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Abstract: Voltage-gated channels are crucial in action potential initiation and propagation and there
are many diseases and disorders related to them. Additionally, the classical mechanics are the main
mechanics used to describe the function of the voltage-gated channels and their related abnormalities.
However, the quantum mechanics should be considered to unravel new aspects in the voltage-gated
channels and resolve the problems and challenges that classical mechanics cannot solve. In the
present study, the aim is to mathematically show that quantum mechanics can exhibit a powerful
tendency to unveil novel electrical features in voltage-gated channels and be used as a promising
tool to solve the problems and challenges in the pathophysiology of excitability-related diseases. The
model of quantum tunneling of ions through the intracellular hydrophobic gate is used to evaluate
the influence of membrane potential and gating free energy on the tunneling probability, single
channel conductance, and quantum membrane conductance. This evaluation is mainly based on
graphing the mathematical relationships between these variables. The obtained mathematical graphs
showed that ions can achieve significant quantum membrane conductance, which can affect the
resting membrane potential and the excitability of cells. In the present work, quantum mechanics
reveals original electrical properties associated with voltage-gated channels and introduces new
insights and implications into the pathophysiology of excitability- related disorders. In addition,
the present work sets a mathematical and theoretical framework that can be utilized to conduct
experimental studies in order to explore the quantum aspects of voltage-gated channels and the
quantum bioelectrical property of biological membranes.

Keywords: quantum tunneling; voltage-gated channel; sodium ions; potassium ions; quantum
biophysics; epilepsy; arrhythmias; pain; quantum biology

1. Introduction

Voltage-gated channels are crucial for action potential initiation and propagation [1].
Thus, any disturbance in their function or structure could affect the processes and actions
within, and of excitable cells, resulting in different diseases, such as epilepsy [2], pain
disorders [3], and cardiac arrhythmias [4]. Additionally, understanding how voltage-gated
channels operate and how they can be implicated in the pathophysiology of many diseases
is based mainly on the principles of classical mechanics and laws of thermodynamics [1].
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Such practice ignores the role of quantum mechanics as its integration within classical
mechanics might unravel new aspects regarding the function of voltage-gated channels,
which could enhance our understanding of excitable cells and their role in the patho-
genesis of some diseases. Furthermore, the integration of quantum mechanics is further
encouraged by the many puzzling challenges associated with understanding the roles of
abnormal voltage-gated channels in the pathophysiology of excitability-related disorders
such as epilepsy [2,5], pain disorders [6], and cardiac arrhythmias [7]. Those diseases
represent major medical issues and hurdles in terms of how they are prevented, treated, or
controlled [8–11].

Quantum mechanics is the field of physics that focuses on the behavior of atomic and
subatomic particles and this behavior can be studied by using the Schrödinger equation to
obtain the wave function of a particle [12]. Recently, the field of quantum mechanics has
been extended to biology in order to understand different biological actions and events
including photosynthesis, action of enzymes, olfaction, and birds’ navigation [13–15].
However, many concerns have emerged along quantum biology. One of these concerns
is that the hot noisy biological environment does not sustain quantum behavior. This
concern has been opposed by recent research, which showed that quantum properties,
such as the quantum entanglement of huge number of atoms, can be maintained at high
temperatures such as those of the human body or even higher [16]. Different mechanisms
could explain the persistence of quantum coherence within biological systems, including
hydrophobic pockets, as in the hydrophobic gate of the voltage-gated channels that are the
focus of this study [17–19]. Therefore, this gives researchers more motivation to pursue
applying quantum mechanics within biological systems. In recent years, researchers have
been focusing on the quantum features of ions, such as potassium and calcium ions, and
their role in the processes and actions of neurons [20–22]. This approach is scientifically
sound as it has been observed and documented that atoms, ions, and even molecules can
behave according to the principles of quantum mechanics in a similar fashion to that of
subatomic particles [23–26]. Moreover, the ability of scientists to explain the high selectivity
of voltage-gated channels through mathematical structures acts as further evidence for
the validity of studying biological systems through a quantum perspective [22,27–29].
However, a principal component of the voltage-gated channel did not receive enough at-
tention. This component is the channel’s gate, which determines the channel’s conductance
and consequently, the overall membrane’s conductance and the electrical properties of
its associated tissues [1,18,19,30]. Thus, the present work is an extension of the previous
works that focused on studying the gates of voltage-gated channels through understanding
the quantum behavior of their target ions, and their quantum conductance [31,32].

This study aims to approach the function of voltage-gated channels from a quantum
perspective using the quantum tunneling model [31,32]. The model is designed to portray
the novel electrical features of voltage-gated channels and shed light on the differences
that make it distinct from the classical model of Boltzmann distribution for voltage-gated
channels. Moreover, this quantum model is implemented to signify the contribution of
quantum behavior of ions in the pathophysiology of excitable tissue diseases. In this work,
the aim is not to focus on and review the details of the challenges and puzzles in the function
of voltage-gated channels and their related diseases specifically. However, the aim is to
spot hints and clues and to establish a comprehensive mathematical model to encourage
researchers to consider quantum mechanics in future works when they aim to resolve a
challenge or a puzzle in the field of electrophysiology and to unveil the pathogenesis of a
certain disease related to the function of voltage-gated channels. However, some of the
challenges and puzzles will be discussed in this work and the quantum model will offer
reasonable explanation for them especially that they are not well explained by the classical
models. Additionally, the present study might be helpful to aid in developing novel agents
to treat and control epilepsy syndromes, pain disorders, and cardiac arrhythmias.
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2. The Mathematical Model
2.1. The Conductance of the Voltage-Gated Channels According to the Laws of Thermodynamics

The voltage-gated channels are mainly composed from two parts: (1) A selectivity
filter and (2) an intracellular gate [1]. The function of the selectivity filter is to discriminate
between ions and to enable the channel to selectively pass specific ion [1]. On the other
hand, the intracellular gate functions as the main controller of the channel’s conductance
and that of the overall membrane [18,19,30]. The intracellular gate is a hydrophobic con-
striction made by the bundles crossing of the four S6 segments of the alpha subunits of the
channel [18,19]. This gate represents an energy barrier that impends the passage of ions [30].
Hence, the intracellular hydrophobic gate controls the ions’ passage and the channel’s
conductance. Furthermore, the intracellular gate operates as a narrow hydrophobic pore, in
which its ‘open’ state is characterized by an increased pore radius and a decreased energy
barrier, which consequently facilities the passage of ions [33]. According to the classical
physics of thermodynamics, the voltage gated channels have two states: (1) A closed state
(C) and (2) an open state (O), which fit the Boltzmann distribution, as demonstrated in the
following equation [1,33]:

P =
O

C + O
= (1 + e

qgV1/2−qgVm
KBT )

−1

, (1)

where P is the fraction of open channels from the total available channels at a certain area
of the cell membrane (the open probability), V1/2 is the membrane voltage at which half
of the channels are open, Vm is the actual membrane voltage, qg is the gating’s charge, KB
is the Boltzmann’s constant (1.38× 10−23 J/K), and T is the absolute body temperature
(310 K). The mathematical term qgV1/2 represents the gating free energy, which is the energy
associated with the conversion from the ‘closed’ state to the ‘open’ state at Vm = 0 [34].
Furthermore, the mathematical structure qgV1/2 − qgVm represents the energy required
to switch from the ‘closed’ state to the ‘open’ state or the energy barrier that resists the
passage of ions at a certain membrane potential Vm.

According to the Boltzmann distribution, voltage-gated channels are either in the
‘closed’ state that has zero conductance, or in the ‘open’ state that has a certain value of
conductance Csin gle. As a result, when there is a certain number of channels at a surface
area of a membrane with a certain membrane voltage Vm, a fraction of this number of
channels will be ‘open’ and be able to conduct ions. Therefore, the membrane conductance
CM due to voltage-gated channels can be calculated by the following equation:

CM = D× Csin gle × (1 + e
qgV1/2−qgVm

KBT )
−1

, (2)

where CM is the membrane’s conductance (S/m2), Csin gle is the single channel conductance
(S), and D is the channels’ density (channels/m2).

2.2. The Conductance of the Voltage-Gated Channels According to Quantum Mechanics

According to quantum mechanics, the hydrophobic gate can be represented as a
potential barrier through which ions can tunnel [31,32]. The tunneling probability (TQ)
through the hydrophobic gate, as solved from Schrodinger’s equation, can be calculated by
using the following equation [12,31,32]:

TQ = e
−
√

8m
}

X2∫
X1

√
(U(x)−KEdx

, (3)

where m is the mass of the ion, } is the reduced Planck’s constant (1.05× 10−34 Js), U(x) is
the barrier’s energy with respect to the ion’s position x across the gate, KE is the kinetic
energy of the ion, and x1-x2 is the forbidden region of the gate where the barrier’s energy
U(x) is higher than the kinetic energy of the ion KE.
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The energy required to open the gate is (qgV1/2 − qgVm), which represents the energy
barrier of the gate. In other words, this energy is needed to perform the mechanical work
to dilate the hydrophobic pore in order to facilitate ion conduction [33]. As a result, we can
deduce that ion must have this amount of energy to overcome the energy barrier of the
gate. Therefore, this amount of energy (qgV1/2 − qgVm) represents the energy barrier U(x)
stated in Equation (3). However, quantum tunneling of ions does not require the dilation
of the hydrophobic gate.

