probe 5′-TCCCAAGCGGTTTGCTGCAGTCA-3′

Forward Primer 5′-TTCGTGCCAGAAATGCTGAA-3′

Reverse Primer
5′-GTTCGTGGCTCTCTTATTCTCATG-3

73

2.3. Data Analysis

Data are presented in the form of mean ± SEM following the generation of triplicate
or quadruplicate wells from no fewer than three experimental groups. Data analysis of
mRNA data employed one-way ANOVA and a Tukey test. The GraphPad Prism, version
5.03 (GraphPad Software Inc., San Diego, CA, USA) was used for all analyses, and the
statistical significance level was determined to be p < 0.05.

3. Results
3.1. Effects of ACEA, Rimonabant, and Insulin on NR4R1 mRNA Gene Expression

Using delipidated serum, treating the cells with ACEA (10 nM) for 5 h significantly
up-regulated NR4A1 mRNA gene expression (p < 0.01). However, these responses were
blocked by rimonabant (100 nM). The influence of ACEA on NR4A1 is therefore CB1
dependent. Interestingly, rimonabant significantly down-regulated NR4A1 mRNA gene
expression (p < 0.001). Notably, using the delipidated serum, treating the cells with
insulin (100 nM) for 5 or 24 h significantly down-regulated NR4A1 mRNA gene expression
(p < 0.001) (Figure 2).
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Figure 2. NR4A1 muscle myotubes—ACEA, rimonabant, ACEA and rimonabant, and insulin affect NR4A1 gene expres-
sion; myotubes fed with delipidated serum. The stimulation time covered 3 to 24 h, and NR4A1 mRNA levels, relative to 
TATA-Box, was evaluated by quantitative real-time PCR (qRT-PCR) (100 nM). The following scenarios explain the stim-
ulation process conducted: (a) Stimulation was done for 1 h. (b) Stimulation was done for 3 h. (c) Stimulation was ap-
plied for up to 5 h. (d) Stimulation was applied for up to 24 h. The data were reported as the mean ± SEM of three sepa-
rate groups. (n = 3; *denotes p < 0.05, **denotes p < 0.01, and ***denotes p < 0.001). Data were investigated by conducting 
one-way ANOVA test and Tukey test. NR4A1; nuclear receptor subfamily 4, group A, member 1. 

3.2. Effects of ACEA, Rimonabant, and Insulin on NR4R2 mRNA Gene Expression 
Using delipidated serum, treating the cells with rimonabant (100 nM) for 24 h sig-

nificantly down-regulated NR4A2 gene expression (p < 0.05). By contrast, treating the 
cells with insulin for 1 or 3 h significantly down-regulated NR4A2 mRNA expression 
(Figure 3). 

Figure 2. Cont.
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ulation process conducted: (a) Stimulation was done for 1 h. (b) Stimulation was done for 3 h. (c) Stimulation was ap-
plied for up to 5 h. (d) Stimulation was applied for up to 24 h. The data were reported as the mean ± SEM of three sepa-
rate groups. (n = 3; *denotes p < 0.05, **denotes p < 0.01, and ***denotes p < 0.001). Data were investigated by conducting 
one-way ANOVA test and Tukey test. NR4A1; nuclear receptor subfamily 4, group A, member 1. 
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Using delipidated serum, treating the cells with rimonabant (100 nM) for 24 h sig-

nificantly down-regulated NR4A2 gene expression (p < 0.05). By contrast, treating the 
cells with insulin for 1 or 3 h significantly down-regulated NR4A2 mRNA expression 
(Figure 3). 

Figure 2. NR4A1 muscle myotubes—ACEA, rimonabant, ACEA and rimonabant, and insulin affect NR4A1 gene expression;
myotubes fed with delipidated serum. The stimulation time covered 3 to 24 h, and NR4A1 mRNA levels, relative to TATA-
Box, was evaluated by quantitative real-time PCR (qRT-PCR) (100 nM). The following scenarios explain the stimulation
process conducted: (a) Stimulation was done for 1 h. (b) Stimulation was done for 3 h. (c) Stimulation was applied for up to
5 h. (d) Stimulation was applied for up to 24 h. The data were reported as the mean ± SEM of three separate groups. (n = 3;
* denotes p < 0.05, ** denotes p < 0.01, and *** denotes p < 0.001). Data were investigated by conducting one-way ANOVA
test and Tukey test. NR4A1; nuclear receptor subfamily 4, group A, member 1.

