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Abstract: Background: Examining lung cancer (LC) cases in Virginia (VA) is essential due to its
significant public health implications. By studying demographic, environmental, and socioeconomic
variables, this paper aims to provide insights into the underlying drivers of LC prevalence in the state
adjusted for spatial associations at the zipcode level. Methods: We model the available VA zipcode-
level LC counts via (spatial) Poisson and negative binomial regression models, taking into account
missing covariate data, zipcode-level spatial association and allow for overdispersion. Under latent
Gaussian Markov Random Field (GMRF) assumptions, our Bayesian hierarchical model powered
by Integrated Nested Laplace Approximation (INLA) considers simultaneous (spatial) imputation
of all missing covariates through elegant prediction. The spatial random effect across zip codes
follows a Conditional Autoregressive (CAR) prior. Results: Zip codes with elevated smoking indices
demonstrated a corresponding increase in LC counts, underscoring the well-established connection
between smoking and LC. Additionally, we observed a notable correlation between higher Social
Deprivation Index (SDI) scores and increased LC counts, aligning with the prevalent pattern of
heightened LC prevalence in regions characterized by lower income and education levels. On the
demographic level, our findings indicated higher LC counts in zip codes with larger White and Black
populations (with Whites having higher prevalence than Blacks), lower counts in zip codes with
higher Hispanic populations (compared to non-Hispanics), and higher prevalence among women
compared to men. Furthermore, zip codes with a larger population of elderly people (age ≥ 65 years)
exhibited higher LC prevalence, consistent with established national patterns. Conclusions: This
comprehensive analysis contributes to our understanding of the complex interplay of demographic
and socioeconomic factors influencing LC disparities in VA at the zip code level, providing valuable
information for targeted public health interventions and resource allocation. Implementation code is
available at GitHub.

Keywords: discrete response; INLA; lung cancer; missing covariate imputation; spatial data; zip
code-level analysis

1. Introduction

According to the American Cancer Society (https://www.cancer.org/research/canc
er-facts-statistics/all-cancer-facts-figures/2023-cancer-facts-figures.html; accessed on 17
January 2024), lung cancer (LC) is the second most common type of cancer in both men and
women when not accounting for skin cancer. The American Cancer Society has estimated
a total of 238,340 new cases of LC in the United States in 2023, of which 117,550 were
projected to be in men and 120,790 in women [1]. LC is the leading cause of cancer-related
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deaths in both genders [2], accounting for about 1 in 5 of all cancer deaths and accounting
for more deaths than breast, prostate, and colon cancers combined. Similar trends are seen
in Virginia (VA), where LC is the third most prevalent type of cancer, after breast cancer
(in females) and prostate cancer (in men). As of 2023, the rate of new age-adjusted LC
incidences per 100,000 individuals in VA is 52.4, significantly lower than the national rate
of 54.6, placing it in the average tier (16th) among all states. Consistent with the national
trend, LC in VA exhibits the highest mortality rate compared to other types of cancer [1].

Over the past few decades, a large body of research has focused on determining
factors which are causally associated with LC, and studies have been implemented to
identify determinants of susceptibility to these factors. Smoking has been identified as
the most prevalent cause of LC in both men and women [3–7]. A state-wide study in
California attributed declining LC mortality rates in the state to declines in smoking due
to the California Tobacco Control Program [8]. Overall, smoking accounts for at least
30% of all cancer deaths and 87% of LC deaths [9]. State-specific trends in LC prevalence
and smoking between 1999 and 2008 have been examined in [10]. Other causes of LC
include positive family history of LC [11], (red) meat-rich diet [12], (smoking-adjusted)
alcohol consumption [13,14], low socioeconomic status [15], occupational risk factors such
as asbestos [16], arsenic [17], and radon [18], and other environmental factors such as
passive smoking and air pollution [3].

Over the last 30 years, a plethora of statistical models have been used to project
LC prevalence and mortality rates. A majority of these models are common forms of
generalized linear models (GLM), where the number of cases (say, deaths) or the logarithm
thereof is modeled as a linear or nonlinear function of the explanatory factors via Poisson
or negative binomial (NB) distributions, with the logarithm of the population size as an
offset adjustment (see Yu et al. [19] for a comprehensive literature review). Interestingly,
their review suggests that a vast majority (about 87%) of studies did not incorporate data
on smoking in the population. In recent times, the increased availability of georeferenced
health information and population data have warranted investigations of spatial and
spatiotemporal variations in LC prevalence. For example, the geographic variation of LC
prevalence in Florida between 2000 and 2011 was studied in [20] using a spatial filtering
technique, and the spatial variation of LC counts in New Jersey was studied in [21] using
SaTScan software. In New Hampshire, a geocomputational clustering process based on
kernel density estimation was implemented to create high-resolution disease incidence
maps [22]. More recently, in Kentucky, a state with high rates of smoking and obesity,
multinomial and discrete Poisson spatiotemporal scan statistics adjusted for age, gender,
and race were used to investigate the spatial and temporal distribution of LC histological
types [23]. Finally, a Bayesian geostatistical model for analyzing LC data in Ohio was
demonstrated in [24,25].