Here, it is claimed that this energy distributes equally along the length of the gate
L. To make a mathematical connection between the barrier’s energy U(x) and the ion’s
position x through the gate, the gate can be illustrated as an electric field that opposes the
passage of ions. This electric field E can be calculated as demonstrated in the following
equation [31,32]:

E =
qgV1/2 − qgVm

qionL
, (4)

where qion is the charge of the ion.
The barrier’s energy with respect to the ion’s position can be calculated through the

following equation:
U(x) = qionEx, (5)

Then, by substituting Equation (4) in Equation (5):

U(x) =
qgV1/2 − qgVm

L
x, (6)

The channel’s gate is a short hydrophobic constriction that is located at the intracellular
side [18,19]. Therefore, as long as the membrane potential is negative inside with regards
to the outside, extracellular cations, such as sodium and potassium ions, will move from
outside the cell using the membrane’s potential acquiring kinetic energy qionVm until
hitting the intracellular gate [31,32]. On the other hand, the intracellular cations will hit
the intracellular gate before going through the membrane’s potential and hence it will
not affect their kinetic energy [31,32]. However, both intracellular and extracellular ions
have a thermal energy at body temperature equals to 3

2 KBT = 0.64× 10−20 J. Therefore, it
is assumed that the kinetic energy of the ion does not change while passing through the
intracellular gate, since the length of the gate is relatively short when compared with the
full thickness of the cell membrane; thus, the voltage across the gate is neglected.

The integral in Equation (3) can be solved as the following:

R =

X2∫
X1

√
qgV1/2 − qgVm

L
x− KEdx =

2L
3(qgV1/2 − qgVm)

√
(

qgV1/2 − qgVm

L
x2 − KE)

3

− 2L
3(qgV1/2 − qgVm)

√
(

qgV1/2 − qgVm

L
x1 − KE)

3

, (7)

x2 is at the end of the gate (x2 = L), and x1 is where U(x1) =
qgV1/2−qgVm

L x1 = KE.
Thus, Equation (7) becomes:

R =

X2∫
X1

√
qgV1/2 − qgVm

L
x− KEdx =

2L
3(qgV1/2 − qgVm)

√
((qgV1/2 − qgVm)− KE)3, (8)

Regarding the extracellular monovalent cations such as sodium and potassium,
Equation (8) can be written as:

Ro =
2L

−3(qgV1/2 − qgVm)

√
(−(qgV1/2 − qgVm)− (qionVm +

3
2

KBT))
3
, (9)
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Ro =
2L

3(qgVm − qgV1/2)

√
((qgVm − qgV1/2)− (qionVm +

3
2

KBT))
3
, (10)

In Equation (9), the minus sign is inserted to indicate that the membrane voltages (Vm
and V1/2) are absolute values. This is made because the kinetic energy of the ions qionVm
is a positive value and Vm should be an absolute value of the actual membrane voltage.
Additionally, when tunneling probability and its related equations are encountered, the
membrane’s voltage is negative on the inside with regard to the outside, and the value of
the membrane’s voltage is an absolute value.

On the other hand, Equation (8) for the intracellular monovalent cations can be
written as:

Ri =
2L

3(qgVm − qgV1/2)

√
((qgVm − qgV1/2)− (

3
2

KBT))
3
, (11)

As a result, the tunneling probability of extracellular ions TQ(o) and intracellular ions
TQ(i) can be calculated by the following equations:

TQ(o) = e
−
√

8m
} ×

2L
3(qgVm−qgV1/2)

√
((qgVm−qgV1/2)−(qionVm+ 3

2 KBT))
3

, (12)

TQ(i) = e
−
√

8m
} ×

2L
3(qgVm−qgV1/2)

√
((qgVm−qgV1/2)−( 3

2 KBT))
3

, (13)

So, from the perspective of quantum mechanics, ions can tunnel through the closed
intracellular gate of the channels. Consequently, the closed channels can conduct ions via
quantum tunneling, hence the conductance is called quantum conductance. The quantum
conductance of a single channel CQ can be calculated by this equation [12,31,32,35]:

CQ =
q2

ion
h

TQ, (14)

where h is Planck’s constant (6.6× 10−34 Js), qion is the charge of the ion, and TQ is the
tunneling probability. The unit of CQ is Siemens (S).

Moreover, at certain channels’ density D (channels/m2), the quantum membrane
conductance CQM can be calculated by this equation:

CQM = D× CQ, (15)

The unit of CQM is S/m2.

3. Results

In this section, the comparison between quantum conductance and classical conduc-
tance of voltage-gated channels is made by graphing the equations, which contain the
variables of conductance, gating free energy, and membrane voltage. Such presentation
will delineate how the conductance changes alongside variations in gating free energy and
membrane potential (voltage). The mathematical graphs are plotted using MATLAB. The
mathematical graphing is used to provide a comprehensive evaluation of the electrical
function of the voltage-gated channels. Moreover, by plotting the graphs and comparing
them, novel perspectives relating to the voltage-gated channels and the contribution of the
quantum behavior of ions in the pathophysiology of the excitability-related disorders could
be discussed. The mathematical plots will be based on semi-log graphing so that the com-
parison between classical and quantum models can be made in a comprehensive manner.

3.1. The Conductance of the Voltage-Gated Sodium Channels According to the Boltzmann Distribution

In this study, the quantum and classical models will be applied on the Nav1.2
sodium channels. These channels have gating charge qg = 9.2e = 9.2× 1.6× 10−19 =
14.72× 10−19 C [36], and with half activation voltage V1/2 = 43 mV [37,38], the gating free
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energy qgV1/2 = 6.33× 10−20 J [39]. Furthermore, the density of sodium channels D is
5× 1013 channels/m2 [1], and the single channel conductance of sodium channel Csin gle(Na)

is 15× 10−12 S [1].
Considering these values in Equations (1) and (2):

PNa = (1 + e
G−147.2Vm

0.43 )
−1

, (16)

CM(Na) = 750× (1 + e
G−147.2Vm

0.43 )
−1

, (17)

where G =
qgV1/2
10−20 .

As long as the membrane potential is negative on the inside with regard to the outside,
the membrane potentials (Vm and V1/2) are substituted with their negative sign when the
Boltzmann distribution is applied on the voltage-gated channels.

Thus, the open probability of sodium channels at G = −6.33 J:

PNa = (1 + e
−6.33−147.2Vm

0.43 )
−1

, (18)

Then, the mathematical relationship between the membrane potential and the common
logarithm of the open probability of the sodium channels can be plotted according to
Equation (18) as in Figure 1.
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Figure 1. The relationship between the membrane potential and the common logarithm of the open
probability of sodium channels at G = −6.33 J and over membrane potential range from −0.09 V to
0 V.

The open probability of sodium channels at membrane potential −0.087 V:

PNa = (1 + e
G+12.81

0.43 )
−1

, (19)

Then, the mathematical relationship between gating free energy and the common
logarithm of the open probability of the sodium channels can be plotted according to
Equation (19) as in Figure 2.
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Figure 2. The relationship between gating free energy and the common logarithm of the open
probability of the sodium channels at membrane potential −0.087 V and over gating free energy
range from −12 J to −5 J.

The reference point of membrane potential −0.087 V will be used throughout the paper
to carry out the calculations where appropriate. This value of membrane potential represents
the resting membrane potential at physiological concentrations and resting leaky conductance
values of sodium and potassium ions (See Section 3.5 for values and calculations).

The membrane conductance of sodium ions according to the Boltzmann distribution
at G = −6.33 J:

CM(Na) = 750× (1 + e
−6.33−147.2Vm

0.43 )
−1

(20)

To evaluate how the membrane conductance changes with membrane potential, it is
useful to mathematically graph the relationship between membrane potential and the com-
mon logarithm of the membrane conductance of sodium ions according to Equation (20)
as in Figure 3.
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On the other hand, the membrane conductance of sodium ions according to the
Boltzmann distribution at membrane potential −0.087 V:

CM(Na) = 750× (1 + e
G+12.81

0.43 )
−1

, (21)

In Figure 4, the mathematical graph of the relationship between gating free energy
and the common logarithm of the membrane conductance of sodium ions is represented
according to Equation (21).
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3.2. The Conductance of the Voltage-Gated Sodium Channels According to the Quantum Mechanics
3.2.1. The Tunneling Probability of Sodium Ions through the Closed Intracellular
Hydrophobic Gate

It is assumed that the intracellular hydrophobic gate has the length of a single hydrophobic
residue within the alpha helix of the S6 segment and this length is 1.5× 10−10 m [31,32,40]
because the gate is formed when a single hydrophobic residue from each of the four S6 seg-
ments aggregates with other three hydrophobic residues [18,19]. Furthermore, in the previous
papers [31,32,40], the length of the gate was calculated with consideration to the tilt angle of
the S6 alpha helix with the plane of the membrane so that the length is reduced by the sine of
this angle. However, in this work, the quantum-related graphs will be plotted at three different
lengths 0.5× 10−10 m, 1× 10−10 m, and 1.5× 10−10 m to show how the variables behave
in reference to the gate’s length. Moreover, the mass of sodium ion is 3.8× 10−26 Kg and
its charge qNa = 1e = 1.6× 10−19 will be used throughout the paper’s calculations. The
model of quantum tunneling is applied on ions while passing through the hydrophobic gate of
the voltage-gated channels and not the selectivity filter. Therefore, the hydrophobic nature of
the gate promotes dehydrating the ions while tunneling through the gate [30]. Moreover, the
quantum model is applied on the ‘closed’ gate conformation, which has narrower radius than
the ‘open’ gate conformation. This narrow pore facilities ions dehydration [41]. Accordingly, in
this study, the mass of ions (sodium and potassium ions) will be substituted as they are fully
dehydrated due to hydrophobic nature of the gate and its narrow pore. Then, the tunneling
probability of extracellular sodium ions can be calculated by the following equation:

TQ(Na(o)) = e−
35L
√

(131.2Vm−G−0.64)3

147.2Vm−G , (22)



Pathophysiology 2021, 28 124

while the tunneling probability of intracellular sodium ions can be calculated by the
following equation:

TQ(Na(i)) = e−
35L
√

(147.2Vm−G−0.64)3

147.2Vm−G , (23)

All the ranges of membrane potential and gating free energy in the following plots will
be chosen in a way by which their substitution in the aforementioned equations does not
yield a negative number in the square root of the tunneling probability equation and its
related equations of quantum conductance, in an effort to avoid getting imaginary numbers.

