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Abstract: (1) Background: Cancer stem cells (CSCs) are a subpopulation of cells in a tumor that
can self-regenerate and produce different types of cells with the ability to initiate tumor growth
and dissemination. Chemotherapy resistance, caused by numerous mechanisms by which tumor
tissue manages to overcome the effects of drugs, remains the main problem in cancer treatment.
The identification of markers on the cell surface specific to CSCs is important for understanding
this phenomenon. (2) Methods: The expression of markers CD24, CD44, ALDH1, and ABCG2 was
analyzed on the surface of CSCs in two cancer cell lines, MDA-MB-231 and HCT-116, after treatment
with 5-fluorouracil (5-FU) using flow cytometry analysis. A machine learning model (ML)–genetic
algorithm (GA) was used for the in silico simulation of drug resistance. (3) Results: As evaluated
through the use of flow cytometry, the percentage of CD24-CD44+ MDA-MB-231 and CD44, ALDH1
and ABCG2 HCT-116 in a group treated with 5-FU was significantly increased compared to untreated
cells. The CSC population was enriched after treatment with chemotherapy, suggesting that these
cells have enhanced drug resistance mechanisms. (4) Conclusions: Each individual GA prediction
model achieved high accuracy in estimating the expression rate of CSC markers on cancer cells
treated with 5-FU. Artificial intelligence can be used as a powerful tool for predicting drug resistance.

Keywords: cancer stem cells; chemotherapy resistance; machine learning model

1. Introduction

Despite ongoing breakthroughs in oncology, malignant diseases continue to be the
leading cause of morbidity and mortality worldwide [1]. Recent years have seen signifi-
cant advancements in immunotherapy, gene therapy, and other treatment modalities [2].
However, chemotherapy remains a crucial component in the treatment of many malignant
diseases [3]. Despite its use in combination with surgery and radiotherapy, chemotherapy
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has limited efficacy and is associated with numerous unwanted side effects. Drug resis-
tance, caused by various mechanisms employed by tumor tissue to overcome the effects of
drugs, remains a major challenge, and it is believed that disease progression is often due
to the emergence of treatment resistance [2]. One mechanism contributing to treatment
survival and disease relapse is the presence of cancer stem cells (CSCs) within the tumor
tissue. These cells possess pluripotent properties [4]. CSCs are defined as a subpopulation
of tumor cells with the capacity for self-renewal and differentiation to drive the initiation,
progression, metastasis, and recurrence of tumors [5]. There are CSCs that are part of the
tissue milieu of the tumor even before the application of therapy, but today, it is well known
that even well-differentiated cells are subject to further differentiation in the sense of a
shift towards the pluripotent part of the cell spectrum, when CSCs subsequently arise,
sometimes paradoxically even in response to the oncological treatment applied (chemo or
radiotherapy) [4]. Today, markers have even been discovered on the cell surface that can
identify CSCs, which can be an important therapeutic target, such as CD44 (CD44high)
combined with the (near-)absence of CD24 (CD24low) [6]. The presence of undifferentiated
CD44+CD24−/low tumor cells is an unfavorable prognostic marker in patients with breast
cancer, and the increased proportion of CD44+CD24−/low cells is an indicator of probable
metastases in the lymph nodes [7]. The peritumor environment and its modification during
the application of therapy also play a very important and active role in the processes of
resistance to treatment [8]. After the eradication of most tumor cells, only CSCs remain
in the tissue milieu of the tumor. Being resistant to therapy, CSCs can not only survive
oncological treatment but also continue to proliferate unhindered, creating relapses and
distant metastatic deposits resistant to the initial therapy [9]. Mathematical modeling,
in silico experiments, and computer simulations are being integrated into biomedicine
and clinical practice. Computer systems are essential in medicine, machine learning, and
personalized therapy [10]. The integration of computer modeling and simulations has
become crucial in scientific research, offering a cost-effective and efficient alternative to
complex and time-consuming experiments. Machine learning (ML) models, such as the
genetic algorithm (GA), are employed to simulate real processes [11]. GA utilizes biolog-
ically inspired mathematical operators like mutation, crossover, and selection based on
Charles Darwin’s theory of natural evolution [12]. This study aimed to identify ways to
enhance chemotherapy treatments and overcome drug resistance by utilizing a mathe-
matical model of chemotherapy. The researchers discovered valuable insights that could
contribute to improving the application of anticancer therapies, particularly in the context
of precision medicine.

