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Abstract: DNA methylation is a fundamental mechanism of epigenetic control in cells and its dysregu-
lation is strongly implicated in cancer development. Cancers possess an extensively hypomethylated
genome with focal regions of hypermethylation at CPG islands. Due to the highly conserved na-
ture of cancer-specific methylation, its detection in cell-free DNA in plasma using liquid biopsies
constitutes an area of interest in biomarker research. The advent of next-generation sequencing and
newer computational technologies have allowed for the development of diagnostic and prognostic
biomarkers that utilize methylation profiling to diagnose disease and stratify risk. Methylome-based
predictive biomarkers can determine the response to anti-cancer therapy. An additional emerging
application of these biomarkers is in minimal residual disease monitoring. Several key challenges
need to be addressed before cfDNA-based methylation biomarkers become fully integrated into
practice. The first relates to the biology and stability of cfDNA. The second concerns the clinical
validity and generalizability of methylation-based assays, many of which are cancer type-specific. The
third involves their practicability, which is a stumbling block for translating technologies from bench
to clinic. Future work on developing pan-cancer assays with their respective validities confirmed
using well-designed, prospective clinical trials is crucial in pushing for the greater use of these tools
in oncology.
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1. Introduction

DNA methylation is a fundamental mechanism of epigenetic control in cells and its
dysregulation is strongly implicated in cancer development. The addition of a methyl
group to cytosine, particularly at CpG islands (CGIs) results in changes in gene expression
and affects the transcription of genomic repeats and non-coding RNA. These result in
changes within cancer cells as well as the tumor microenvironment (TME) that favor the
development of disease. Patterns of tumor-specific methylation are recapitulated in cell-free
DNA (cfDNA) allowing use of the latter for the study of cancer epigenetics. Liquid biopsies
can be used to obtain cell-free DNA from different biofluids such as cerebrospinal fluid,
pleural effusion, urine, and plasma. Of the different sources of cfDNA, plasma has seen
extensive use as a source of methylated DNA for use in biomarker studies. Diagnostic,
prognostic, predictive, and treatment response monitoring applications have or are being
developed around methylated cfDNA obtained from plasma.

This narrative review aims to provide the reader with an overview of the biology that
underpins the use role of DNA methylation in cancer. It will then discuss the utility of
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cfDNA methylation as a cancer biomarker. Finally, it will outline the different opportunities
and challenges of using cfDNA methylation in oncology. The methodology and search
strategies employed in writing this work are summarized in Appendix A.

2. DNA Methylation in Cancer
2.1. Biology of DNA Methylation in Malignancy
2.1.1. Aberrant DNA Methylation of CpG Islands Are Seen in Cancer

More than half of all human promoters overlap with 1–2 kb CG-rich regions, referred
to as CpG islands (CGIs). Nearly 95% of CGI promoter regions are unmethylated in normal
tissues. While CGIs are preferentially found near promoters and transcription start sites
(TSS), they may also appear within gene regulatory elements, gene bodies, and intergenic
regions [1]. Cancers typically display focal regions of tumor-specific hypermethylation,
especially at CGIs, against the backdrop of global hypomethylation that impacts gene
expression and carcinogenesis [2–4].

2.1.2. Gene Promoter Hypermethylation Leads to Silencing of Tumor Suppressor Genes

Hypermethylation of transcriptional regulatory regions of tumor suppressor genes
(TSGs) results in their silencing and the abrogation of their anti-tumor function [2,5]. First
described in colorectal cancer (CRC), the CpG island methylator phenotype (CIMP) that
is characterized by the expansive TSG promoter silencing has since been documented in
other solid malignancies [6]. DNA hypermethylation was observed in promoters of classic
TSGs such as retinoblastoma transcriptional corepressor 1 (RB1) and cell cycle regulators
CDKN2A, among many others [1,2].

Koudonas et al. [7] demonstrated that hypermethylation of the TSGs PCDH17, NEFH,
and RASSF1A in resected renal cell carcinoma compared to normal tissue was associated
with worse survival outcomes. A 2020 study of paired tumor tissue samples and matched
healthy control tissue from patients with prostate cancer identified 7500 differentially
methylated regions (DMRs). Compared to matched healthy controls, prostate cancer tissue
was hypermethylated in promoter regions of well-known tumor-suppressor genes such
as CDKN2A, resulting in silencing [8]. Promoter methylation is also responsible for the
silencing of genes whose loss of function leads to invasion and metastasis, such as the cell
adhesion regulators E-cadherin (CDH1) and H-cadherin (CDH13) [9,10]. Moreover, Chen
et al. [11] profiled the cell-free methylomes of 235 early and advanced prostate cancers
and found that promoters of TSGs show significantly higher methylation in metastatic
castration-resistant tumors compared to localized castration-naïve disease, suggesting
that TSG promoter hypermethylation not only plays a role in carcinogenesis but also in
disease progression.