The tunneling probability of extracellular sodium ions through the energy barrier of
the hydrophobic gate at G = 6.33 J:

TQ(Na(o)) = e
−35L
√

(131.2Vm−6.97)3

147.2Vm−6.33 , (24)

The relationship between membrane potential and the common logarithm of tun-
nelling probability of extracellular sodium ions can be represented based on Equation (24)
as in Figure 5.
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as in Figure 6.  
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Figure 5. The relationship between the membrane potential and the common logarithm of tunneling
probability of extracellular sodium ions at G = 6.33 J and over a membrane potential range from
0.054 V to 0.09 V.

The values of gating free energy and membrane potential in Equation (24) and Figure 5
are positive values because the membrane potentials (Vm and V1/2) are substituted as the
absolute values of their negative potentials. This is also will be valid wherever the quantum
model is applied on the voltage-gated channels.

The tunneling probability of intracellular sodium ions through the energy barrier of
the hydrophobic gate at G = 6.33 J:

TQ(Na(i)) = e−
35L
√

(147.2Vm−6.97)3

147.2Vm−6.33 , (25)

Then, the relationship between membrane potential and the common logarithm of
tunneling probability of intracellular sodium ions can be graphed based on Equation (25)
as in Figure 6.



Pathophysiology 2021, 28 125

Pathophysiology 2021, 28 125 
 

 

 
Figure 5. The relationship between the membrane potential and the common logarithm of tunnel-
ing probability of extracellular sodium ions at G = 6.33 J and over a membrane potential range 
from 0.054 V to 0.09 V. 

The values of gating free energy and membrane potential in Equation (24) and Figure 
5 are positive values because the membrane potentials (Vm and V1/2) are substituted as the 
absolute values of their negative potentials. This is also will be valid wherever the quan-
tum model is applied on the voltage-gated channels. 

The tunneling probability of intracellular sodium ions through the energy barrier of 
the hydrophobic gate at G = 6.33 J: 

335 (147.2 6.97)
147.2 6.33

( ( ))

m

m

L V
V

Q Na iT e
−

−
−=

, 
(25)

Then, the relationship between membrane potential and the common logarithm of 
tunneling probability of intracellular sodium ions can be graphed based on Equation (25) 
as in Figure 6.  

 
Figure 6. The relationship between membrane potential and the common logarithm of tunneling 
probability of intracellular sodium ions at G = 6.33 J and over a membrane potential range from 
0.048 V to 0.09 V. 

The tunneling probability of extracellular sodium ions at membrane potential 0.087 
V: 

Figure 6. The relationship between membrane potential and the common logarithm of tunneling
probability of intracellular sodium ions at G = 6.33 J and over a membrane potential range from
0.048 V to 0.09 V.

The tunneling probability of extracellular sodium ions at membrane potential 0.087 V:

TQ(Na(o)) = e−
35L
√

(10.77−G)3

12.81−G , (26)

Accordingly, the relationship between gating free energy and the common logarithm
of tunneling probability of extracellular sodium ions can be mathematically represented
based on Equation (26) as in Figure 7.
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Figure 7. The relationship between gating free energy and the common logarithm of tunneling
probability of extracellular sodium ions at membrane potential of 0.087 V and over a gating free
energy range from 5 J to 10.77 J.

The tunneling probability of intracellular sodium ions at membrane potential of
0.087 V:

TQ(Na(i)) = e−
35L
√

(12.17−G)3

12.81−G , (27)

Hence, the mathematical graph of the relationship between the gating free energy and
the common logarithm of tunneling probability of intracellular sodium ions can be plotted
based on Equation (27) as in Figure 8.
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Figure 8. The relationship between gating free energy and the common logarithm of tunneling
probability of intracellular sodium ions at membrane potential of 0.087 V and over a gating free
energy range from 5 J to 12.17 J.

3.2.2. The Quantum Conductance of Single Voltage-Gated Sodium Channel

Substituting the available values in Equation (14), the quantum conductance of a single
sodium channel for extracellular sodium ions can be calculated by the following equation:

CQNa(o) = 3.88× 10−5 × e−
35L
√

(131.2Vm−G−0.64)3

147.2Vm−G , (28)

On the other hand, the quantum conductance of a single sodium channel for intracel-
lular sodium ions can be calculated by the following equation:

CQNa(i) = 3.88× 10−5 × e−
35L
√

(147.2Vm−G−0.64)3

147.2Vm−G , (29)

The quantum conductance of a single sodium channel at G = 6.33 J for extracellular
sodium ions:

CQ(Na(o)) = 3.88× 10−5e−
35L
√

(131.2Vm−6.97)3

147.2Vm−6.33 , (30)

Then, according to Equation (30) the graph can be plotted to evaluate the relationship
between membrane potential and the common logarithm of quantum conductance of a
single sodium channel for extracellular sodium ions as in Figure 9.

The quantum conductance of a single sodium channel for intracellular sodium ions at
G = 6.33 J:

CQ(Na(i)) = 3.88× 10−5e−
35L
√

(147.2Vm−6.97)3

147.2Vm−6.33 , (31)

In Figure 10, the graph of the relationship between membrane potential and the
common logarithm of quantum conductance of a single sodium channel for intracellular
sodium ions is represented according to Equation (31).

The quantum conductance of a single sodium channel for extracellular sodium ions at
membrane potential 0.087 V:

CQ(Na(o)) = 3.88× 10−5e−
35L
√

(10.77−G)3

12.81−G , (32)

According to Equation (32), the graph that represents the relationship between the
gating free energy and the common logarithm of quantum conductance of a single sodium
channel for extracellular sodium ions is plotted as in Figure 11.
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Figure 9. The relationship between membrane potential and the common logarithm of quantum
conductance of a single sodium channel for extracellular sodium ions at G = 6.33 J and over a
membrane potential range from 0.054 V to 0.09 V.
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Figure 10. The relationship between membrane potential and the common logarithm of quantum
conductance of a single sodium channel for the intracellular sodium ions at G = 6.33 J and over a
membrane potential range from 0.048 V to 0.09 V.

The quantum conductance of a single sodium channel for intracellular sodium ions at
membrane potential 0.087 V:

CQ(Na(i)) = 3.88× 10−5e−
35L
√

(12.17−G)3

12.81−G , (33)

According to Equation (33), the relationship between gating free energy and the
common logarithm of quantum conductance of a single sodium channel for the intracellular
sodium ions can be graphed as in Figure 12.
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Figure 11. The relationship between gating free energy and the common logarithm of quantum
conductance of a single sodium channel for the extracellular sodium ions at membrane potential
0.087 V and over a gating free energy range from 5 J to 10.77 J.
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whereas the quantum membrane conductance of intracellular sodium ions can be calcu-
lated by the following equation: 
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The unit of quantum membrane conductance QMC  is S/m2. 
The quantum membrane conductance of extracellular sodium ions at G = 6.33 J: 
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Then, according to Equation (36) the relationship between membrane potential and 
the common logarithm of quantum membrane conductance of extracellular sodium ions 
can be mathematically graphed as in Figure 13. 

Figure 12. The relationship between gating free energy and the common logarithm of quantum
conductance of a single channel for intracellular sodium ions at membrane potential 0.087 V and
over a gating free energy range from 5 J to 12.17 J.

3.2.3. The Quantum Membrane Conductance of Sodium Ions

Substituting the available values in Equation (15), the quantum membrane conduc-
tance of extracellular sodium ions can be calculated by the following equation:

CQM(Na(o)) = 1.94× 109e−
35L
√

(131.2Vm−G−0.64)3

147.2Vm−G , (34)

whereas the quantum membrane conductance of intracellular sodium ions can be calculated
by the following equation:

CQM(Na(i)) = 1.94× 109e
−35L
√

(147.2Vm−G−0.64)3

147.2Vm−G , (35)

The unit of quantum membrane conductance CQM is S/m2.
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The quantum membrane conductance of extracellular sodium ions at G = 6.33 J:

CQM(Na(o)) = 1.94× 109e
−35L
√

(131.2Vm−6.97)3

147.2Vm−6.33 , (36)

Then, according to Equation (36) the relationship between membrane potential and
the common logarithm of quantum membrane conductance of extracellular sodium ions
can be mathematically graphed as in Figure 13.
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Figure 13. The relationship between membrane potential and the common logarithm of quantum 
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According to Equation (37), the relationship between membrane potential and the 
common logarithm of quantum membrane conductance of intracellular sodium ions can 
be plotted as in Figure 14. 