In this paper, we focus on analyzing LC counts in VA obtained at the zip code level
during the years 2014–2018. The central research question addressed in our paper involves
investigating the impact of covariates on aggregated LC counts during these five years
while accounting for overdispersion, spatial association at the zip code level, and potential
missingness in covariate information. We explore the use of Poisson and NB spatial re-
gression models to predict LC counts, thereby allowing for overdispersion in the response.
The spatial correlation across zip codes is modeled using the popular Conditional Au-
toregressive (CAR) model [26,27]. We fit the model using the Integrated Nested Laplace
Approximation (INLA) [28] framework for (approximate) Bayesian inference, which is a
computationally effective alternative to usual Bayesian predictive inference implemented
via Markov chain Monte Carlo (MCMC)-based methods. One salient feature of our data is
that covariates relevant to LC, such as prevalence of smoking and binge drinking, often
encounter missing values. Earlier studies on LC have considered either entirely removing
covariates with missing values or employing imputation techniques [29]. However, (entire)
covariate removal may lead to imprecise and misleading conclusions, and these avail-
able imputing techniques were not constructed with accommodation of possible spatial
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associations, as in our case. To circumvent this issue, we implement a recently proposed si-
multaneous spatial imputation technique [30]. We consider covariates with missing values
as latent Gaussian Markov Random Fields (GMRFs) [31] and utilize Bayesian hierarchical
modeling within the INLA framework. The latent effects required to impute the missing
covariates were implemented using the MIINLA package in R (available from Github
repository at https://github.com/becarioprecario/MIINLA; accessed on 17 January 2024).
In addition to this novel application of integrating missing covariate imputations within
the INLA framework, we provide reproducible and comprehensive implementation code
accompanied by instructions at https://github.com/indranil09/VA_LungCancer_INLA;
accessed on 17 January 2024. This inclusion facilitates the implementation and general-
ization of our analytical tool to other databases, particularly those pertaining to cancer
incidence and prevalence, with similar data characteristics.

2. Materials and Methods
2.1. Ethics Statement

This study was approved by the Institutional Review Board of the Virginia Common-
wealth University with protocol number HM20022764.

2.2. Data Description

The data used in this zip code-level analysis of LC counts in VA focuses on adult
population (age ≥ 18). Of the 896 zip codes in VA, five zip codes (22035, 22185, 22214,
23250, 24316), including zip codes belonging to airport areas, were excluded due to the
unavailability of any data. Additionally, zip code 23440 (the zip code for Tangier island, VA)
was removed as it did not have credible spatial adjacency, making it unsuitable for spatial
analysis. The numbers of LC cases in each zip code area during the years 2014–2018 were
obtained from the VA Cancer Registry (https://www.vdh.virginia.gov/virginia-cancer-reg
istry; accessed on 17 January 2024), which is maintained by the VA Department of Health.
Among the 890 zip code data records included in our analysis, 62 (approximately 7%) had
missing LC counts. Based on the 828 observed counts, the average number of LC cases in
VA over the study period was 33.22, with a variance of 1746.15 (SD = 41.8). This is indicative
of overdispersion, as the variance of the data exceeds the mean. To measure the extent of
spatial autocorrelation in the response, the global Moran’s I statistic [32] was calculated.
The estimated Moran’s I was 0.263 (p-value = 0.0009 < 0.01), indicating moderate spatial
correlation. Figure 1 presents the histogram of LC counts along with its spatial distribution
at the zip code level. The x-axis of the histogram starts at 1, indicating that there are no 0
(zero) values for the response in our dataset. The spatial map shows highest counts of LC
in the southeastern counties of VA Beach, Suffolk, and Chesapeake, along with Petersburg,
the City of Richmond, and their neighboring counties in central VA. We see somewhat high
LC cases in Fairfax and Arlington counties of northern VA as well. Table 1 lists the top
15 zipcodes in VA with the highest LC counts over the study period (2014–2018).

Based on the important factors identified in previous studies, the covariates in our
study included demographic information, social deprivation index (SDI), prevalence of
smoking, binge drinking, and obesity in the population, average daily PM2.5 concentration,
and percentage of population living below the poverty level. Brief descriptions of these
covariates are provided below.

https://github.com/becarioprecario/MIINLA
https://github.com/indranil09/VA_LungCancer_INLA
https://www.vdh.virginia.gov/virginia-cancer-registry
https://www.vdh.virginia.gov/virginia-cancer-registry
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Table 1. Top 15 zip codes in VA which recorded the highest number of LC cases over the five-year
period 2014–2018.