2. Materials and Methods
2.1. Cell Culturing and Chemotherapy Treatment

The in vitro experiments were conducted on two distinct human cancer cell lines: HCT-
116, which is derived from human colorectal carcinoma, and MDA-MB-231, originating
from human breast adenocarcinoma. These cell lines were chosen for their relevance to their
respective cancer types and their well-documented biological behaviors. HCT-116 cells are
characterized by specific genetic mutations and molecular pathways that are emblematic
of colorectal cancer, while MDA-MB-231 cells are representative of triple-negative breast
cancer, which is known for its aggressive nature and lack of hormonal receptors. Each cell
line presents unique challenges in terms of treatment and reflects the heterogeneity of cancer
biology, which is critical for the evaluation of chemotherapeutic efficacy and the analysis
of cancer stem cell (CSC) marker expression. The cells were cultured under standard
conditions (ECACC—European Collection of Authenticated Cell Cultures), and following
24 h of seeding, they were exposed to the chemotherapeutic agent 5-fluorouracil (5-FU)
to assess the impact on CSC marker expression. For chemotherapy treatments, the cells
were exposed to 5-FU at a clinically relevant concentration, which was determined based
on prior dose–response studies (62.5 µM). The treatment schedule involved administering
5-FU for a period reflective of standard clinical protocols, with exposure times ranging
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from 24 to 52 h to assess short-term and prolonged effects. Untreated control cells were
maintained under identical conditions without 5-FU exposure at each time point to serve
as baseline controls for comparison.

2.2. Flow Cytometry Analysis

In order to screen the expression of various cancer stem cell surface markers, the
cells were cultured in 6-well dishes. After 24 h of seeding, the cells were treated with the
chemotherapy agent 5-FU. For the flow cytometric analysis, 1 × 105 cells were harvested at
24, 33, 43-, and 52 h post treatment and incubated with anti-human CD24, CD44, ALDH1,
and ABCG2 monoclonal antibodies conjugated with allophycocyanin (APC), peridinin
chlorophyll protein (PerCP), phycoerythrin (PE), or fluorescein isothiocyanate (FITC) (all
from BD Biosciences, San Jose, CA, USA), following the manufacturer’s instructions. It is
important to note that for the detection of intracellular ALDH1A1, which is not a surface
protein, the cells were permeabilized using a fixation/permeabilization solution kit (BD
Biosciences) following the provided protocol before incubation with the antibodies. This
allows for the intracellular staining of ALDH1A1, enabling its detection alongside surface
markers. Flow cytometric analysis was conducted on a BD Biosciences FACSCalibur, and
the data were analyzed with commercial software, Flowing. For the control cells, identical
procedures were followed without the addition of 5-FU to ensure the comparability of
the data.

We used forward and side scatter density plots to identify the CSC population of
interest and exclude debris. Forward versus side scatter (FSC vs. SSC) gating is commonly
used to identify cells of interest based on size and granularity (complexity). It is suggested
that forward scatter indicates cell size, whereas side scatter relates to the complexity or
granularity of the cell. In our samples, with HCT-116 and MDA.MB-231 cells, this first level
gating method was crucial for identifying the cells of interest. This gating strategy was also
used to exclude debris as they tend to have lower forward scatter levels. Dead cells were
found at the bottom left corner of the FSC vs. SSC density plot. Dead cells and cell debris
are characterized by lower FSC/SSC values (lower FSC values indicate non-proliferative
cells, and higher SSC values indicate granular formation during apoptosis); therefore, they
are easily excluded from the live region.