 
Figure 14. The relationship between membrane potential and the common logarithm of quantum 
membrane conductance of intracellular sodium ions at G = 6.33 J and over a membrane potential 
range from 0.048 V to 0.09 V. 

The quantum membrane conductance of extracellular sodium ions at membrane po-
tential 0.087 V: 
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Figure 13. The relationship between membrane potential and the common logarithm of quantum
membrane conductance of extracellular sodium ions at G = 6.33 J and over a membrane potential
range from 0.054 V to 0.09 V.

The quantum membrane conductance of intracellular sodium ions at G = 6.33 J:

CQM(Na(i)) = 1.94× 109e−
35L
√

(147.2Vm−6.97)3

147.2Vm−6.33 , (37)

According to Equation (37), the relationship between membrane potential and the
common logarithm of quantum membrane conductance of intracellular sodium ions can
be plotted as in Figure 14.

Pathophysiology 2021, 28 130 
 

 

 
Figure 13. The relationship between membrane potential and the common logarithm of quantum 
membrane conductance of extracellular sodium ions at G = 6.33 J and over a membrane potential 
range from 0.054 V to 0.09 V. 

The quantum membrane conductance of intracellular sodium ions at G = 6.33 J: 

335 (147.2 6.97)
147.2 6.339

( ( )) 1.94 10
m

m

L V
V

QM Na iC e
−

−
−= ×

, 
(37)

According to Equation (37), the relationship between membrane potential and the 
common logarithm of quantum membrane conductance of intracellular sodium ions can 
be plotted as in Figure 14. 

 
Figure 14. The relationship between membrane potential and the common logarithm of quantum 
membrane conductance of intracellular sodium ions at G = 6.33 J and over a membrane potential 
range from 0.048 V to 0.09 V. 

The quantum membrane conductance of extracellular sodium ions at membrane po-
tential 0.087 V: 

335 (10.77 )
9 12.81

( ( )) 1.94 10
L G

G
QM Na oC e

−
−

−= × , (38)

Figure 14. The relationship between membrane potential and the common logarithm of quantum
membrane conductance of intracellular sodium ions at G = 6.33 J and over a membrane potential
range from 0.048 V to 0.09 V.
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The quantum membrane conductance of extracellular sodium ions at membrane
potential 0.087 V:

CQM(Na(o)) = 1.94× 109e−
35L
√

(10.77−G)3

12.81−G , (38)

Based on Equation (38), the relationship between gating free energy and the com-
mon logarithm of quantum membrane conductance of extracellular sodium ions can be
mathematically represented as in Figure 15.
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Figure 15. The relationship between gating free energy and the common logarithm of quantum 
membrane conductance of extracellular sodium ions at membrane potential of 0.087 V and over a 
gating free energy range from 5 J to 10.77 J. 
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tential 0.087 V: 
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Based on Equation (39), the mathematical representation of the relationship between 
gating free energy and the common logarithm of quantum membrane conductance of in-
tracellular sodium ions is plotted as in Figure 16.  

 
Figure 16. The relationship between gating free energy and the common logarithm of quantum 
membrane conductance of intracellular sodium ions at membrane potential of 0.087 V and over a 
gating free energy range from 5 J to 12.17 J. 

Figure 15. The relationship between gating free energy and the common logarithm of quantum
membrane conductance of extracellular sodium ions at membrane potential of 0.087 V and over a
gating free energy range from 5 J to 10.77 J.

The quantum membrane conductance of intracellular sodium ions at membrane
potential 0.087 V:

CQM(Na(i)) = 1.94× 109e
−35L
√

(12.17−G)3

12.81−G , (39)

Based on Equation (39), the mathematical representation of the relationship between
gating free energy and the common logarithm of quantum membrane conductance of
intracellular sodium ions is plotted as in Figure 16.
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Figure 16. The relationship between gating free energy and the common logarithm of quantum
membrane conductance of intracellular sodium ions at membrane potential of 0.087 V and over a
gating free energy range from 5 J to 12.17 J.
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3.3. The Conductance of the Voltage-Gated Potassium Channels According to the
Boltzmann Distribution

The models will be applied on the potassium channels KV1.2. These channels have
gating charge qg = 9.6e = 15.36 × 10−19 C [42,43] and a gating free energy qgV1/2 =
5.35× 10−20 J [42,43]. Additionally, the density of potassium channels D will be substituted
by 5× 1013 channels/m2 [1] and the single channel conductance of potassium channel
Csin gle(K) = 15× 10−12 S [1].

The values of D and Csin gle substituted for potassium channels are the same for the
sodium channels, and this is reasonable because these channels could have the same param-
eters [1]. Furthermore, exact values are not the primary aim of the study but rather setting
an applicable model in which different values can be substituted to predict the electrical
behavior of ion channels. Furthermore, it is more suitable to set these parameters similarly
so that a more reliable comparison can be made between sodium and potassium channels.

Considering these values in Equations (1) and (2):

PK = (1 + e
G−153.6Vm

0.43 )
−1

, (40)

CM(K) = 750× (1 + e
G−153.6Vm

0.43 )
−1

, (41)

Thus, the open probability of potassium channels at G = −5.35 J:

PK = (1 + e
−5.35−153.6Vm

0.43 )
−1

, (42)

Then, the relationship between membrane potential and the common logarithm of
open probability of potassium channels can be plotted according to Equation (42) as in
Figure 17.
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Figure 17. The relationship between the membrane potential and the common logarithm of the 
open probability of potassium channels at G = −5.35 J and over a membrane potential range from–
0.09 V to 0 V. 

Also, the open probability of potassium channels at membrane potential −0.087 V: 

Figure 17. The relationship between the membrane potential and the common logarithm of the open
probability of potassium channels at G = −5.35 J and over a membrane potential range from −0.09 V
to 0 V.

Also, the open probability of potassium channels at membrane potential −0.087 V:

PK = (1 + e
G+13.36

0.43 )
−1

, (43)
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Then, the relationship between gating free energy and the common logarithm of the
open probability of potassium channels can be plotted according to Equation (43) as in
Figure 18.
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Figure 18. The relationship between gating free energy and the common logarithm of the open
probability of potassium channels at membrane potential −0.087 V and over a gating free energy
range from −12 J to −5 J.

The membrane conductance of potassium ions at G = −5.35 J:

CM(K) = 750× (1 + e
−5.35−153.6Vm

0.43 )
−1

, (44)

The relationship between membrane potential and the common logarithm of the
membrane conductance of potassium ions is plotted according to Equation (44) as in
Figure 19.
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 Figure 19. The relationship between membrane potential and the common logarithm of the mem-
brane conductance of potassium ions according to the Boltzmann distribution at G = −5.35 J and
over a membrane potential range from −0.09 V to 0 V.

The membrane conductance of potassium ions at membrane potential −0.087 V:

CM(K) = 750× (1 + e
G+13.36

0.43 )
−1

, (45)
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Based on Equation (45), the relationship between gating free energy and the common
logarithm of the membrane conductance of potassium ions can be mathematically graphed
as in Figure 20.
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The tunneling probability of extracellular potassium ions at G = 5.35 J: 

Figure 20. The relationship between gating free energy and the common logarithm of the membrane
conductance of potassium ions according to the Boltzmann distribution at membrane potential of
−0.087 V and over a gating free energy range from −12 J to −5 J.

3.4. The Conductance of the Voltage-Gated Potassium Channels According to the Quantum Mechanics
3.4.1. The Tunneling Probability of Potassium Ions through the Intracellular
Hydrophobic Gate

The intracellular hydrophobic gate in potassium channels is formed in a similar
fashion to that of sodium channels [18,19]. Therefore, the quantum-related graphs for
potassium channels will be plotted at three different lengths as were done in sodium chan-
nels: 0.5× 10−10 m, 1× 10−10 m, and 1.5× 10−10 m. Furthermore, the mass of potassium
ion is 6.5× 10−26 Kg and its charge qK = 1e = 1.6× 10−19 C. Accordingly, the tunneling
probability of extracellular potassium ions can be calculated by the following equation:

TQ(K(o)) = e
−45.8L
√

(137.6Vm−G−0.64)3

153.6Vm−G , (46)

On the other hand, the tunneling probability of intracellular potassium ions can be
calculated by the following equation:

TQ(K(i)) = e
−45.8L
√

(153.6Vm−G−0.64)3

153.6Vm−G , (47)

The tunneling probability of extracellular potassium ions at G = 5.35 J:

TQ(K(o)) = e
−45.8L
√

(137.6Vm−5.99)3

153.6Vm−5.35 , (48)

Based on Equation (48), the relationship between membrane potential and the common
logarithm of tunneling probability of extracellular potassium ions can be represented as in
Figure 21.
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Figure 21. The relationship between membrane potential and the common logarithm of tunneling
probability of extracellular potassium ions at G = 5.35 J and over a membrane potential range from
0.044 V to 0.09 V.