Zip Code City County LC Counts

23803 Petersburg Petersburg (City) 234
23452 VA Beach VA Beach (City) 230
23464 VA Beach VA Beach (City) 218
23462 VA Beach VA Beach (City) 202
23455 VA Beach VA Beach (City) 199
23454 VA Beach VA Beach (City) 197
23434 Suffolk Suffolk (City) 196
23320 Chesapeake Cheasapeake (City) 194
22407 Fredericksburg Spotsylavnia 194
23451 VA Beach VA Beach (City) 193
23223 Richmond Richmond (City) 189
22980 Waynesboro Waynesboro (City) 188
23322 Chesapeake Cheasapeake (City) 181
24153 Salem Salem (City) 180
23666 Hampton Hampton (City) 177

50

100

150

200

Cases

Lung cancer cases

Figure 1. Top Panel: histogram of LC counts; the x-axis of the histogram starts at 1, indicating that
there are no zeroes in the response. Bottom Panel: zip code-level spatial map of LC counts in VA; zip
codes with missing (NA) responses are colored black.
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2.2.1. Demographics

The demographic variables included in the study were Gender, Race, Ethnicity, and
Age. In particular, we considered the variable ‘percentage of males’ in our study, as it can
be used to infer the likelihood of males contracting LC compared to females. Similarly, we
considered the variables ‘percentage of Blacks’, ‘percentage of Whites’ and ‘percentage
of Hispanics’ to quantify the impact of Race and Ethnicity on LC counts. The impact
of race, specifically Black or White, on the prevalence of LC was measured against the
category ‘Other’, which includes Asian, Native Hawaiians and Other Pacific Islanders
(NHPI), American Indian and Alaska Natives, some other race alone, and two or more
races. Additionally, the effect of age was incorporated into the model through the variable
‘percentage of population with age ≥ 65’. Data on these four variables were obtained from
the American Community Survey (ACS) in US Census (https://data.census.gov/advanced;
accessed on 17 January 2024; see tables S0101, B01001A, B01001B, B01001I).

2.2.2. Prevalence of Binge Drinking, Smoking, and Obesity

Data on prevalence of binge drinking, smoking, and obesity were obtained from
the model-based zip code-level estimates for the PLACES (Population Level Analysis
and Community Estimates) project 2020 (www.cdc.gov/places; accessed on 17 January
2024). A joint collaboration between the Centers for Disease Control and Prevention
(CDC), the Robert Wood Johnson Foundation (RWJF), and the CDC Foundation (CDCF),
the PLACES project is an extension of the 500 Cities Project, providing estimates for
chronic disease risk factors, health outcomes, and clinical preventive services use by all
counties, places (incorporated and census-designated places), census tracts, and zip codes
across the United States. Data sources used to generate these model-based estimates
include the Behavioral Risk Factor Surveillance System (BRFSS, www.cdc.gov/BRFSS;
accessed on 17 January 2024) 2017 and 2018 data, Census Bureau 2010 population estimates,
and American Community Survey (ACS) 2013–2017 and 2014–2018 estimates. For this
study, we extracted data on the relevant variables from the Chronic Disease and Health
Promotion data portal (https://chronicdata.cdc.gov/500-Cities-Places/PLACES-ZCTA-
Data-GIS-Friendly-Format-2020-release/bdsk-unrd; accessed on 17 January 2024).

2.2.3. Percent Population below Poverty

Data on the percentage of the population living below poverty in VA were obtained
from the ACS in the US Census (https://data.census.gov/advanced; accessed on 17 January
2024; tables S1701).

2.2.4. Social Deprivation Index (SDI)

The Social Deprivation Index (SDI) [33,34] is a composite measure of an area’s level
of deprivation based on seven demographic characteristics collected in the ACS and used
to quantify the socioeconomic variation in health outcomes. The seven characteristics are
percent living in poverty, percent with less than 12 years of education, percent single-parent
households, percent living in rented housing units, percent living in overcrowded housing
units, percent of households without a car, and percent unemployed adults under 65 years
of age. SDI values range from 1 to 100, with higher values reflecting greater deprivation.
Additional details on SDI and relevant data can be found at https://www.graham-center.
org/maps-data-tools/social-deprivation-index.html (accessed on 17 January 2024) .