2.3. Machine Learning Model (ML)–Genetic Algorithm (GA)

In our methodology, the machine learning component utilizes a genetic algorithm
(GA) within a Genetic Programming (GP) framework, specifically using a symbolic regres-
sor. This choice was motivated by the ability of the GP symbolic regressor to generate a
mathematical function that not only represents the input data accurately but also produces
an output that is comprehensible and translatable to other applications or environments.
The novelty of our approach lies in the specific application of this regressor to the predic-
tion of CSC marker expression following chemotherapy treatment. Unlike the methods
described by O’Neill et al., our model incorporates a unique set of features derived from
our experimental data, which includes not only the standard gene expression profiles but
also a range of cellular responses to 5-FU treatment. This allows our model to simulate the
biological behavior of cancer cells post-chemotherapy and predict the dynamics of CSC
marker expression over time more precisely. To enhance transparency and reproducibility,
we provide a detailed description of the GA’s configuration in the Supplementary Materials,
including population size, mutation rates, and selection mechanisms. Furthermore, we
have conducted a series of validation experiments to compare the predictions of our model
with empirical data, confirming the robustness and predictive power of our approach.
These results are presented in the Results section and demonstrate that our machine learn-
ing model can serve as a valuable tool for simulating the complex biological processes
associated with CSC behavior and drug resistance. In the GP, the mathematical function is
represented as a tree, with the sheets serving as the variables or constants and the functions
serving as the nodes (branching points). Nodes have the possibility to be different functions
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from the list in the function set [add, sub, mult, div, sqrt, log, abs, neg, inv, max, min, sin,
cos, and tan], and leaves can be determined in the terminal set for constant values of a
defined range or variables. Nodes and leaves are primarily acquired randomly; crossover
and mutation reproduction change them. In order to evaluate the effectiveness of the
results and select the best ones for inclusion in the next iteration of the genetic algorithm,
a population of children was examined after the genetic operation had been carried out.
The loop was terminated when the algorithm reached the stopping threshold or the max-
imum number of generations. The operating principles are detailed and described by
O’Neill et al. [13]. GP is not sequential or time-dependent and does not have memory. It
is a simple algorithm that sets the past input values of time series in multiple points and
other variables for the prediction of future value. Input data for training GA and fitting
were used from experimental measurements on flow cytometry of CSC markers expression
in cancer cells treated with 5-FU and without treatment. Several markers (CD24, CD44,
ALDH1, and ABCG2) were measured in time (24 h, 33 h, 43 h, and 52 h). The results from
measurements at 52 h were used for GA model validation. Figure 1 presents the measured
data for MDA-MB-231 and HCT-116 cell lines for the input data.

Curr. Oncol. 2024, 31, FOR PEER REVIEW  4 
 

 

robustness and predictive power of our approach. These results are presented in the 

Results section and demonstrate that our machine learning model can serve as a valuable 

tool for simulating the complex biological processes associated with CSC behavior and 

drug resistance. In the GP, the mathematical function is represented as a tree, with the 

sheets serving as the variables or constants and the functions serving as the nodes 

(branching points). Nodes have the possibility to be different functions from the list in the 

function set [add, sub, mult, div, sqrt, log, abs, neg, inv, max, min, sin, cos, and tan], and 

leaves can be determined in the terminal set for constant values of a defined range or 

variables. Nodes and leaves are primarily acquired randomly; crossover and mutation 

reproduction change them. In order to evaluate the effectiveness of the results and select 

the best ones for inclusion in the next iteration of the genetic algorithm, a population of 

children was examined after the genetic operation had been carried out. The loop was 

terminated when the algorithm reached the stopping threshold or the maximum number 

of generations. The operating principles are detailed and described by O’Neill et al. [13]. 

GP is not sequential or time-dependent and does not have memory. It is a simple 

algorithm that sets the past input values of time series in multiple points and other 

variables for the prediction of future value. Input data for training GA and fitting were 

used from experimental measurements on flow cytometry of CSC markers expression in 

cancer cells treated with 5-FU and without treatment. Several markers (CD24, CD44, 

ALDH1, and ABCG2) were measured in time (24 h, 33 h, 43 h, and 52 h). The results from 

measurements at 52 h were used for GA model validation. Figure 1 presents the measured 

data for MDA-MB-231 and HCT-116 cell lines for the input data. 

 

Figure 1. Flow cytometry of MDA-MB-231 and HCT-116 cells for input data. 

2.4. Statistical Analysis 

In this study, we utilized Statistical Package for the Social Sciences v23.0 software 

IBM Coro., Armonk, NY, USA (SPSS Inc)  to assess data normality using the Shapiro–

Wilk test and conduct statistical analyses. Subsequently, we performed independent 

samples t-tests or Mann–Whitney U tests to compare the means between groups, 

depending on the assumptions of normality and homogeneity of variances. The results 

are expressed as mean values ± standard error (SE). A p-value of less than 0.05 was 

considered to indicate statistical significance. 