The tunneling probability of intracellular potassium ions at G = 5.35 J:

TQ(K(i)) = e
−45.8L
√

(153.6Vm−5.99)3

153.6Vm−5.35 , (49)

Based on Equation (49), the relationship between membrane potential and the common
logarithm of tunneling probability of intracellular potassium ions can be mathematically
graphed as in Figure 22.
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According to Equation (50), the relationship between gating free energy and the
common logarithm of tunneling probability of extracellular potassium ions can be plotted
as in Figure 23.
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Figure 23. The relationship between gating free energy and the common logarithm of tunneling
probability of extracellular potassium ions at membrane potential of 0.087 V and over a gating free
energy range from 5 J to 11.33 J.

The tunneling probability of intracellular potassium ions at membrane potential
0.087 V:

TQ(K(i)) = e−
45.8L
√

(12.72−G)3

13.36−G , (51)

According to Equation (51), the relationship between gating free energy and the
common logarithm of tunneling probability of intracellular potassium ions can be graphed
as in Figure 24.

Pathophysiology 2021, 28 137 
 

 

 
Figure 24. The relationship between gating free energy and the common logarithm of tunneling 
probability of intracellular potassium ions at membrane potential of 0.087 V and over a gating free 
energy range from 5 J to 12.72 J. 
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According to Equation (52), the relationship between membrane potential and the 
common logarithm of quantum conductance of a single potassium channel for extracellu-
lar potassium ions can be graphed as in Figure 25. 

 
Figure 25. The relationship between membrane potential and the common logarithm of quantum 
conductance of a single potassium channel for extracellular potassium ions at G = 5.35 J and over a 
membrane potential range from 0.044 V to 0.09 V. 

The quantum conductance of a single potassium channel for intracellular potassium 
ions at G = 5.35 J: 

Figure 24. The relationship between gating free energy and the common logarithm of tunneling
probability of intracellular potassium ions at membrane potential of 0.087 V and over a gating free
energy range from 5 J to 12.72 J.
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3.4.2. The Quantum Conductance of Single Voltage-Gated Potassium Channel

The quantum conductance of single potassium channel for extracellular potassium
ions at G = 5.35 J:

CQ(K(o)) = 3.88× 10−5e−
45.8L
√

(137.6Vm−5.99)3

153.6Vm−5.35 , (52)

According to Equation (52), the relationship between membrane potential and the
common logarithm of quantum conductance of a single potassium channel for extracellular
potassium ions can be graphed as in Figure 25.
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Figure 25. The relationship between membrane potential and the common logarithm of quantum 
conductance of a single potassium channel for extracellular potassium ions at G = 5.35 J and over a 
membrane potential range from 0.044 V to 0.09 V. 

The quantum conductance of a single potassium channel for intracellular potassium 
ions at G = 5.35 J: 

Figure 25. The relationship between membrane potential and the common logarithm of quantum
conductance of a single potassium channel for extracellular potassium ions at G = 5.35 J and over a
membrane potential range from 0.044 V to 0.09 V.

The quantum conductance of a single potassium channel for intracellular potassium
ions at G = 5.35 J:

CQ(K(i)) = 3.88× 10−5e−
45.8L
√

(153.6Vm−5.99)3

153.6Vm−5.35 , (53)

According to Equation (53), the relationship between membrane potential and the
common logarithm of quantum conductance of a single potassium channel for intracellular
potassium ions can be graphed as in Figure 26.
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Based on Equation (54), the relationship between gating free energy and the common 
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Figure 26. The relationship between membrane potential and the common logarithm of quantum
conductance of a single potassium channel for intracellular potassium ions at G = 5.35 and over a
membrane potential range from 0.039 V to 0.09 V.
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The quantum conductance of a single potassium channel for extracellular potassium
ions at membrane potential 0.087 V:

CQ(K(o)) = 3.88× 10−5e−
45.8L
√

(11.33−G)3

13.36−G , (54)

Based on Equation (54), the relationship between gating free energy and the com-
mon logarithm of quantum conductance of a single potassium channel for extracellular
potassium ions can be mathematically represented as in Figure 27.
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Figure 27. The relationship between gating free energy and the common logarithm of quantum
conductance of a single potassium channel for extracellular potassium ions at membrane potential of
0.087 V and over a gating free energy range from 5 J to 11.33 J.

The quantum conductance of a single potassium channel for intracellular potassium
ions at membrane potential 0.087 V:

CQ(K(i)) = 3.88× 10−5e−
45.8L
√

(12.72−G)3

13.36−G , (55)

Based on Equation (55), the relationship between gating free energy and the com-
mon logarithm of quantum conductance of a single potassium channel for intracellular
potassium ions can be mathematically represented as in Figure 28.

3.4.3. The Quantum Membrane Conductance of Potassium Ions

Substituting the available values in Equation (15), the quantum membrane conduc-
tance of extracellular potassium ions can be calculated by the following equation:

CQM(K(o)) = 1.94× 109e
−45.8L
√

(137.6Vm−G−0.64)3

153.6Vm−G , (56)

On the other hand, the quantum membrane conductance of intracellular potassium
ions can be calculated by the following equation:

CQM(K(i)) = 1.94× 109e
−45.8L
√

(153.6Vm−G−0.64)3

153.6Vm−G , (57)
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According to Equation (58), the relationship between membrane potential and the 
common logarithm of the quantum membrane conductance of extracellular potassium 
ions can be graphed as in Figure 29. 

Figure 28. The relationship between gating free energy and the common logarithm of quantum
conductance of a single potassium channel for intracellular potassium ions at membrane potential of
0.087 V and over a gating free energy range from 5 J to 12.72 J.

The quantum membrane conductance of extracellular potassium ions at G = 5.35 J:

CQM(K(o)) = 1.94× 109e
−45.8L
√

(137.6Vm−5.99)3

153.6Vm−5.35 , (58)

According to Equation (58), the relationship between membrane potential and the
common logarithm of the quantum membrane conductance of extracellular potassium ions
can be graphed as in Figure 29.
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According to Equation (59), the relationship between membrane potential and the 
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Figure 29. The relationship between membrane potential and the common logarithm of the quantum
membrane conductance of extracellular potassium ions at G = 5.35 J and over a membrane potential
range from 0.044 V to 0.09 V.

The quantum membrane conductance of intracellular potassium ions at G = 5.35 J:

CQM(K(i)) = 1.94× 109e−
45.8L
√

(153.6Vm−5.99)3

153.6Vm−5.35 , (59)
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According to Equation (59), the relationship between membrane potential and the
common logarithm of the quantum membrane conductance of intracellular potassium ions
can be graphed as in Figure 30.
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Figure 30. The relationship between membrane potential and the common logarithm of the quan-
tum membrane conductance of intracellular potassium ions at G = 5.35 J and over a membrane 
potential range from 0.039 V to 0.09 V. 
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Figure 30. The relationship between membrane potential and the common logarithm of the quantum
membrane conductance of intracellular potassium ions at G = 5.35 J and over a membrane potential
range from 0.039 V to 0.09 V.

The quantum membrane conductance of extracellular potassium ions at membrane
potential 0.087 V:

CQM(K(o)) = 1.94× 109e−
45.8L
√

(11.33−G)3

13.36−G , (60)

According to Equation (60), the relationship between gating free energy and the
common logarithm of the quantum membrane conductance of extracellular potassium ions
can be mathematically represented as in Figure 31.
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According to Equation (61), the relationship between gating free energy and the com-
mon logarithm of the quantum membrane conductance of intracellular potassium ions 
can be mathematically represented as in Figure 32. 
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Figure 31. The relationship between gating free energy and the common logarithm of the quantum
membrane conductance of extracellular potassium at membrane potential of 0.087 V and over a
gating free energy range from 5 J to 11.33 J.
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The quantum membrane conductance of intracellular potassium ions at membrane
potential 0.087 V:

CQM(K(i)) = 1.94× 109e−
45.8L
√

(12.72−G)3

13.36−G , (61)

According to Equation (61), the relationship between gating free energy and the
common logarithm of the quantum membrane conductance of intracellular potassium ions
can be mathematically represented as in Figure 32.
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Figure 32. The relationship between gating free energy and the common logarithm of the quantum
membrane conductance of intracellular potassium ions at membrane potential of 0.087 V and over a
gating free energy range from 5 J and 12.72 J.

3.5. The Influence of Quantum Tunneling of Ions on the Resting Membrane Potential

In the previous subsections, the focus was on the effect of gating free energy and
membrane potential on the single channel conductance and membrane conductance from
a quantum perspective. However, in this subsection, the focus is shifted on the effect
of gating free energy on the resting membrane potential using the quantum version of
the Goldman–Hodgkin–Katz equation. The resting membrane potential is an important
electrical feature of excitable tissues because it determines the degree of excitability and
response of such tissues to stimulus [44]. Thus, addressing resting membrane potential
using a quantum model is useful to assess the influence of the quantum behavior of ions
on excitability.

According to the classical version of the Goldman–Hodgkin–Katz equation, the resting
membrane potential is determined when the net flux of ions across the membrane is zero.
The flux of ions is driven by two gradients: (1) The chemical gradient that drives the
flux according to the differences in ion concentration, and (2) the electrical gradient that
drives the flux according to the differences in voltage. Therefore, when these two gradients
are balanced and the net flux is zero, the membrane potential is determined under an
electrochemical equilibrium. However, a third gradient can be added if the quantum aspect
of ions is considered, which is the quantum gradient. The quantum gradient is generated
because the extracellular cations acquire higher kinetic energy as they move through the
membrane’s voltage; hence they have higher tunneling probability and higher conductance
than that of intracellular cations [32]. Thus, cations will pass from the outside to the inside
of a cell down their quantum gradient via quantum tunneling.