3.2. Effects of ACEA, Rimonabant, and Insulin on NR4R2 mRNA Gene Expression

Using delipidated serum, treating the cells with rimonabant (100 nM) for 24 h signifi-
cantly down-regulated NR4A2 gene expression (p < 0.05). By contrast, treating the cells
with insulin for 1 or 3 h significantly down-regulated NR4A2 mRNA expression (Figure 3).
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Figure 3. NR4A2 muscle myotubes—ACEA, rimonabant, ACEA and rimonabant, and insulin affect NR4A2 gene expres-
sion; myotubes fed with delipidated serum. The stimulation time covered 3 to 24 h, and NR4A2 mRNA levels, relative to 
TATA-Box, was evaluated by quantitative real-time PCR (qRT-PCR) (100 nM). The following scenarios explain the stim-
ulation process conducted: (a) Stimulation was done for 1 h. (b) Stimulation was done for 3 h. (c) Stimulation was ap-
plied for up to 5 h. (d) Stimulation was applied for up to 24 h. The data were reported as the mean ± SEM of three sepa-
rate groups. (n = 3; *denotes p < 0.05, **denotes p < 0.01, and ***denotes p < 0.001). Data were investigated by conducting 
one-way ANOVA test and Tukey test. NR4A2; nuclear receptor subfamily 4, group A, member 2. 

3.3. Effects of ACEA, Rimonabant and Insulin on NR4R3 mRNA Gene Expression 
Using delipidated serum, treating the cells with ACEA (10 nM) for 5 h significantly 

up-regulated NR4A3 mRNA gene expression (p < 0.05). However, these responses were 
blocked by rimonabant (100 nM). The influence of ACEA on NR4A3 is therefore CB1 
dependent. Interestingly, treating the cells with rimonabant (100 nM) for 1 h and 3 h sig-
nificantly down-regulated NR4A3 gene expression (p < 0.05 and p < 0.05, respectively). 
Notably, using the delipidated serum, treating the cells with insulin (100 nM) for 1, 3 or 
5 h significantly down-regulated NR4A3 mRNA gene expression (Figure 4). 

Figure 3. Cont.
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one-way ANOVA test and Tukey test. NR4A2; nuclear receptor subfamily 4, group A, member 2. 

3.3. Effects of ACEA, Rimonabant and Insulin on NR4R3 mRNA Gene Expression 
Using delipidated serum, treating the cells with ACEA (10 nM) for 5 h significantly 

up-regulated NR4A3 mRNA gene expression (p < 0.05). However, these responses were 
blocked by rimonabant (100 nM). The influence of ACEA on NR4A3 is therefore CB1 
dependent. Interestingly, treating the cells with rimonabant (100 nM) for 1 h and 3 h sig-
nificantly down-regulated NR4A3 gene expression (p < 0.05 and p < 0.05, respectively). 
Notably, using the delipidated serum, treating the cells with insulin (100 nM) for 1, 3 or 
5 h significantly down-regulated NR4A3 mRNA gene expression (Figure 4). 

Figure 3. NR4A2 muscle myotubes—ACEA, rimonabant, ACEA and rimonabant, and insulin affect NR4A2 gene expression;
myotubes fed with delipidated serum. The stimulation time covered 3 to 24 h, and NR4A2 mRNA levels, relative to TATA-
Box, was evaluated by quantitative real-time PCR (qRT-PCR) (100 nM). The following scenarios explain the stimulation
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3.3. Effects of ACEA, Rimonabant and Insulin on NR4R3 mRNA Gene Expression