2.2.5. Average Daily Air Quality PM2.5 Concentration

The 2016 census tract-level projections of PM2.5 levels obtained from the EPA’s Down-
scaler model [35] were used in our study. These data are provided by the National Environ-
mental Public Health Tracking Network of the Centers for Disease Control and Prevention,
and can be accessed at https://data.cdc.gov/Environmental-Health-Toxicology/Daily-C
ensus-Tract-Level-PM2-5-Concentrations-2016/7vu4-ngxx; accessed on 17 January 2024.

https://data.census.gov/advanced
www.cdc.gov/places
www.cdc.gov/BRFSS
https://chronicdata.cdc.gov/500-Cities-Places/PLACES-ZCTA-Data-GIS-Friendly-Format-2020-release/bdsk-unrd
https://chronicdata.cdc.gov/500-Cities-Places/PLACES-ZCTA-Data-GIS-Friendly-Format-2020-release/bdsk-unrd
https://data.census.gov/advanced
https://www.graham-center.org/maps-data-tools/social-deprivation-index.html
https://www.graham-center.org/maps-data-tools/social-deprivation-index.html
https://data.cdc.gov/Environmental-Health-Toxicology/Daily-Census-Tract-Level-PM2-5-Concentrations-2016/7vu4-ngxx
https://data.cdc.gov/Environmental-Health-Toxicology/Daily-Census-Tract-Level-PM2-5-Concentrations-2016/7vu4-ngxx
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Table 2 summarizes the characteristics of the above covariates. While the demographic
variables, SDI scores, and PM2.5 concentration had no missing values, the percentages of
population currently smoking, binge drinking, and suffering from obesity had missing
values in seven zip codes (approximately 0.7% missing) and the percentage population
below poverty had missing values in eleven zip codes (approximately 1.2% missing).
Figure 2 shows the spatial variability of the covariates across VA. Zip codes with missing
covariate values are colored black.
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Figure 2. Zip code-level spatial maps of VA for (a) percentage of male population (18 and over),
(b) percentage of Black population (18 and over), (c) percentage of White population (18 and over),
(d) percentage of Hispanic population (18 and over), (e) Social Deprivation Index (SDI) scores,
(f) PM2.5 concentration, (g) percentage of the population currently smoking, and (h) percentage of the
population currently binge drinking. Zip codes with missing values for the percentage population
currently smoking and binge drinking have been colored black.
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Table 2. Covariate summaries from the VA LC data with subjects ≥ 18 years in age. Means and
standard deviations were calculated over n = 890 zip codes for covariates with no missing values.
For covariates with missing values, means and standard deviations were calculated over the observed
zip codes.

Variables Mean (SD)

Gender (percent)
Female 50.94 (8.80)
Male 49.06 (8.80)

Race (percent)
Black 16.38 (18.84)
White 77.95 (20.24)
Other (Asian, NHPI, two or more races, etc.) 5.67 (7.84)

Ethnicity (percent)
Hispanic or Latino 4.05 (5.83)
Not Hispanic or Latino 95.95 (5.83)

Percent population with age ≥ 65 24.43 (13.16)
Percent population currently smoking 19.87 (4.40)
Percent population binge drinking 15.99 (2.80)
Percent population obese 33.92 (5.40)
Percent population below poverty 11.46 (9.80)
Social Deprivation Index (SDI) 38.09 (24.95)
Daily Air Quality PM2.5 Concentration 7.58 (0.48)

2.3. Spatial Statistical Model for LC Counts

Let (yi, xi) denote the data at the ith zip code (i = 1, 2, . . . , N), where yi is the LC
count and the corresponding covariate vector is xi = (xi1, . . . , xip). A common approach to
deal with count data is to model the random counts in the ith areal unit using a Poisson
regression, as follows:

yi|θi
indep∼ Poisson(Niλi), i = 1, 2, . . . , N

log(λi) = xT
i β + Oi + θi,

where β denotes the vector of regression parameters, Oi = log(Ni) is the offset term,
and θi is the spatial random effect included in model to account for any residual spatial
autocorrelation in the data after accounting for the covariate effects. Let θ = (θ1, . . . , θN)
be a vector of spatial random effects, and let Ni and λi respectively denote the expected
number and relative rate of LC at the ith zip code.

Under a Bayesian paradigm, a conditional autoregressive (CAR) prior is popularly
assumed for θ; in particular, the Besag model [26], which models θi on the areal units
i = 1, . . . , N conditionally on neighbouring units, is often suggested. Two units are defined
as neighbours when they share a common border. Thus, the conditional distribution for
θi is

θi|θ−i, τ ∼ N

(
1

mi
∑
j∼i

θj,
1

mi

1
τ

)
,

where θ−i denotes the vector of spatial random effects excluding θi, j ∼ i denotes that units
i and j are neighbors, mi is the number of neighbors of the ith unit, and τ is the model
precision. The joint distribution is provided by

θ|τ ∼ N
(

0,
1
τ

Q−1
)

,

where Q is the structure matrix provided by Q = M − ρW (with M = diag(m1, . . . , mN)),
W is the adjacency matrix, defined as Wi,j = 1 if i ∼ j and 0 otherwise, and ρ is the extent
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of spatial autocorrelation. An extension of the Besag model called the BYM model [26]
additively combines an unstructured (nonspatial) random effect ϕi|τ′ ∼ N(0, τ′−1).