Consequently, the Goldman–Hodgkin–Katz equation integrating the quantum con-
ductance of ions can be written as the following [32]:

[Na]o
(

CNa + CQM(Na(o))

)
+ [K]o

(
CK + CQM(K(o))

)
= e

FVm
RT

(
[Na]i(CNa + CQM(Na(i))) + [K]i(CK + CQM(K(i)))

)
, (62)
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where (o) means extracellular, (i) means intracellular, [ ] means concentration, CNa
is the membrane conductance of sodium ions at the resting state due to leaky channels
(0.05 S/m2) [1,45], CK is the membrane conductance of potassium ions at the resting state
due to leaky channels (5 S/m2) [1,45], F is Faraday’s constant (96,485.33 C/mol), R is
the gas constant (8.31 J/Kmol), T is the body temperature (310 K), and Vm is the resting
membrane potential at the equilibrium. As it was explained before, the membrane potential
Vm is an absolute value of the negative potential of the membrane. Furthermore, the
following values will be considered for the ions concentrations: [Na]o = 142 mmol/L [45],
[Na]i = 14 mmol/L [45], [K]o = 4 mmol/L [45], and [K]i = 140 mmol/L [45].

By substituting the above values of leaky membrane conductance and concentrations
of sodium and potassium in Equation (62) and by ignoring the quantum conductance of
ions (the classical version of GHK equation), the resting membrane potential Vm = 0.087 V.

The quantum gradient of cations tends to depolarize the resting membrane potential
because extracellular cations have higher conductance than their intracellular counterparts
which indicates that there is more flux of positive charges to the inside of a cell.

The activation gate, where the quantum model is applied, operates classically by
dilating its pore in response to membrane depolarization to facilitate the conduction of ions.
On the other hand, another opposing conformational change will happen to counteract the
conduction of ions in response to membrane depolarization. This opposing conformational
change is the formation of the inactivation gate that blocks the conduction of ions [1]. Even
though that both the activation and inactivation gates are formed in response to membrane
depolarization, the activation gate has faster kinetics than the inactivation gate and this
allows the conduction of ions [1]. This is important as it facilitated the formulation of action
potential signals in excitable tissues [1].

On the other hand, both the activation and the inactivation events of the voltage-
gated channels would occur in a case of equilibrium because it is slower process than the
action potential generation [1]. Therefore, the membrane depolarization at the equilibrium
will cause the voltage-gated channel to undergo the conformational changes of activation
and inactivation. Considering the equilibrium, the intracellular hydrophobic constriction
will not depend on the membrane voltage to shape its energy barrier. Additionally, this
consequence seems consistent and reasonable especially when the inactivation gate is
formed at the same intracellular hydrophobic constriction where the activation gate is
formed [46]. Therefore, it is assumed that the conformational changes of the inactivation
event will balance the conformational changes of the activation event preserving the
original barrier’s parameters of length and gating energy. This assumption is made to
make it easier to study the influence of quantum tunneling of ions on the resting membrane
potential under the equilibrium. Consequently, this makes the barrier energy of the
hydrophobic gate independent of the membrane potential.

Therefore, we modified the equation of tunneling probability for extracellular sodium
ions at membrane potential of 0.087 V as the following:

TQ(Na(o))r = e−
35L
√

(12.17−G−16Vm)3

12.81−G , (63)

also, the equation of tunneling probability for extracellular potassium ions at membrane
potential of 0.087 V can be modified as the following:

TQ(K(o))r = e−
45.8L
√

(12.72−G−16Vm)3

13.36−G , (64)

Based on Equations (63) and (64), the value of membrane potential in this expression
qgVm as in Equation (12) is substituted by 0.087 V because the intracellular hydrophobic
constriction is balanced by two opposite events (activation and inactivation). The activation
dilates the pore while inactivation constricts the pore. Thus, it is assumed that the net
effect of these two events is no change in the radius of the pore; hence the hydrophobic
constriction does not depend on the membrane voltage changes to shape its energy barrier.
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Accordingly, the original resting membrane potential, which is 0.087 V, is substituted in
this expression qgVm. On the other hand, the membrane potential in the kinetic energy of
the ion 16Vm is kept as a variable because the ion can still be influenced by the membrane
potential regardless of the state of activation or inactivation.

Even though there are other suggested mechanisms of inactivation [47,48], our case
focuses on the net effect of conformational changes of activation and inactivation, which
resembles the original barrier parameters in terms of length and energy. This implies
that ions can tunnel through the inactivation gate by the same principles applied on the
activation gate.

By substituting the available values in Equation (62) and taking into consideration the
quantum conductance of sodium ions:

27.1 + 2.76× 1011e−
35L
√

(12.17−G−16Vm)3

12.81−G = 700.7e−37.45Vm , (65)

The quantum membrane conductance of intracellular sodium ions is neglected because
it is much lower than the quantum membrane conductance of extracellular sodium ions.

To evaluate the influence of quantum tunneling of sodium ions on the resting mem-
brane potential, Equation (65) is used to graph the relationship between gating free energy
and resting membrane potential as in Figure 33.
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Figure 33. The relationship between gating free energy and the resting membrane potential under
the influence of quantum tunneling of sodium ions.

By substituting the available values in Equation (62) and taking into consideration the
quantum conductance of potassium ions:

27.1 + 7.76× 109e−
45.8L
√

(12.72−G−16Vm)3

13.36−G = 700.7e−37.45Vm , (66)

The quantum conductance of intracellular potassium ions is neglected because it is
much lower than the quantum conductance of extracellular potassium ions.

To evaluate the influence of quantum tunneling of potassium ions on the resting
membrane potential, Equation (66) is used to graph the relationship between the gating
free energy and the resting membrane potential as in Figure 34.
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4. Discussion

In this section, the function of the voltage-gated channels will be discussed according
to plotted graphs demonstrated in the results. Additionally, a comparison will be made
between the quantum model and the classical model of Boltzmann distribution. Moreover,
the contributions of the quantum behavior of ions in the pathophysiology of certain diseases
and disorders of the excitable tissues will be elaborated upon.

To make the discussion well-organized, the results are interpreted in a numerical
fashion:

1. The opening of the gate is mediated by the movement of the four voltage sensors,
which in turn dilates the hydrophobic constriction in order to conduct ions [49]. This
opening needs a certain level of energy to be achieved. The classical model of Boltzmann
distribution calculates the fraction of the total channels that has the enough required energy
to open the channels for the conduction of ions. On the other hand, the quantum model
is based on the quantum tunneling of ions through the intracellular hydrophobic gate.
Quantum tunneling implies that ions possess a non-zero probability to pass through the
gate even when the gate’s energy requirement is higher than that of the ions themselves. So,
the quantum tunneling of ions through a channel is the origin of that channel’s quantum
conductance. Additionally, the tunneling probability depends exponentially on the mass
of an ion, the length of the gate, the gating free energy, and the kinetic energy of an ion.

2. According to the quantum model, a voltage-gated channel has a spectrum of single
channel conductance values and not just two states as described in the classical model:
(1) Open, which conducts ions and (2) closed, which does not conduct ions. So, even
though that the channel appears to be structurally closed, it is still able to conduct ions
by quantum tunneling. Moreover, the classical model states that an ion can pass through
the channel when the energy of the hydrophobic constriction drops to a certain level at
which the ion has enough energy to overcome the barrier energy. This drop in the energy
happens when the hydrophobic pore dilates, thus increasing its radius. On the other hand,
the quantum model offers the possibility of ion passage through the closed hydrophobic
gate even though that the energy of the barrier is higher than the energy of the ion. This
is an important quantum property of voltage-gated channels. This observation renders
the two classical states of voltage-channels obsolete in determining the conductance of a
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single channel. This provides a reasonable explanation for the permeation of ions through
the closed channels without the need of the mechanical movement of voltage sensors to
dilate the pore because quantum tunneling of ions does not require the pore dilation [50,51].
Moreover, the quantum model can explain that the movement of at least one voltage
sensor out of four, can make a channel permeable [52]. Such phenomenon exists due to
the movement of one voltage sensor as it can partially dilate the pore, reducing the barrier
energy of the gate to enhance the quantum tunneling of ions and their conductance without
the need of the cooperation of the four sensors to fully dilate the pore.

3. Based on the equations and graphs in the results section, there is a probability
of a channel opening in the classical model and there is a probability of ion tunneling
through the channel in the quantum model. In addition to that, there are two values of
single channel conductance in the classical model: (1) Zero conductance when the channel
is closed and (2) Csin gle when the channel is open, but there is a range of single channel
conductance values in the quantum model and not just two values. However, there is
membrane conductance in both models.