3. Results 

3.1. CSCs Markers Analyzed by Flow Cytometry 

We evaluated the effect of 5-FU treatment on the percentage of tumor cells expressing 

CSC markers. Analysis was performed on viable MDA-MB-231 cells, and the percentages 

of dead cells during incubation with 5-FU and in controls are presented in Figure 2. 

Representative dot plots of CD24-CD44+, ALDH1, and ABCG2 marker expressions on the 

MDA-MB-231 cell line (control group and 5-FU-treated group) are available in the 

Supplementary Materials Figure S1. As evaluated via flow cytometry, the percentage of 

CD24-CD44+ MDA-MB-231 cells treated with 5-FU for 24-, 33-, 43-, and 52 h was 

Figure 1. Flow cytometry of MDA-MB-231 and HCT-116 cells for input data.

2.4. Statistical Analysis

In this study, we utilized Statistical Package for the Social Sciences v23.0 software
IBM Coro., Armonk, NY, USA (SPSS Inc.) to assess data normality using the Shapiro–Wilk
test and conduct statistical analyses. Subsequently, we performed independent samples
t-tests or Mann–Whitney U tests to compare the means between groups, depending on
the assumptions of normality and homogeneity of variances. The results are expressed as
mean values ± standard error (SE). A p-value of less than 0.05 was considered to indicate
statistical significance.

3. Results
3.1. CSCs Markers Analyzed by Flow Cytometry

We evaluated the effect of 5-FU treatment on the percentage of tumor cells expressing
CSC markers. Analysis was performed on viable MDA-MB-231 cells, and the percent-
ages of dead cells during incubation with 5-FU and in controls are presented in Figure 2.
Representative dot plots of CD24-CD44+, ALDH1, and ABCG2 marker expressions on
the MDA-MB-231 cell line (control group and 5-FU-treated group) are available in the
Supplementary Materials Figure S1. As evaluated via flow cytometry, the percentage of
CD24-CD44+ MDA-MB-231 cells treated with 5-FU for 24-, 33-, 43-, and 52 h was signifi-
cantly increased compared to the untreated cells (p < 0.001) (Figure 3A and Supplementary
Figure S1A). Additionally, 5-FU-treated tumor cells showed a high rate of expression for
CSC marker ALDH1 compared to their matched control cells (p < 0.001) (Figure 3B and
Supplementary Figure S1B). Although the difference did not reach statistical significance
at all time points, our analysis revealed the increased presence of the CD24-ABCG2+
ALDH1+ population after 5-FU treatment, indicating that this population was resistant to
the chemotherapeutic agent (Figure 3C and Supplementary Figure S1C).
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Figure 2. Percentage of cell death induced by 5-FU incubation. The data are presented as
means ± SEM of three independent experiments. * p < 0.01, *** p < 0.001. Graphs represent cu-
mulative data from 24 to 52 h.

In Figure 3 and Supplementary Figure S1, the time points displayed in the graphs
and histograms differ due to the observed saturation of marker expression beyond this
point. For instance, longer time points were included in the graphs (up to 52 h) to illustrate
the overall trends, while histograms were limited to 43 h to focus on the most significant
changes in marker expression. Histograms depict marker expression up to 43 h, beyond
which saturation was observed without additional insights into treatment effects. Represen-
tative flow cytometry dot plots illustrating the gating strategy and the percentage of cells
expressing CSC markers in MDA-MB-231 treated with 5-FU compared to untreated controls
at various time points are depicted in Supplementary Figures (Figures S15 and S16).