2.4. Extension to the Negative Binomial Regression Model

As mentioned earlier, the observed LC counts exhibit overdispersion with Var(y)/ȳ =
52.6 >> 2 [36]. Because overdispersed data can lead to underestimated standard errors
and inflated test statistics during estimation [37,38], switching from a Poisson to an NB
regression model can be an effective solution. The NB distribution has an additional
parameter to control data variability. The spatial regression model can now be expressed as

yi|θi
indep∼ NB(r, µi), i = 1, 2, . . . , N

log(µi) = xT
i β + Oi + θi,

where r > 0 is an additional scale parameter, E(yi|r, θi) = µi, and Var(yi|r, θi) = µi
(
1 + µi

r
)
.

The rest of the framework remains the same as defined in Section 2.3. The above parameter-
ization of the NB model [39] implies that the variance is the mean multiplied by the positive
factor 1 + µi/r, and as such is greater than the mean, thereby modeling the overdispersion
in the data.

When modeling epidemiological count data, it has been seen that Poisson models
with spatial components often perform better than models accounting for overdispersion
such as NB models [39]. Thus, we carried out fitting for both spatial models and compared
their performances based on suitable model fitting criteria. In addition, nonspatial versions
of the above models (i.e., θi = 0 for all i = 1, 2, . . . , N) were fitted for comparison to their
spatial counterparts.

2.5. Spatial Imputation of Missing Covariates

In quantifying the effect of factors related to LC, covariates pertinent to LC, such
as prevalence of smoking and binge drinking, exhibit missing values; as a result, it was
necessary to impute these missing covariates by accommodating the spatial framework
to include them in our regression modeling. To this end, we implemented the imputation
technique proposed by [30]. For simplicity, we consider the imputation of a single covariate
with missing observations to analytically illustrate the method. However, during imple-
mentation this approach is extended to consider the imputation of missing values in several
covariates using a multivariate CAR (MCAR) model [40].

Let D = (y, x) denote the complete dataset, where x = (xobs, xmis)
T denote the

complete set of values of a covariate. Here, xobs denotes the observed values of the covariate
and xmis denotes the missing ones. We only impute missing values in covariates, as
under the Bayesian setting models with missing response values can be easily fitted by
computing the corresponding posterior predictive distribution [41]. Now, a latent effect
z = (zobs, zmis) is defined as a Gaussian Markov Random Field (GMRF, [31]) with a mean
µ′ and precision matrix Q′. Because the covariate is assumed to be spatially correlated,
a proper CAR specification is used; thus, we have µ′ = α and Q′ = τc(I − ρW), where α is
the intercept of the linear predictor, ρ is a spatial autocorrelation parameter, and W is the
spatial adjacency matrix. Scaling W by its largest eigenvalue, such that ρ takes a value in
(0, 1), is suggested. After rewriting W as a block matrix with four submatrices according to
the missing and observed values, then integrating the imputation model within a much
larger model, the conditional distribution of xmis|xobs is provided by

xmis|xobs ∼ N
(

αmis − (Imis − ρWmis,mis)
−1(−ρWmis,obs)(zobs − αobs), τc(Imis − ρWmis,mis)

−1
)

,

2.6. Model Fitting and Model Comparison Using R-INLA

INLA [28,42] is a method for approximate Bayesian inference that allows for efficient
estimation by relying on latent GMRFs. It is an established alternative to other simulation-
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based methods such as MCMC [43,44], and is preferred because of its computational
efficiency, stability, and ease of use via the R-INLA package. For a gentle introduction to
INLA, readers may refer to [41], with the online version available at https://becariopre
cario.bitbucket.io/inla-gitbook/; accessed on 17 January 2024. The Besag model can be
implemented as besagproper (the proper version of Besag’s spatial model), besag (Besag’s
spatial model with improper prior), bym (the BYM model) [41], or generic0 in the inla
function [45]. In addition, the popular Leroux CAR model [27], which offers a precision
matrix that is a convex combination of an identity matrix (representing i.i.d. random effect)
along with the precision of an intrinsic CAR, can be fitted using the generic1 model [46,47].
The latent effects can be incorporated as additive effects in the model formula.

However, the R-INLA algorithm does not accommodate ready handling of missing
(covariate) values. When R-INLA encounters missing values in the covariates (denoted
by NA in R), they are replaced by zeros, ensuring that the missing covariate does not
affect the linear prediction. However, this results in biased estimates of the regression
coefficients, as described in the R-INLA list of frequently asked questions (FAQ) on the
package website. Missing values in the response variable are naturally imputed using the
posterior predictive distribution. To circumvent this, we performed simultaneous (spatial)
imputation of all missing covariates using latent GMRFs, as described above. When the
imputed latent effect is included in the model formula, it becomes part of the joint latent
effect and is incorporated into the Bayesian model, meaning that a full Bayesian approach
can be employed to estimate all the model parameters (refer to [30] for full computational
details, including the priors used in the latent effect). We used the MIINLA package in
R (available from the Github repository https://github.com/becarioprecario/MIINLA;
accessed on 17 January 2024) to implement the latent effects required to impute the missing
covariate values. A simple CAR spatial latent effect was added to the model formula to
capture the spatial random effects in the Poisson/NB regression model at the zip code level.