Using delipidated serum, treating the cells with ACEA (10 nM) for 5 h significantly
up-regulated NR4A3 mRNA gene expression (p < 0.05). However, these responses were
blocked by rimonabant (100 nM). The influence of ACEA on NR4A3 is therefore CB1
dependent. Interestingly, treating the cells with rimonabant (100 nM) for 1 h and 3 h
significantly down-regulated NR4A3 gene expression (p < 0.05 and p < 0.05, respectively).
Notably, using the delipidated serum, treating the cells with insulin (100 nM) for 1, 3 or 5 h
significantly down-regulated NR4A3 mRNA gene expression (Figure 4).
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Figure 4. NR4A3 muscle myotubes—ACEA, rimonabant, ACEA and rimonabant, and insulin affect NR4A3 gene expres-
sion; myotubes fed with delipidated serum. The stimulation time covered 3 to 24 h, and NR4A3 mRNA levels, relative to 
TATA-Box, was evaluated by quantitative real-time PCR (qRT-PCR) (100 nM). The following scenarios explain the stim-
ulation process conducted: (a) Stimulation was done for 1 h. (b) Stimulation was done for 3 h. (c) Stimulation was ap-
plied for up to 5 h. (d) Stimulation was applied for up to 24 h. The data were reported as the mean ± SEM of three sepa-
rate groups. (n = 3; *denotes p < 0.05, and **denotes p < 0.01). Data were investigated by conducting one-way ANOVA 
test and Tukey test. NR4A3; nuclear receptor subfamily 4, group A, member 1. 

Figure 5. NR4A3 muscle myotubes—ACEA, rimonabant, ACEA and rimonabant, and insulin affect NR4A3 gene expression;
myotubes fed with delipidated serum. The stimulation time covered 3 to 24 h, and NR4A3 mRNA levels, relative to TATA-
Box, was evaluated by quantitative real-time PCR (qRT-PCR) (100 nM). The following scenarios explain the stimulation
process conducted: (a) Stimulation was done for 1 h. (b) Stimulation was done for 3 h. (c) Stimulation was applied for up to
5 h. (d) Stimulation was applied for up to 24 h. The data were reported as the mean ± SEM of three separate groups. (n = 3;
* denotes p < 0.05, and ** denotes p < 0.01). Data were investigated by conducting one-way ANOVA test and Tukey test.
NR4A3; nuclear receptor subfamily 4, group A, member 1.

4. Discussion

According to the novel findings of the present study, endocannabinoid analogue ACEA
raises the gene expression of mRNA related to NR4A1 and NR4A3 in skeletal muscles.
It has an effect through ACEA facilitated by the subtype cannabinoid CB1 receptor. To
our knowledge, it is the first research about the effect of ACEA and its cannabinoid CB1
receptor subtypes on nuclear receptors (NR4A) in skeletal muscles, and it characterizes
a novel mechanism of signaling for the cannabinoid CB1 receptor’s role in the cells of
skeletal muscles. In the current research, the functionality of CB1 receptor was examined
by evaluating the effect of CB1 receptor agonism (ACEA) or antagonism (rimonabant)
on the activation of significant genes (nuclear receptors; NR4A1, NR4A2 and NR4A3)
that might be involved in mitogenic, inflammatory and metabolic functions in rat skeletal
muscle cells. Therefore, this study might also represent evidence that the CB1 receptor
is potentially functionally active regarding inflammation and possibly in mitogenic and
metabolic functions and for glucose and fatty acid metabolism.

Interestingly, in the current study, insulin 10 nM downregulated NR4A1, NR4A2 and
NR4A3 expression in skeletal muscle cells using these time frame. Those NR4A expression
was similarly inhibited by rimonabant. Rimonabant, a selective cannabinoid CB1 receptor
antagonist/inverse agonist, was proven to inhibit the gene expression engaged in glycolysis
proteins, glucose oxidation, insulin resistance and metabolism, transportation of fatty
acids and their oxidation and regulation of energy and its metabolism, proliferation,
differentiation and myogenesis (NR4A1, NR4A2 and NR4A3) in this study. Those NR4A
expression was likewise reduced by insulin. In terms of the effect of ACEA, the expressions
of genes (NR4A1 and NR4A3) have been substantially contrasted to those of insulin
and rimonabant. The current pharmacological investigation makes use of rimonabant, a
selective cannabinoid CB1 receptor antagonist, and ACEA, a specific cannabinoid CB1
receptor agonist. As a result, rimonabant’s impact provides convincing evidence for the



Pathophysiology 2021, 28 465

participation of cannabinoid CB1 receptors at the very least. The selective cannabinoid
receptor antagonist rimonabant was shown to enhance the gene expression involved in
insulin sensitivity, glucose uptake, myogenesis and other metabolic processes which is in
line with the same effect of insulin for those genes. This agrees with previous literature
on skeletal muscle [38–40] that found the activation of CB1R in skeletal muscle cells is
associated with insulin resistance, and impaired metabolic function, owing to increased
energy intake and storage, impaired glucose and lipid utilization, and enhanced oxidative
stress. This conclusion does not conflict with a previous researcher [27], who found that—in
adipose cells (3T3-L1 cells), but not in skeletal muscle—the activation of NR4A receptors
is known to promote glucose utilization by enhancing the activity of insulin to stimulate
glucose transport since this research study used a different cell line culture.