Moreover, we detected a trend relating to a significant increase in CSC-related markers
expression (CD44, ALDH1 and ABCG2) in 5-FU-treated HCT-116 cells after 24 h to 52 h
(Figure 4). Only viable HCT-116 cells were analyzed, and the percentage of dead cells, both
treated and untreated with 5-FU, are presented in Figure 5. Representative dot plots of
CD44, ALDH1, and ABCG2 marker expression on the HCT-116 cell line (control group and
the 5-FU-treated group) are featured in the Supplementary Materials (Figure S2). As shown
in Figures 4A and S2A, the percentage of CD44+ HCT-116 cells significantly increased in
the presence of 5-FU over 24, 33, and 43 h. Similar expression patterns were seen 52 h
after treatment, but there were no significant differences between the groups. The same
is observed with the ALDH1 marker as an indicator of metastasis. In particular, 5-FU
treatment enhanced the expression of ALDH1 compared to untreated HCT-116 cells in a
time-dependent manner (Figure 4B and Supplementary Figure S2B). We also found that the
presence of CD44+ALDH1+ABCG2+ tumor cells steadily increased over time (p < 0.001)
(Figure 4C and Supplementary Figure S2C). After 52 h of treatment, the percentage of the
CSC population was higher than in the control cells by about 3.5-fold. The time points
depicted in Figure 4 and Supplementary Figure S2 exhibited variations in the graphs
and histograms, primarily due to the observed saturation of marker expression beyond a
certain threshold. To elucidate, the graphs encompass extended time intervals to portray
overarching trends, whereas the histograms are confined to 43 h, emphasizing the most
impactful alterations in marker expression. Specifically, the histograms illustrate marker
expression up to 43 h, as beyond this point, the saturation of marker expression did not
yield further insights into the effects of the treatment. Flow cytometry dot plots showing the
gating strategy used in the identification of CD44+, ALDH1+ and CD44+ABCG2+ALDH1+
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HCT-116 cells treated with 5-FU 24, 33, 43, and 52 h post-treatment are presented in
Supplementary Figures (Figures S17 and S18).
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Figure 3. Expression rate of CSCs markers in MDA-MB-231 cells. Percentage of (A) CD24-CD44+,
(B) ALDH1+, and (C) CD24-ABCG2+ ALDH1+ tumor cells untreated and treated with 5-FU, analyzed
using flow cytometry. The data are presented as means ± SEM of three independent experiments.
** p < 0.01, *** p < 0.001. Graphs represent cumulative data from 24 to 52 h.
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Figure 5. Percentage of cell death induced by 5-FU incubation. The data are presented as means ±
SEM of three independent experiments. * p < 0.01. Graphs represent cumulative data from 24 to 52 h.

3.2. Genetic Algorithm (GA)

Figure 6 shows the real measured data for the MDA-MB-231 cell line 24 h–43 h
(diamond dots) and the estimation of the GA (dashed curve) for a period of 24 h to 67 h.
The measured data in 52 h (triangle dot) were used for the validation of the GA decision
model, and follow-up predicting results of 67 h are presented as X dots on the graphics.
Table 1 presents the algorithm estimation score with R2.
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Figure 6. GA prediction of the expression rate of CSC markers. (A) CD24- CD44+, (B) ALDH1+,
and (C) CD24- ABCG2+ALDH1+ on MDA-MB-231 cell line without and with 5-FU treatment (GA
decision tree are presented in Figures S3–S8).
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Table 1. R2 score of the prediction.

Model R2—Score of the Prediction

MDA-MB-231 CD24- CD44+ 0.97
MDA-MB-231 CD24- CD44+ + 5-FU 0.98
MDA-MB-231 ALDH1+ 0.96
MDA-MB-231 ALDH1+ + 5-FU 0.98
MDA-MB-231 CD24- ABCG2+ ALDH1+ 0.95
MDA-MB-231 CD24- ABCG2+ ALDH1+ +
5-FU 0.96

HCT-116 CD44+ 0.97
HCT-116 CD44+ + 5-FU 0.97
HCT-116 ALDH1+ 0.98
HCT-116 ALDH1+ + 5-FU 0.93
HCT-116 CD44+ ABCG2+ ALDH1+ 0.96
HCT-116 CD44+ ABCG2+ ALDH1+ + 5-FU 0.95

Figure 7 shows the predicted expression rates of three cancer stem cell (CSC) markers,
CD44+, ALDH1+, and CD44 + ABCG2+ ALDH1+, in the HCT-116 cell line with and
without 5-FU treatment, as predicted through the use of a genetic algorithm (GA) decision
tree. The GA decision tree is a machine learning algorithm that has been trained on a
dataset of gene expression data from HCT-116 cells. The GA decision tree can be used to
predict the expression of CSC markers in new HCT-116 cells based on their gene expression
profile. This figure illustrates the predictive modeling results of CSC marker expression
rates in HCT-116 cell lines post 5-FU treatment, as determined through the use of a genetic
algorithm (GA) decision tree. The GA model, trained on gene expression data from HCT-
116 cells, provides a forecast of CSC marker levels, offering insights into the potential
resistance patterns post chemotherapy. Furthermore, the goodness-of-fit for the GA model
predictions is quantified by the R2 values, which are provided alongside each plot. For
instance, an R2 value of 0.96 indicates a high level of accuracy in the model’s prediction
of CSC marker expression at the 52 h mark. The corresponding R2 values for each time
point and marker combination are detailed within the figure, providing a metric for the
reliability of the predictions made by the GA decision tree.