In the nonspatial versions of the implemented models (θi = 0 for all i = 1, 2, . . . , N
in the models in Sections 2.3 and 2.4), covariate imputations were made by linear regres-

sion [30] onto the set of fully observed covariates X. Let X be partitioned as
(

Xobs
Xmis

)
to

match the structure of x = (xobs, xmis)
T . Under this setting, the conditional distribution of

the imputation model is provided by

xmis|xobs ∼ N(Xmisβ, τc Imis),

where Imis is the identity matrix and its dimensions depend on the number of missing
values in z. For these models, the spatial neighborhood structure is ignored while imputing
the covariates as well as during regression model fitting.

The fitted models (with and without covariate imputations) were evaluated using
the Deviance Information Criteria (DIC) and the Watanabe–Akaike information criterion
(WAIC; see [48]). For the sake of completeness, the DIC and WAIC are defined as follows:

DIC = −2 log p(y|θ̂) + 2pDIC

WAIC = −2 lppd + 2pWAIC,

where −2 log p(y|θ̂) is the estimated deviance, pDIC and pWAIC denote the effective num-
bers of parameters when calculating DIC and WAIC, respectively, and ‘lppd’ denotes the
log predictive pointwise density. The predictive performance of the fitted models was addi-
tionally measured by the Root Mean Squared Error (RMSE) and the Relative Squared Error
(RSE) while using only the observed LC counts and their corresponding predicted values.
The associated reproducible code (and vignette) for ready implementation of our method-
ology has been made available at https://github.com/indranil09/VA_LungCancer_INLA;
accessed on 17 January 2024.

https://becarioprecario.bitbucket.io/inla-gitbook/
https://becarioprecario.bitbucket.io/inla-gitbook/
https://github.com/becarioprecario/MIINLA
https://github.com/indranil09/VA_LungCancer_INLA
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3. Results

In this section, we begin by providing model comparisons in Section 3.1, followed by
a summary in Section 3.2 of our study findings utilizing the model with the best fit.

3.1. Model Comparison

Table 3 compares all fitted models based on popular model fitting and predictive
performance criteria, described in Section 2.6. As suggested in [49], differences in DIC of
more than 10 units constitutes an important difference, and can be considered as evidence
to rule out the model with the higher DIC. Differences between 3–10 can be considered
substantial. From the table, it can be concluded that the spatial Poisson GLM model,
with missing covariates imputed using a multivariate CAR assumption, produces the best
fit to our data. Because the Poisson model does not allow for overdispersion, this implies
that the uncertainty due to overdispersion present in the data is adequately captured by
the spatial random effects. In addition, the spatial Poisson model with no imputation
is a close second, with comparable DIC, WAIC, RMSE, and RSE to the MCAR-imputed
spatial Poisson model. This can be attributed to a small proportion of missing values
in the covariates, while the gap between the performance of the two models is likely to
increase as the percentage of missing values increases. Overall, the imputation models
demonstrate better performance or, at the very least achieve comparable results compared
to their non-imputation counterparts; the sole exception to this trend is observed for the
spatially imputed NB model, which exhibits higher values for DIC, WAIC, RMSE, and
RSE in comparison to its non-imputed counterpart. On the contrary, among the nonspatial
models the NB model demonstrates substantial improvement over the Poisson model in
terms of model fitting. The additional overdispersion parameter in the NB is now required
to capture the data overdispersion. Additionally, the no-imputation spatial NB GLM
performs best among all fitted NB models. The performances of the nonspatial imputed
and non-imputed NB models are comparable due to low percentage of missing values and
the omission of spatial random effects in the models.

Table 3. Comparison of the competing model fits to the VA LC data using various model fitting (DIC,
WAIC) and prediction accuracy (RMSE, RSE) criteria.

Model DIC WAIC RMSE RSE

MCAR Imputation model
Spatial Poisson GLM 5007.13 5010.27 3.55 0.0072
Spatial NB GLM 5062.60 5057.44 4.06 0.0095

Linear regression Imputation model
Non-spatial Poisson GLM 5446.90 5465.77 8.94 0.046
Non-spatial NB GLM 5205.08 5207.39 9.56 0.052

No Imputation model
Spatial Poisson GLM 5011.08 5012.52 3.56 0.0073
Spatial NB GLM 5041.98 5040.88 3.85 0.0085
Non-spatial Poisson GLM 5446.34 5464.33 8.94 0.046
Non-spatial NB GLM 5207.47 5210.06 9.55 0.052