ACEA was also employed, as it is 2000-times more specific for CB1 receptors than
CB2 receptors [35]. In this current work, ACEA was observed to boost NR4A1 and NR4A3
mRNA expression in rat skeletal muscle myotubes. Rimonabant, a selective CB1 receptor
antagonist/inverse agonist, was shown to prevent this ACEA-induced action. Because
ACEA is a selective CB1 receptor agonist at the dose utilized in this current study, this
data implies that NR4A1 and NR4A3 activation was mediated through CB1 receptor
activation. In skeletal muscles, the CB1 receptor is an active receptor based on functions,
according to this research. The following are the outcomes of our research. (I) The selective
cannabinoid CB1 receptor agonist ACEA boosts NR4A1 and NR4A3 expression. The
purpose of testing the action of this agonist at a concentration of 10 nM [35] was to test
this hypothesis. (II) Rimonabant, a selective antagonist of the cannabinoid CB1 receptor
subtype and CB1 inverse agonists and antagonists [38,41], blocked these responses. These
data, taken together, offer significant evidence for the participation of cannabinoid CB1
receptors in ACEA-induced upregulation of NR4A expression. (III) Rimonabant suppresses
the expression of the NR4A mRNA gene.

In this current study, the activation of cannabinoid CB1 receptor has been found
to enhance expression of NR4A in skeletal muscles. So, CB1 receptors can moderate
metabolism of glucose and fat in skeletal muscles. It is reinforced by the circumstance that
(1) NR4A was found to be decreased in the skeletal muscles among diabetic animals [27],
(2) NR4A is linked with genes linked with fatty acid and glucose utilization via mRNA up-
regulated expression of FOXO1, PDK4, lipin-1α, and PGC-1α [42], (3) after feeding the high-
fat diet, NR4A null mice was compared with wild-type animals that presented reduced
mRNA expression of PDK4, Lipin 1α, and GLUT4 along with impaired insulin resistance
and phosphorylation of insulin receptor substrate 1 (IRS-1) in skeletal muscles and reduced
clearance of blood glucose, higher body weight and low energy consumption [28], (4) C2C12
siRNA-NR4A cells were presented to reduce the mRNA expression in C2C12 cells of fatty
acid translocase (CD36/fat), uncoupling GLUT4 and protein3 (UCP3) than that of wild-
type native C2C12 cells [43,44] and (5) non-insulin glucose consumption was revealed to
raise significantly NR4A expression mediated by adenovirus in C2C12 cells than those of
normal C2C12 cells [45,46]. Based on this, the CB1 receptor modulation through ligands
may affect utilization of fatty acid and glucose in skeletal muscles. As a result, CB1 receptor
agonists/antagonists could be explored as a potential therapeutic option in patients with
diabetes or adiposity. Additional research will be conducted in the future to elucidate
this point.

NR4A activation has been linked to enhanced gene expression of various metabolic
genes in a variety of tissues [47], particularly in skeletal muscles. Activation of NR4A has
been linked to muscle growth and development, glucose metabolism, and oxidation of fatty
acid [34,43]. As a result, it is probable that ACEA exerts at least the effects listed earlier
in skeletal muscle, and that these actions are facilitated via activation of cannabinoid CB1
receptors. Cannabinoid receptors, namely cannabinoid CB1 receptors, have been shown
to regulate a variety of cellular responses implicated in obesity and glucose homeostasis
formerly [1,39,40]. Because cannabinoid CB1 receptors increased NR4A mRNA gene
expression in skeletal muscles and NR4A1 restrains inflammation, glucose transport, and
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insulin action [45,48], it is possible that cannabinoid CB1 receptors modulate skeletal
muscle physiological roles including glucose and fatty acid metabolism. The function of
these genes in muscle tissue are little understood in the research.