The visualizations and data presented in Figures 4 and 6 not only allow for the assess-
ment of the predictive power of the GA model but also facilitate a deeper understanding of
the dynamic changes in CSC marker expression in response to chemotherapeutic treatment.

Table 1 presents the R2 scores for various models and treatment conditions on the
MDA-MB-231 and HCT-116 cell lines, indicating the goodness of fit between the models and
the actual data. Higher R2 values suggest better model performance. In the MDA-MB-231
model, the CD24-CD44+ model exhibits a high R2 score of 0.97; introducing 5-fluorouracil
(5-FU) to the CD24-CD44+ model improves the R2 to 0.98; the ALDH1+ model has an
R2 value of 0.96, while the addition of 5-FU enhances it to 0.98; and the CD24-ABCG2+
ALDH1+ model shows an R2 value of 0.95, with 5-FU improving the result to 0.96. In the
HCT-116 model: the CD44+ model has an R2 value of 0.97; the R2 value for the CD44+
model with added 5-FU is not provided; the ALDH1+ model demonstrates an R2 value of
0.97, and 5-FU increases it to 0.98; the ALDH1+ model experiences a decrease in R2 value
(0.93) after 5-FU treatment; and the CD44+ ABCG2+ ALDH1+ model has an R2 value of
0.96, with 5-FU improving the result to 0.95. Overall, the addition of 5-FU often enhances
R2 values, suggesting a positive impact on model accuracy in assessing marker expression
on cell surfaces. However, there are exceptions, such as the decrease in R2 value in the
HCT-116 ALDH1+ model after 5-FU treatment.
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4. Discussion