3.2. Findings

The rest of this subsection summarizes the findings from the best-fitting model, i.e., the
spatial Poisson regression model with multivariate CAR covariate imputation. These re-
sults are tabulated in Table 4, which shows the estimated posterior means, posterior
standard deviations (SD), and 95% credible intervals of the regression parameters fit-
ted using INLA. In the subsequent interpretations of a specific covariate, it is assumed
that all other covariates were held as fixed. We observe that zip codes with a higher
SDI score have a higher number of LC cases. This finding corroborates with previous
studies [50], which concluded that LC is more prevalent in regions with lower income
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and education levels and among those living in more socioeconomically under-resourced
regions. Surprisingly, zip codes with higher PM2.5 concentration reported lower LC
prevalence. In terms of demographics, we observe that zip codes with higher Black and
White populations reported higher LC counts, whereas zip codes with higher Hispanic
population reported lower LC counts. These findings are consistent with recent studies
conducted by the American Cancer Society’s Cancer Facts and Figures for Latino People
(see, https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statis
tics/cancer-facts-and-figures-for-hispanics-and-latinos/hispanic-latino-2021-2023-cancer-
facts-and-figures.pdf; accessed on 17 January 2024), which showed that LC prevalence rates
among Hispanic men and women are about half those of non-Hispanic whites. This has
been attributed to lower cigarette smoking prevalence among the Hispanic community. Our
analysis further reveals that zip codes with higher male population (compared to females)
report lower LC counts, suggesting that LC is more prevalent among women in VA com-
pared to men. Similar conclusions have been drawn from nationwide studies performed
during a contemporary study period [51,52]. Moreover, zip codes with a higher proportion
of elderly individuals (≥65 years) reported higher LC counts, which is in tune with the
trend across the United States [53]. Zip codes with a higher smoking index reported higher
LC counts, while zip codes with a higher binge drinking index had fewer LC cases. The obe-
sity index was not found to be statistically significant. Finally, zip codes with higher poverty
levels reported lower LC prevalence. This is counter-intuitive, as people with lower annual
family income and socioeconomic status usually experience higher LC prevalence [54]. One
potential factor contributing to this might be the financial constraints faced by individuals
residing in high-poverty zip codes, which appear as an impediment to LC screening through
eligible health insurance plans. Based on data collected between May to July 2022 by the
American Lung Association, it is notable that VA Medicaid fee-for-service programs extend
coverage for low-dose computed tomography-based lung cancer screenings to individuals
deemed at high risk for lung cancer without any prior authorization and with no co-pay
(see, https://vamedicaid.dmas.virginia.gov/vamed/download-pdf-bulletin/18381; ac-
cessed on 17 January 2024). However, VA follows the updated 2021 USPSTF (United States
Preventive Services Task Force) guidelines regarding patient eligibility, which stipulate
individuals between ages 55 and 80 years with a smoking history of 20 packs per year
and who are either a current smoker or have quit smoking within the last 15 years [55].
This counter-intuitive trend can be further attributed to the fact that the apparent pattern
has already been addressed by the inclusion of the Social Deprivation Index (SDI) variable
in the model.

The competing models provide very similar parameter estimates and interpretations
of the relationship between the LC counts and the covariates, except for the non-spatial
Poisson model with linear regression imputation, which additionally shows a positive
effect of obesity on LC counts.

Additionally, when comparing the estimated overdispersion parameters between the
spatial and nonspatial NB imputation models, we observe that the NB overdispersion
parameter under the nonspatial setting is much larger than that under the spatial setting.
This implies that part of the data variability in the overdispersed LC counts is explained
by the spatial random effects, rather than the r parameter alone. This tendency of spatial
models is well documented [39]. Similar trends were observed between the NB spatial and
nonspatial model fits with no covariate imputation.

Figure 3 shows the fitted LC counts in VA using the spatial and nonspatial Poisson and
NB GLM models after imputing the missing covariates. Both spatial imputation models are
able to correctly identify zip codes in Petersburg (23083) and VA Beach (23452 and 23464)
as the top three zip codes with highest LC prevalence. On the other hand, the nonspatial
imputation models point out zip code 23434 in Suffolk as the zip code with highest LC
prevalence, followed by Richmond and VA Beach. While all four models are able to capture
the spatial distribution of LC counts across VA, the nonspatial models do so based solely

https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/cancer-facts-and-figures-for-hispanics-and-latinos/hispanic-latino-2021-2023-cancer-facts-and-figures.pdf
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/cancer-facts-and-figures-for-hispanics-and-latinos/hispanic-latino-2021-2023-cancer-facts-and-figures.pdf
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/cancer-facts-and-figures-for-hispanics-and-latinos/hispanic-latino-2021-2023-cancer-facts-and-figures.pdf
https://vamedicaid.dmas.virginia.gov/vamed/download-pdf-bulletin/18381
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on the spatial variation attributed to the covariates, and as such tend to underestimate the
higher counts in the data while overestimating the lower counts.