4. As aforementioned in the results, the tunneling probability, quantum conductance
of a single channel, and quantum membrane conductance were evaluated according
to the membrane potential and gating free energy. It is obvious that the extracellular
cations have higher tunneling probability, higher single channel conductance, and higher
membrane conductance because they have higher kinetic energy than their intracellular
counterparts. The higher kinetic energy of the extracellular cations is attributed to the
membrane potential that is negative on the inside in comparison to the outside of a cell;
hence the cations that come from the outside passing through the channel until reaching
the intracellular gate will go through the membrane potential and acquire kinetic energy.
Therefore, the quantum model discriminates between the extracellular and intracellular
ions in terms of conductance unlike the classical model, which treats them the same in
terms of conductance; see Figure 35.

Additionally, it is clear that sodium has higher tunneling probability and higher
conductance than potassium and this discrepancy can be attributed to the fact that the
mass of sodium is less than the mass of potassium. Thus, the mass is an exponentially
influential factor on the conductance in the quantum model.

5. The membrane conductance is the eventual electrical property that is used to assess
the influence of ions on the excitability of the membrane. By comparing the graphs of
membrane conductance for the same ion in both models, it is evident that the quantum
membrane conductance of extracellular ions can be comparable or even higher than the
membrane conductance of ions due to the mechanical opening of the channels as in the
classical model. This means that ions can achieve significant quantum conductance, which
can affect the electrical behavior of excitable cells at the resting state and during an action
potential.

6. The membrane potential affects quantum tunneling and the conductance of ions in
both models. This is vital in the generation and propagation of action potentials because if a
stimulus is strong enough, it will trigger the opening of the sodium voltage-gated channels
to increase their conductance, depolarizing the membrane potential, which will further
increase the conductance of sodium ions to elicit a spike of depolarization. According
to the graphs in the results, it seems that quantum tunneling of ions contributed to the
depolarization spike of the action potential because as the membrane depolarizes, the
quantum membrane conductance of sodium ions increases significantly in comparison
to the membrane conductance in the Boltzmann model. Thus, this insight gives a new
perspective in the process of action potential generation involving the quantum behavior
of ions. Furthermore, this observation supports the previous works that focused on the
role of quantum mechanics within action potentials [53,54].
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Figure 35. A schematic diagram represents the quantum wave behavior of an ion and the quantum tunneling through
the intracellular gate (shown in red) indicated by the dashed line in the gate, which is formed by the crossing of the four
S6 segments near the intracellular side (two of them are shown for simplicity). Figure (a) represents quantum tunneling
of an ion moving from the extracellular side to the intracellular side. Figure (b) represents quantum tunneling of an ion
moving from the intracellular side to the extracellular side. Notice that the extracellular ion, as in Figure (a), has shorter
wavelength (the distance from peak to peak) when it is compared with that of the intracellular ion, as in Figure (b). This
indicates that extracellular ions have higher kinetic energy since it is inversely correlated with the wavelength. Additionally,
the wave amplitude of the extracellular ion passing after the gate, as in Figure (a), is higher than that of the intracellular
ion, as in Figure (b). This indicates that extracellular ions have higher tunneling probability since it is proportional to the
wave amplitude.

7. Based on the graphs in the results, it is apparent that the gating free energy affected
the membrane conductance. The gating free energy is the energy required to open the
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closed channel at membrane potential 0 V and this quantity gives information about
how difficult it is to open a channel. Additionally, the conductance was assessed over a
decreasing range of gating free energy; hence it was expected to observe increasing values
in the conductance. The gating free energy of the channels decreases in many conditions
including: Channelopathies [55–57] tissue ischemia [58], and mechanical stretch of the
membrane [58,59]. These conditions are present in many genetic and acquired diseases
such as channelopathies of epilepsy [60], cardiac arrhythmias [61], and pain disorders [62].
Moreover, cerebral ischemia, stroke, myocardial ischemia, and myocardial infarction are
associated with increased risk of higher excitability resulting in seizures, epilepsy, and
life-threatening arrhythmias [63–65]. Furthermore, the pathological stretch in heart failure
and valvular heart disease is associated with serious arrhythmias such as ventricular
tachycardia, ventricular fibrillation, and atrial fibrillation [66–69]. So, the decrease in the
gating free energy can increase the risk of developing excitability-related disorders. This
can be explained by the two models: (1) In the classical model, the decrease in the gating
free energy of the sodium channels will decrease the barrier energy of the gate resulting in
a higher fraction of open channels and higher membrane conductance at certain membrane
voltage. This means that the membrane initiates the depolarization spike of action potential
at lower thresholds in response to certain stimulus. (2) In the quantum model, the decrease
in the gating free energy of the sodium channels will decrease the barrier energy of the
gate resulting in higher tunneling probability and higher quantum conductance of sodium
ions at certain membrane voltages. Consequently, the membrane will be more responsive
and more able to generate the depolarization spike of action potentials at a lower threshold.
Furthermore, according to the quantum model, the decrease in the gating free energy results
in a significant increase in the conductance of extracellular sodium ions that can affect the
membrane potential and its excitability. Thus, the decrease in the gating free energy will
decrease the threshold required to initiate an action potential according to both models.
Interestingly, there is another mechanism through which the quantum behavior of ions can
increase this excitability. This mechanism is the ability of sodium and potassium ions to
depolarize the resting membrane potential in response to the decrease in the gating free
energy as represented in Figures 33 and 34. Therefore, as the resting membrane potential
becomes depolarized, it becomes closer to the threshold and more responsive to transmit
an action potential.

8. According to the quantum model, both sodium and potassium ions can depolarize
the resting membrane potential because extracellular sodium and potassium ions have
higher tunneling probability and higher quantum conductance than intracellular sodium
and potassium ions. Consequently, there will be a quantum gradient of positive ions from
outside to inside the cell resulting in depolarizing the resting membrane potential under
the equilibrium. However, according to the classical model, when the potassium channels
open, potassium ions diffuse from inside to outside the cell, down their concentration
gradient, resulting in membrane hyperpolarization. Hence, the quantum model can
explain why gain-of-function mutations in potassium channels of excitatory neurons can
result in hyperexcitability instead of hypoexcitability [70]. Surprisingly, when the gain-
of-function mutation in potassium channels decreases the gating free energy, this may
increase the tunneling probability and quantum conductance of extracellular potassium
ions significantly to depolarize the resting membrane potential, predisposing the membrane
to hyperexcitability.

9. The quantum model treats voltage-gated channels as leaky channels that can
contribute to the resting membrane potential especially when certain mutation occurs to
decrease the gating free energy. On the other hand, the classical model concerns itself with
the opening and closing of channels for initiation and propagation of action potentials.
Under equilibrium, the ions can tunnel through the activation or the inactivation gate
resulting in a leaky persistent quantum current that could alter the membrane potential.
This serves to give a reasonable mechanism behind the persistent inward sodium current
in the mutated channels, which are implicated in higher excitability such as in epilepsy.
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This current fails to be inactivated even during prolonged depolarization [71] and this is
consistent with the prediction of the quantum model, which states that ions can tunnel
through the inactivation gate during even prolonged depolarization.

The comparisons and the implications listed above are deduced mainly from the
equations and the mathematical graphs obtained in the results. Therefore, they require
experimental evidence to be further validated. However, it is vital to propose and discuss
the mathematical structure of any model before performing any experiments to test its
validity. Hence, the present study focuses on the mathematical aspects of the quantum
bioelectrical property of the biological membrane.

To make a connection between the mathematical quantum model proposed here in
the article and future experiments to test its validity, concrete strategies and approaches
are listed here to help in conducting experimental studies aimed at providing evidence on
the quantum bioelectrical property of the biological membrane. Interestingly, it has been
shown that the quantum features of ions can be used to control the membrane preparation
which shows a high selectivity for targeted ions [72].

Before addressing the strategies and the approaches, it is important to notice that under
normal physiological parameters the quantum behavior of sodium and potassium ions has
minimal influence on the overall electrical behavior of the excitable cells [31,32]. This is
clear in Figures 33 and 34 in which the gating free energy must decrease to certain level at
which the quantum behavior has a significant effect on the membrane potential. Therefore,
when electrophysiological studies are to be conducted, it is important to set an experimental
environment where the quantum behavior of ions can influence the membrane potential.
This can be achieved by two main approaches: (1) Inducing mutations in the residues of
the activation or inactivation gates so that the gating free energy decreases or (2) using
ions with lower masses such as lithium [31,32] or hydrogen ions (protons) so that the
quantum tunneling probability increases significantly without even inducing mutations in
the activation or inactivation gates.

The evidence for the quantum bioelectrical property of the biological membrane can
be provided by adopting the following experimental strategies and approaches:

1. A key difference between classical mechanics and quantum mechanics of the
voltage-gated channels is the process of ions conduction as aforementioned. According to
quantum mechanics, ions can tunnel through the closed activation gate or inactivation gate
without inducing any conformational changes in the molecular structure of the voltage-
gated channel such as the movements of the voltage sensors or pore dilations. This can give
a promising hint on the presence of quantum effects of ions. Thus, electrophysiological
studies can be conducted to measure such quantum currents while observing no mechanical
movements or pore dilation sufficient to conduct the ions.