Cancer stem cells (CSCs) are small subpopulations of cells in a tumor that have the
ability to self-regenerate and produce different types of cells in the tumor. These cells
are thought to be responsible for tumor recurrence and resistance to chemotherapy. One
approach to examining cancer stem cells is to use immunophenotypic analysis. This
involves identifying specific cell surface markers that are characteristic of cancer stem cells
and can be used to distinguish them from other cells in a tumor. After separation, these
cells can be further characterized at the molecular level. Cancer stem cells have the ability
to self-renew, differentiate, and initiate tumor growth and metastasis. The identification
of markers that are specific to CSCs is important for understanding their biology and
developing targeted therapies [4,14]. Cancer stem cells (CSCs) are a crucial subpopulation
within tumors, known for their ability to self-renew, differentiate, and initiate tumor growth
and metastasis. The identification of cell surface markers that are characteristic of CSCs
is pivotal for distinguishing them from other tumor cells and understanding their role in
cancer progression and resistance to therapy. While this study focused on the expression of
the markers CD24, CD44, ALDH1, and ABCG2, it is recognized that CSC biology is not
limited to these markers alone. CSCs are defined by a complex profile that may include
additional markers such as EpCAM, PROM1, THY1, and others. These markers collectively
contribute to the multifaceted nature of CSCs and their ability to sustain tumor growth and
resist chemotherapeutic agents. In this context, our analysis considered the expression of
CD24-CD44+, which was significantly elevated in MDA-MB-231 cells treated with 5-FU,
as a starting point. However, future studies should expand the scope to include a broader
spectrum of CSC markers, thereby providing a more comprehensive understanding of the
CSC phenotype and its implications for therapy. The integration of these additional markers
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may also yield insights into the heterogeneity of CSCs and the dynamic nature of their
expression in response to chemotherapeutic treatment. The results of this study showed
that the expression of CD24-CD44+ was statistically significantly elevated in all observation
points on the surface of MDA-MB-231 cells treated with 5-FU. This indicates that the
CSC population was enriched after treatment with chemotherapy. Additionally, ALDH1
expression was elevated after 24, 33, and 52 h, suggesting that these cells have enhanced
drug resistance mechanisms. CD24-ABCG2+ALDH1+ expression was also elevated after
24 and 43 h, indicating that these cells may have increased resistance to chemotherapy
through the efflux of drugs mediated by ABCG2 [15]. In HCT-116 cells, the expression of
CD44+ was statistically significantly elevated on the surface of cells treated with 5-FU after
24, 33, and 43 h. This suggests that the CSC population was also enriched after treatment
with chemotherapy. ALDH1 expression was elevated at all observation points, indicating
that these cells have enhanced drug resistance mechanisms. CD44+ALDH1+ABCG2+
expression was also elevated in all observation points, indicating that these cells may have
increased resistance to chemotherapy through the efflux of drugs mediated by ABCG2 [16].
These findings suggest that the expression of CD24, CD44, ALDH1, and ABCG2 on the
surface of CSCs may serve as prognostic factors for resistance to chemotherapy in cancer
patients. Furthermore, the results of this study highlight the importance of developing
targeted therapies that can specifically target CSCs to improve the efficacy of chemotherapy
and prevent tumor recurrence [17]. Examining cancer stem cell receptors for resistance
after cytostatic therapy is important for several reasons. First, cancer stem cells are the
main source of tumor growth and tumor survival and are considered a key target in cancer
therapy. They are characterized by a high degree of heterogeneity and plasticity, which
means that they have the ability to change their phenotype and adapt to the environment.
Therefore, examining the receptors on cancer stem cells for resistance after cytostatic therapy
may help in understanding the mechanisms that allow the survival of cancer stem cells after
therapy and further tumor growth [18]. Cytostatics are a common therapy for cancer, but
not all patients are equally sensitive to these drugs. Examining the receptors on cancer stem
cells can provide insight into possible causes of therapeutic resistance and help identify new
therapeutic targets. Identifying markers of resistance to cancer stem cells can help in the
development of personalized cancer therapy, which would be based on the characteristics
of an individual patient’s tumor. Predicting resistance to cytostatics is very important in
cancer medicine and research. If the tumor is resistant to cytostatics, treatment may be less
effective and have many severe side effects; therefore, it is important to recognize patients
who might not respond to cytostatic therapy [19]. Predicting resistance to cytotoxic drugs
can help doctors choose the best treatment for a patient. In summary, the examination
of receptors on cancer stem cells for resistance after cytostatic therapy is important for
understanding the mechanisms that enable the survival of cancer stem cells after therapy,
the identification of resistance markers and the development of personalized cancer therapy.
This approach is useful in the development of new therapies and personalized medicine,
as it allows for the identification of patients who might benefit from a particular therapy
and the prediction of resistance to therapy in other patients. With the help of molecular
testing, it is possible to predict which patients will be more sensitive to certain cytostatics
and which will not. In addition, the prediction of resistance to cytostatics can be useful
when researching new drugs and the development of personalized medicine. Identifying
molecular markers associated with resistance to chemotherapy can help develop new drugs
and therapies for patients who do not respond well to existing treatments [20]. Examining
cancer stem cells and predicting their resistance to therapy can be challenging and complex.
Using mathematical biology models, interactions between cancer stem cells and therapeutic
agents can be simulated in order to predict the effects of therapy and their resistance to it.
The role of AI (artificial intelligence) in the prediction of resistance to chemotherapy in the
context of CSCs is increasing and represents a potentially powerful weapon in the fight
against cancer. CSCs are often responsible for resistance to chemotherapy and, therefore,
the development of new therapies targeting this cell population is of critical importance.
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One way to improve the therapeutic outcome is to use AI methods in the analysis of large
data sets. AI can be used to identify markers that are specific to CSCs and to develop new
therapies that target these cells. AI can also be used to predict the effectiveness of various
therapeutic regimens in cancer patients [21]. This paper presents a GP algorithm used to
develop a model for estimating the expression rates of CSC markers on cancer cells treated
with 5-FU and without treatment in time. The model was trained to predict future values
for 52 h (validation point) and 67 h (follow-up point). Each individual prediction model has
achieved high accuracy with high coefficient determination R2. The average R2 was 0.96
(min. 0.93–max. 0.98) for 52 h prediction. Based on these results, we can conclude that GA
can be used as a very precise auxiliary tool for in silico testing, analysis, and monitoring
of the expression rate of CSC markers in cancer cells in time. The benefit of such in silico
models is that, unlike experimental observations, which are discretized into discrete time
intervals, they enable us to precisely monitor the state of CSC marker expression at any
one time [22]. GA has a significant role in predicting resistance to chemotherapy in the
context of CSCs. By using machine learning methods in the analysis of large data sets, new
therapeutic targets can be identified, and personalized therapies tailored to the specific
characteristics of tumors in individual patients can be developed. This opens the possibility
to improve the therapeutic outcomes in patients suffering from cancer.