Using rimonabant, a unique therapeutic intervention in the treatment of hyper-
glycemia and obesity might occur through the antagonism of the endocannabinoid system.
In fact, studies from animals and humans showed an increase in the levels of endocannabi-
noids in the obese state. In addition, obese animal models showed that the levels of
endocannabinoids were increased in the peripheral and hypothalamus tissues [49–51].
Furthermore, previous studies demonstrated that circulating levels of endocannabinoids
including anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) were raised in visceral
adipose tissue in hyperglycaemic type 2 diabetic and obese patients [49,52,53]. Moreover,
CB1 knock-out mice were found to be resistant to diet-induced obesity [50,54]. Originally,
CB1 receptor antagonism was also realized to potentially enhance metabolic parame-
ters [55–57].

CB1 receptor expression has been reported in rodent and human skeletal muscle in
past studies [2]. CB1 receptor protein expression was observed to be considerably lower
in obese Zucker rats’ soleus muscle compared to lean Zucker rats [40]. CB1 receptor
mRNA expression in the soleus muscle of C56BL/6 mice was likewise observed to be
higher following high fat eating [1,49]. The G proteins of the Gi/o family are involved in
CB1 receptor signaling [58]. Pertussis toxin, in fact, decreased the effect of CB1 receptor
activation [59]. As a result, Gi/o inhibits adenylyl cyclase and, as a result, cAMP buildup.
Ion channels can also be regulated by Gi/o, with calcium channels being inhibited [60–62]
and activating potassium channels through Gβγ [63–65]. Further studies are required to
be performed to examine the mechanism beyond the NR4A signaling in response to CB1
receptor activation/inhibition.

Rimonabant may also act as an agonist through other receptors like GPR55, according
to some research [66]. It is also worth noting that rimonabant can also work as an inverse
agonist. So, the explanation of rimonabant response is very difficult to describe. On the
basis of current data, it is also impossible to say if the effects of rimonabant are depending
on CB1 receptor inhibition (a CB1 receptor dependent manner). More studies, such as
employing charcoal stripped serum, must be done to get a precise, comprehensive picture
of these concerns. To better understand these effects, more research is needed, for example
utilizing GPR55 antagonist or CB1 receptor siRNA. Of note, it can be suggested that there
is a need for more studies assessing protein expression level. Additionally, more work
is also suggested to assess the direct effect of cannabinoid CB1 receptor on NR4A using
knock out of CB1 receptor in L6 skeletal muscle cells or to mimic the muscle physiology
using knock out of CB1 receptor in primary myoblast isolated from mice or rats. This could
provide more evidence with regards to this signaling. Other areas that could benefit from
more studies include assessing more important genes connected to this signaling in skeletal
muscle such as PDK4 and CPT1B and assessing functional assays such as glucose uptake
and fatty acid oxidation.

5. Conclusions

On the basis of these outcomes, it has been established that ACEA raises the mRNA
expression of NR4A1 and NR4A3 frequently through the CB1 cannabinoid receptor signal-
ing pathway. In addition, the expression of NR4A mRNA was found to be down-regulated
by rimonabant. In the skeletal muscles, the cannabinoid CB1 receptors are expressed
efficiently and often signals via NR4A pathways. Cannabinoid CB1 receptor antago-
nists/agonists/inverse agonists can be a useful mediator to assist the skeletal muscles in
functional activities. In fact, the cannabinoid CB1 receptors are novel and highly significant
drug targets in the curing and therapeutic management of inflammatory and metabolic
diseases. Overall, it was found that the CB1 receptor is significantly efficient in skeletal mus-
cles of rats. More research is necessary to validate the detailed part of endocannabinoids in
the gene expression regulation in skeletal muscles and its significance in the development
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of glucose and fatty acid metabolism, inflammation, proliferation, myogenesis, obesity, and
insulin resistance. This might also support evidence for possible potential roles of the CB1
receptor in skeletal muscle, and this may have general implications for diabetes mellitus,
obesity, inflammation and wound healing.

6. Significance

This study describes a previously undiscovered signalling system in skeletal muscle
cells that involves cannabinoid CB1 receptors. Furthermore, it explains a previously un-
known process of skeletal muscle nuclear signalling to reveal another possible therapeutic
target for at least metabolic diseases.
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