2. According to quantum mechanics, the closed channels can have a range of single
channel conductance values. Hence, it is expected that different molecular closed structures
of the same mutated channel would have different values of conductance that obey the
exponential equations presented here in the article. Therefore, electrophysiological studies
can be conducted to measure the conductance of the different closed structures of the
same channel before reaching the open state in which sufficient dilation has occurred to
permeate ions. Then, the experimental results of the conductance values can be compared
with the theoretical results obtained when applying the mathematical model proposed
in the present work. Another similar approach is to perform different mutations on the
same channel to decrease the gating free energy. Hence, the conductance at a certain
closed structure is measured experimentally for the different mutations performed. Then
the experimental and the theoretical values are compared to evaluate the validity of the
mathematical quantum model. In addition, according to the quantum model, the quantum
conductance of a single channel can be significantly larger than the closed state of a channel.
Thus, experimentally manipulating the parameters of the closed hydrophobic gate can
result in conductance values higher than the values of the closed state and this can provide
evidence on quantum conductance.
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3. One important quantum aspect in the function of the voltage-gated channel is
that extracellular cations have higher conductance than the intracellular cations and this
is applied on both sodium and potassium ions. For example, when a gain-of-function
mutation (mutation decreases the gating free energy) occurs in the potassium channel, it
is expected that there will be a net inward (from the extracellular side to the intracellular
side) current of potassium ions. Therefore, electrophysiological studies can be performed
to measure this inward current of potassium ions through the mutated channels. This will
provide promising evidence on the presence of the quantum effects because this inward
current of potassium ions cannot be explained by the conventional electrophysiological
principles as potassium ions must diffuse according to their concertation gradient from the
intracellular side to the extracellular side resulting in only an outward current.

4. Here, another approach is proposed to be utilized to provide the evidence on
the quantum effects of the biological membrane. The approach is to measure the resting
membrane potential at different groups of mutated channels contained in the biological
membrane. Then, it is expected to get experimental plots that fit the theoretical plots as
in Figures 33 and 34. Additionally, observing the depolarizing effect of potassium ions
when the gating free energy decreases due to mutations will provide favorable evidence
for the effects of quantum behavior within biological systems. This effect is not expected
according to the classical mechanics or the conventional electrophysiological principles.
Actually, according to classical mechanics, it is not expected for the voltage-gated channels
to contribute to establishing the resting membrane potential because they mainly function
during the action potential propagation and not at the resting state. However, according to
quantum mechanics, it is expected for the mutated voltage-gated channels to contribute to
establishing the resting membrane potential as discussed before. Therefore, if experiments
provide evidence on the relationship between the gating free energy of the voltage-gated
channels and the resting membrane potential that are consistent with the theoretical data
proposed here, this will provide evidence that the biological membrane possesses quantum
electrical activity.

5. Furthermore, a key feature in the quantum conductance is the exponential depen-
dence on the mass of the ions and the length of the gate. This will be an interesting strategy
to be used to experimentally show the exponential variations in quantum conductance
between ions according to their masses and the length of the gate.

Quantum de-coherence is one of the fastest physical processes and it represents a
major challenge for the validity of many studies that focus on applying quantum mechanics
on the biological systems including our present study. We mentioned this challenge in
the introduction. Here, we provide possible mechanisms that can sustain the quantum
coherence of ions so that the quantum tunneling can occur before de-coherence takes place.
These mechanisms include:

1. The short length of the hydrophobic gate (0.5− 1.5)× 10−10 m, in which the quan-
tum tunneling happens, will provide enough time before de-coherence occurs be-
cause it has been shown that the distance correlates inversely to the time of de-
coherence [17,73,74].

2. The gate is made by the aggregation of hydrophobic amino acids. This hydropho-
bic pocket will exclude water (dewetting) and may create a decoherence-free sub-
space [17,75].

3. Because voltage-gated channels and ions are a part of the biological system, it is ex-
pected that they could operate far from the thermal equilibrium, which indicates that
ions may cool down through the hydrophobic gate even at higher body temperatures.
This ‘cooling down’ can sustain the quantum coherence and make the quantum effects
more apparent [17,74–77].

4. The complex non-linearity of brain dynamics can augment the quantum fluctuations
and hence contribute to the maintenance of the quantum coherence of ions [78,79].
The electromagnetic field effects possibly mediate this augmentation [80–82].
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The present work has certain qualities that make it distinct from the other previous
studies [31,32]. These qualities include: (1) The present study makes a comparison between
classical mechanics and quantum mechanics to mathematically show the differences in
their influence on the function of voltage-gated channels. (2) The present study integrates
the effect of membrane potential on the energy barrier of the gate. Thus, this allows us to
evaluate the relationship between membrane potential and quantum tunneling probability,
quantum conductance of a single channel, and the quantum membrane conductance.
(3) The present study uses mathematical graphs to show vividly how the aforementioned
variables change and behave according to the principles of quantum mechanics. Using
mathematical graphs allows covering a wide range of values to get a more comprehensive
understanding of the quantum model of the voltage-gated channels. (4) The present study
focuses on both the activation and inactivation gate in its discussion. (5) The present
study sheds light on the implications of using the quantum model to provide reasonable
explanations for the pathological mechanisms in excitability-related diseases and disorders.
(6) The present study sets a more comprehensive mathematical model that can be used
to measure to the quantum conductance of the channels and the biological membrane in
electrophysiological experiments.

5. Conclusions

The present study proposes the quantum model, which is based on the quantum
tunneling of ions through the closed gate of these channels, to approach voltage-gated
channels. This approach is adopted to unveil new properties in the voltage-gated channels
and to solve the challenges and problems at the molecular and clinical levels. The model
can explain the permeation of ions through the closed channels without the movement
of voltage sensors, and it can also explain the paradox of the hyperexcitability effects of
gain-of-function mutations in potassium channels. Moreover, it can explain the persistent
inward sodium current in the mutated channels during prolonged depolarization. In
addition to that, the quantum model sheds light on the contribution of the quantum
tunneling of ions on the pathophysiology of epilepsy, pain, and arrhythmia. This might be
helpful to develop new agents to treat and control these chronic and challenging diseases.
Also, different experimental strategies are listed in this study to test the scientific validity
of the proposed model. Furthermore, possible mechanisms are suggested to explain the
persistence of quantum coherence of ions to ensure that quantum tunneling of ions occurs
before de-coherence.
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74. Hagan, S.; Hameroff, S.R.; Tuszyński, J.A. Quantum computation in brain microtubules: Decoherence and biological feasibility.
Phys. Rev. E 2002, 65, 061901. [CrossRef]

75. Lidar, D.A.; Chuang, I.L.; Whaley, K.B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 1998, 81, 2594.
[CrossRef]

76. Matsuno, K. Cell motility as an entangled quantum coherence. BioSystems 1999, 51, 15–19. [CrossRef]
77. Cai, J.; Popescu, S.; Briegel, H.J. Dynamic entanglement in oscillating molecules and potential biological implications. Phys. Rev. E

2010, 82, 021921. [CrossRef]
78. Jedlicka, P. Revisiting the quantum brain hypothesis: Toward quantum (neuro) biology? Front. Mol. Neurosci. 2017, 10, 366.

[CrossRef]
79. Jedlicka, P. Quantum stochasticity and (the end of) neurodeterminism. Quantum Phys. Meets Philos. Mind 2014, 183–197.

[CrossRef]
80. Anastassiou, C.A.; Koch, C. Ephaptic coupling to endogenous electric field activity: Why bother? Curr. Opin. Neurobiol. 2015,

31, 95–103. [CrossRef] [PubMed]
81. Fröhlich, F.; McCormick, D.A. Endogenous electric fields may guide neocortical network activity. Neuron 2010, 67, 129–143.

[CrossRef]
82. McFadden, J.; Al-Khalili, J. Life on the Edge: The Coming of Age of Quantum Biology; Crown Publishing Group: New York, NY, USA,

26 July 2016.

http://doi.org/10.1088/1742-6596/306/1/012075
http://doi.org/10.1103/PhysRevE.65.061901
http://doi.org/10.1103/PhysRevLett.81.2594
http://doi.org/10.1016/S0303-2647(99)00009-X
http://doi.org/10.1103/PhysRevE.82.021921
http://doi.org/10.3389/fnmol.2017.00366
http://doi.org/10.1515/9783110351064.183
http://doi.org/10.1016/j.conb.2014.09.002
http://www.ncbi.nlm.nih.gov/pubmed/25265066
http://doi.org/10.1016/j.neuron.2010.06.005

	Introduction 
	The Mathematical Model 
	The Conductance of the Voltage-Gated Channels According to the Laws of Thermodynamics 
	The Conductance of the Voltage-Gated Channels According to Quantum Mechanics 

	Results 
	The Conductance of the Voltage-Gated Sodium Channels According to the Boltzmann Distribution 
	The Conductance of the Voltage-Gated Sodium Channels According to the Quantum Mechanics 
	The Tunneling Probability of Sodium Ions through the Closed Intracellular Hydrophobic Gate 
	The Quantum Conductance of Single Voltage-Gated Sodium Channel 
	The Quantum Membrane Conductance of Sodium Ions 

	The Conductance of the Voltage-Gated Potassium Channels According to the Boltzmann Distribution 
	The Conductance of the Voltage-Gated Potassium Channels According to the Quantum Mechanics 
	The Tunneling Probability of Potassium Ions through the Intracellular Hydrophobic Gate 
	The Quantum Conductance of Single Voltage-Gated Potassium Channel 
	The Quantum Membrane Conductance of Potassium Ions 

	The Influence of Quantum Tunneling of Ions on the Resting Membrane Potential 

	Discussion 
	Conclusions 
	References