However, the study has several limitations that must be acknowledged. The use of
a single chemotherapy agent and a limited set of CSC markers provides a focused yet
narrow view of the complex interactions within the tumor microenvironment. Additionally,
our study was conducted exclusively in vitro, which may not fully replicate the in vivo
conditions and the systemic effects of chemotherapy on CSC populations. The predictive
model developed in this study, while robust, is derived from a constrained dataset and thus
requires external validation to generalize the findings. Future research should expand the
spectrum of CSC markers analyzed and consider the inclusion of primary tumor samples
to better account for the heterogeneity of the tumor microenvironment. Longitudinal
studies involving a broader range of chemotherapeutic agents and combinations thereof
could provide deeper insights into the dynamic nature of CSCs and their role in drug
resistance. The clinical implications of our findings are significant. Understanding the
mechanisms of CSC-related resistance to chemotherapy can guide the development of
more effective therapeutic strategies. Targeting CSCs directly, possibly in combination
with traditional chemotherapy, may improve treatment outcomes and prevent relapse.
Moreover, the application of machine learning models, such as the genetic algorithm
used in our study, demonstrates the potential of computational methods in predicting
treatment responses, paving the way for personalized medicine approaches in oncology.
In conclusion, while our study offers valuable insights into the CSC phenotype and its
implications for therapy resistance, it also highlights the necessity for further research.
By employing a multidisciplinary approach that integrates advanced technologies and
personalized treatment strategies, we can aim to enhance therapeutic efficacy and patient
care in the fight against cancer.

5. Conclusions

In conclusion, the study investigates the role and characteristics of cancer stem
cells (CSCs) in chemotherapy resistance. Identified marker profiles, including CD24,
CD44, ALDH1, and ABCG2, are linked to increased CSC expression post 5-FU treatment.
The study underscores the importance of developing targeted CSC therapies to enhance
chemotherapy efficacy and prevent tumor recurrence. Furthermore, the research empha-
sizes the potential of artificial intelligence, specifically genetic algorithms, in predicting
CSC marker expression over time. Overall, it underscores the necessity for further research
to enhance therapeutic effectiveness and patient care in the battle against cancer.
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of expression rate (CD44, ALDH1 and ABCG2) markers on MDA-MB-231 cell line (control group and
group treated with 5-FU). Histograms detail specific marker expression up to 43 h due to observed
saturation of marker expression beyond this point, which did not contribute additional insights into
the treatment effects; Figure S2: Representative dot plots of expression rate (CD44, ALDH1 and
ABCG2) markers on HCT-116 cell line (control group and group treated with 5-FU). Histograms detail
specific marker expression up to 43 h due to observed saturation of marker expression beyond this
point, which did not con-tribute additional insights into the treatment effects; Figure S3: GA decision
tree for MDA-MB-231 cells—CD24- CD44+; Figure S4: GA decision tree for MDA-MB-231 cells—
CD24- CD44+ + 5-FU; Figure S5: GA decision tree for MDA-MB-231 cells—ALDH1+; Figure S6: GA
decision tree for MDA-MB-231 cells—ALDH1+ + 5-FU; Figure S7: GA decision tree for MDA-MB-231
cells—CD24- ABCG2+ ALDH1+; Figure S8: GA decision tree for MDA-MB-231 cells—CD24- ABCG2+
ALDH1+ + 5-FU; Figure S9: GA decision tree for HCT-116 cells—CD44+; Figure S10: GA decision
tree for HCT-116 cells—CD44+ + 5-FU; Figure S11: GA decision tree for HCT-116 cells—ALDH1+;
Figure S12: GA decision tree for HCT-116 cells—ALDH1+ + 5-FU; Figure S13: GA decision tree for
HCT-116 cells—CD44+ ABCG2+ ALDH1+; Figure S14: GA decision tree for HCT-116 cells—CD44+
ABCG2+ ALDH1+ + 5-FU; Figure S15: MDA Control + 5-FU CD24- Abcg2+ ALDH+ i CD24- CD44+
gating strategy; Figure S16: MDA Control + 5-FU ALDH+ gating strategy; Figure S17: HCT control +
5-FU CD44+ and ALDH1+ gating strategy; Figure S18: HCT control + 5-FU CD44+ ABCG2+ ALDH1+
gating strategy.
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