2.1.3. Methylation Can Lead to Epigenetic Activation of Oncogenic Pathways

Hypomethylation of oncogene promoters typically results in their expression. Onco-
gene products dysregulate cell proliferation, migration, and invasion. This results in
elevated metastatic potential, increased stemness in cells, or immune evasion [12]. For
example, BCL6 acts as a transcriptional regulator that represses tumor suppressors thereby
favoring cell proliferation and survival [13]. Expression of BCL6 is epigenetically reg-
ulated and knockdown of UHRF1, an upstream regulator, results in loss of BCL6 gene
promoter methylation thereby favoring its expression. Notably, BCL6 was observed to
be overexpressed in exhausted T-cells and may play a role in tumor immune escape [14].
In addition to promoters, hypomethylation of other gene regulatory regions, such as en-
hancers, was shown to correlate with the expression of cancer-specific genes and pathways
across multiple cancers [15,16].

In contrast to promoter hypermethylation, gene body hypermethylation is posited to
correlate positively with gene expression [1,17,18]. As an example, the homeobox superfam-
ily of transcription factors is essential to the regulation of cell growth and differentiation.
These genes have high CpG density, which makes their expression susceptible to epigenetic
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control [19]. In relation to this, Su et al. [20] reported that gene-body hypermethylation
results in the overexpression of approximately 43% of known homeobox genes, many of
which are associated with oncogenesis.

2.1.4. Global DNA Hypomethylation Leads to Chromosomal Instability

DNA methylation plays a critical role in maintaining genomic integrity by regulating
the transcription of constitutive heterochromatin elements, sub-telomeric regions, and
genomic repeats [21,22]. Expansive hypomethylation is common in cancer and may involve
regions as large as ten megabases in size, which can render the cancer genome susceptible
to genomic instability. Moreover, increased gene transcription from loss of gene promoter
methylation results in the formation of DNA-RNA R-loops that can cause replication stress
and DNA damage—further exacerbating genome instability [21,23]. Reduced methyla-
tion destabilizes heterochromatin at pericentromeric regions and is associated with loss
of tumor suppression and oncogenesis in gastrointestinal cancers and sarcomas [21,22].
Telomere length is affected by methylation of sub-telomeric regions, and its dysregulation
is considered a cancer hallmark [21,24,25].

2.1.5. DNA Methylation Influences Gene Expression beyond Promoter Silencing

Alternative mRNA splicing is responsible for transcriptional diversity in cells [26,27].
During splicing, non-coding introns are removed, and coding exons are ligated to form
mature mRNA at specific positions called splice sites. Recognition of introns and exons by
the spliceosome machinery is critical for the correct execution of this process [26]. DNA
methylation modifies the accessibility of exonic nucleosomes to RNA Polymerase II, which
demonstrates the regulatory role it plays in splicing [26,27].

Chen and Elnitski [28] showed that methylation-correlated isoforms affect the func-
tional protein domains of gene products. Moreover, these gene sets were enriched for
oncogenes, tumor suppressors, and cancer-related pathways across multiple cancers [28].

2.1.6. Methylation Can Influence the Non-Coding Genome, Leading to Cancer

DNA hypomethylation led to the expression of genomic repeat elements and transpos-
able elements that interfered with chromosomal integrity and drove oncogene expression
in a process called onco-exaptation [21,22]. Jang et al. [29] reported RNA-seq data from
7769 tumors across 15 cancer types from the TCGA. In this cohort, the expression of
106 oncogenes was regulated by onco-exaptation in nearly half (49.7%) of tumors. To
validate this relationship, the authors performed in vitro induction of DNA methylation
on the promoter of the short-interspersed nuclear element (SINE) AluJb by CRISPR. This
resulted in a 20–30% increase in methylation and consequently a 40% reduction in the
expression of the oncogene LIN28B. In addition to onco-exaptation, transposon-associated
dsRNA-dependent paracrine signaling had been found to be favorable to tumor growth in
breast, lung, and pancreatic cancer [30,31].