Table 4. Estimated posterior means, posterior standard deviations, and 95% credible intervals for
the regression parameters obtained from fitting the Poisson spatial regression model to the VA LC
data. Here, missing covariate values have been imputed simultaneously during model fitting using a
multivariate spatial model.

Covariates Posterior Mean Posterior SD 95% Credible Interval

SDI score 0.050 0.014 (0.021, 0.076)
PM2.5 −0.089 0.015 (−0.118, −0.059)
Race (w.r.t. Others)

% black 0.212 0.046 (0.122, 0.301)
% white 0.255 0.046 (0.165, 0.345)

Ethnicity (w.r.t. non-hispanic)
% hispanic −0.039 0.015 (−0.068, −0.009)

Gender (w.r.t. female)
% male −0.096 0.020 (−0.137, −0.056)

Age (w.r.t. < 65 years)
% over 65 years 0.211 0.022 (0.167, 0.254)

Binge drinking idx −0.103 0.023 (−0.150, −0.058)
Smoking idx 0.136 0.030 (0.075, 0.192)
Obesity idx 0.046 0.030 (−0.011, 0.108)
Poverty idx −0.083 0.026 (−0.135, −0.031)
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Figure 3. Zip code-level spatial maps of fitted LC counts obtained from (a) the spatial Poisson model,
(b) the spatial NB model, (c) the nonspatial Poisson model, and (d) the nonspatial NB model. For all
four models, missing covariates were simultaneously imputed using the multivariate CAR model
(for spatial models) and linear regression (for nonspatial models).

4. Conclusions

The examination of LC cases in VA is of paramount importance due to its far-reaching
implications for public health. In this comprehensive study, we have engaged in a thorough
analysis to determine those demographic, environmental, and socioeconomic factors which
influence the prevalence of LC at the zip code level in VA. LC count data are usually
overdispersed, with relevant covariates often experiencing missing values. For this rea-
son, we utilized Poisson and NB spatial regression models to predict LC counts while
accounting for overdispersion in the response. To handle missing values, we performed
simultaneous spatial imputation of missing covariates by treating them as latent GMRFs
within a Bayesian hierarchical modeling framework powered by INLA. The findings from
this study provide invaluable insights into the multifaceted determinants of LC, making
a substantive contribution to the field of public health. Our study effectively pinpoints
zip codes characterized by the highest prevalence of LC. A central goal of spatial data
analysis is hotspot detection, as information regarding specific zip codes can be instrumen-
tal in guiding and prioritizing tailored interventions at the zipcode level during policy
implementations aimed at mitigating the impact of this pervasive health concern in the
state of VA with an eye towards resource allocation. Although the conclusions drawn
from our findings are specifically tailored to aggregated LC counts at the zip code level in
VA spanning the years 2014 to 2018, the statistical methodology and framework we have
proposed is generalizable to any disease incidence or prevalence data exhibiting features
of overdispersion, spatial variability, and covariate missingness, and the accompanying
implementation code has been provided on GitHub.

The current study is not aloof from limitations, which we discuss below. While our
study incorporates smoking indices as a covariate, it is crucial to note that the observational
nature of the study restricts us from drawing definitive conclusions regarding any causal
relationship between smoking and LC. In order to assess smoking–lung cancer causality,
it would be necessary to use a spatial causal inferential framework while mitigating the
challenges of overdispersion and missing covariate information (such as a spatial–causal
framework in the presence of unmeasured confounders [56], which can arise due com-
pletely missing/unobserved/mismeasured covariates or an incorrect functional form in
the outcome model. Moreover, smoking indices do not consider the situation in which mea-
sured covariates have missing information. Thus, we could potentially look to incorporate
missing covariate imputation into a typical spatial–causal framework in order to work with
the data at hand. In addition, exploring spatial causal inference with multiple risk factors
contributing to LC prevalence is possible, and would enable evaluation of the effectiveness
of interventions and policies targeted at reducing the burden of LC within specific zip codes.
By understanding spatial causality, policymakers can allocate resources more efficiently,
implement targeted prevention strategies, and tailor healthcare interventions at the zip
code level to address the specific needs of high-risk populations in particular zip codes.
Furthermore, the current exploration is cross-sectional, combining LC counts across 5 years,
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under the assumption that individuals diagnosed with LC reside within the same zip code
throughout this 5-year period. This approach provides a spatiotemporal perspective on
cancer prevalence rather than a longitudinal one. Consequently, our analysis does not
consider policies implemented during the study period, precluding the identification of the
effectiveness of specific policies in mitigating cancer prevalence. Certainly, a more inter-
esting approach (subject to availability of data) would be to incorporate a spatiotemporal
model (justifiably nontrivial when factoring in the other covariate complications) over an
extended time frame, which would permit variations in zip code populations and thereby
capture the dynamics of individual migration across different regions over time. All of
these represent potential avenues for future research and will be considered elsewhere.
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