The study of non-coding RNA is a growing area of interest owing to the emerging
roles that it plays in disease [32,33]. The interaction between non-coding RNA (ncRNA)
and DNA methylation is complex. Few studies have comprehensively examined if these
non-coding regions are methylated, with most investigations focusing on a specific type of
ncRNA called long non-coding RNA (lncRNA).

Yang et al. [34] showed that DNA methylation worked in concert with lncRNA to regu-
late the expression of protein-coding genes across 18 different cancer types. Many lncRNAs
interacted with the histone-lysine N-methyltransferase EZH2 and DNA methyltransferases
(DNMT) in both cancer-specific and pan-cancer patterns to methylate DNA downstream
of target genes. The interplay of methylation writers and erasers governed the expression
of specific lncRNAs and resulted in the regulation of distinct cell signaling pathways that
favored cancer progression. For example, Li et al. [35] demonstrated that LINC01270 in-
teracted with DNMTs to hypermethylate the LAMA2 promoter region, suppressing the
negative regulatory effects of the latter on MAPK signaling and leading to breast cancer
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progression. These effects were then reversed by RNAi knockdown of LINC01270. Another
lncRNA, MAGI2-AS3 modulated the Wnt/β-catenin signaling pathway and decreased tu-
morigenicity in breast cancer by downregulating methylation of the MAGI2 gene promoter.
This tumor suppressive effect was countered by the activity of TET1 on MAGI2-AS3, which
demonstrated epigenetic control of TSG function [36].

Several comprehensive reviews discuss the association between DNA methylation
and lncRNA expression in cancer [37,38]. In contrast to lncRNAs, other types of noncoding
RNA have not been examined as extensively in the context of DNA methylation. This
underscores the complexity of the relationship between ncRNA and DNA methylation
in cancer [39].

2.1.7. Role of DNA Methylation in the Tumor Microenvironment

Methylation dynamics play a key role in contextualizing the tumor microenvironment
(TME). To illustrate, TET2 demethylates promoters of genes encoding cytokines and tran-
scription factors that influence CD4+ T-cell fate. Expression of the cytokine IL-4 favors
differentiation into Th2 cells while expression of the transcriptional regulator FOXP3 expres-
sion leads to differentiation into tissue regulatory T-cells (Treg) [40]. In CD8+ cells, active
demethylation of gene enhancer regions by TET2 facilitates differentiation to T-effector
cells. Conversely, the conditional loss of TET activity was shown to drive a shift towards
a memory T-cell fate [40–42]. Meanwhile, DNMT3A-directed de novo methylation of the
promoter of T-cell-specific transcription factor 7 (Tcf7) results in the suppression of memory
T-cell differentiation and supports differentiation into effector subtypes [41,42].

As with T-cells, myeloid differentiation is epigenetically influenced by DNA methyla-
tion. TET2 acts in concert with IL-4 and STAT6 to promote the expression of ITGB2, which
is a cell adhesion molecule important in monocyte-to-dendritic cell differentiation and
function. Dendritic cells have a central role in antigen presentation and T-cell activation
within the TME [40]. Myeloid-derived suppressor cells (MDSC) are key immune regulators
in the TME that serve a pro-tumorigenic function by promoting immune tolerance to
cancer. An increase in DNMT3A expression in MDSCs in the presence of Prostaglandin
E2 results in a gain of DNA methylation and silencing of immunogenicity-associated
genes (e.g., FAS, RUNX1, and S1PR4) [43,44]. Finally, macrophage polarization towards
either the activated (M1) phenotype or the inhibitory (M2) phenotype is also subject to
the influence of DNA methylation. Express of DNMT3b and DNMT1 are associated with
M1-like macrophage polarization through its effect on PPAR γ1 [45]. Meanwhile, siRNA
knockdown of the DNMT3B gene increases M2 marker expression in macrophages. A
similar increase in M2 markers was seen following the treatment of M1 macrophages with
DNMT inhibitors (DNMTi) [45–47].

The development of immune escape mechanisms that bar cytotoxic effector cells
from infiltrating the TME is key to tumor progression [25]. DNA methylation also plays
a part in this process. DNMT1 activity was shown to disturb the trafficking of CD8+

T-cells into the TME of a murine ovarian cancer cell model by repressing the tumor pro-
duction of CXCL9 and CXCL10 [40]. In addition, tumors use DNA methylation to neg-
atively regulate chemokines such as CCL5 and CCL2, which are essential in T-cell and
macrophage chemotaxis. Epigenetic silencing of the CCL2 gene by methylation was found
to diminish macrophage infiltration and promote disease progression in small-cell lung
cancer (SCLC) [48–50]. As described previously, DNA methylation also plays a role in
the activation of inhibitory immune cells such as MDSC that modulate a pro-tumor TME.
Interestingly, MDSC infiltration can be reduced by treatment with DNMTi [51].

Investigations into the mechanisms behind effector T-cell exhaustion revealed the
contribution of multiple epigenetic mechanisms including DNA methylation. De novo
methylation by DNMT3A established a stable exhausted state and its deletion in CAR
T-cells as shown by Prinzing et al. [52] led to a more anti-tumor state. Moreover, DNA
methylation profiling of exhausted tumor-infiltrating lymphocytes (TIL) identified pro-
moter hypomethylation of T-cell exhaustion markers PD-1 and HAVCR2. Binding sites
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of exhaustion-associated transcription factors such as NR4A1 were also seen to be hy-
pomethylated, implying that activation of the T-cell inhibitory programming was governed,
at least in part, by methylation [53]. Taken together, these highlight the complex roles DNA
methylation plays in the tumor TME.

Figure 1 summarizes the disparate roles DNA methylation plays in the development
of cancer.
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Figure 1. Influence of DNA methylation on the tumor and tumor microenvironment. Cancers are
characterized by extensive genomic hypomethylation that leads to chromosomal instability and
oncogene activation. Focal hypermethylation of CpG islands at promoters leads to TSG silencing.
Hypermethylation of gene bodies can lead to oncogene expression and alternative splicing leading
to cancer-related isoforms of genes. In the tumor microenvironment DNA methylation can lead to
altered immune cell fate and trafficking. DNA methylation also underpins epigenetic mechanisms of
T-cell exhaustion. Created with Biorender.

2.2. Cell-Free Tumor Methylome Recapitulates the Cancer Epigenome

Cell-free DNA (cfDNA) refers to DNA fragments in the noncellular component of
blood. Although it has been an area of great interest over the last decade, Mandel and
Métais were the first to demonstrate DNA in the blood of both healthy and diseased patients
in 1948 [54]. cfDNA arises from cells through necrosis and apoptosis, but also enters the
circulation via active secretion [54,55]. Circulating DNA from normal cells is found in low
concentrations in plasma (~10–15 ng/mL) but can increase due to acute stressors like disease
and injury [56]. Notably, it was shown that levels of cfDNA in individuals with cancer
are higher in comparison with their counterparts without cancer [56]. The component of
cfDNA that originates from tumors is referred to as circulating tumor DNA (ctDNA) and
represents a smaller fraction of overall cfDNA [57,58]. These circulating tumor fragments
are shorter than DNA from non-cancer cells and range in size from ~140 to 200 bp in length,
corresponding to the size of nucleosome-associated DNA [54,59]. The ctDNA fraction in
plasma varies but increases in association with disease type and burden. Advanced disease
and high-shedding tumors such as SCLC and prostate cancer may have fractions > 20%
of total cfDNA [60–63]. Conversely, reduced ctDNA fractions in the blood are detectable
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in early-stage disease or following effective anticancer therapy [56,60,62,64]. In addition
to plasma, ctDNA can be obtained from other biofluids such as cerebrospinal fluid, saliva,
pleural effusions, urine, ascites, and stool representing multiple sources of nucleic acid for
study [56]. Depending on the source, ctDNA size may vary because of disparate conditions
within the respective biological compartments from which the nucleic acids are sourced.
For instance, shorter ctDNA fragments may be observed in urine compared to plasma
owing to the greater nuclease activity in the former [54].

While the term liquid biopsy is most often used to refer to the analysis of cfDNA from
peripheral blood, it also pertains to the isolation and study of tumor-derived material from
other bodily fluids. Liquid biopsies using standard venipuncture afford several distinct
advantages over conventional tissue sampling. First, their minimally invasive nature allows
for evaluation of the disease, particularly in cases where tumor access is difficult, unsafe,
or ethically challenging, especially for repeated longitudinal sampling [56]. Moreover, in
addition to ctDNA, circulating tumor microRNA, extracellular vesicles, tumor-associated
proteins, and circulating tumor cells (CTCs) can also be sampled at the point of care by this
approach [65]. From a testing standpoint, utilizing pooled cfDNA obtained from liquid
biopsies to determine a positive signal—such as the presence of cancer in a patient—avoids
dependence on specific fragments and thereby improves sensitivity. This is especially
important when dealing with scenarios wherein the amount of input DNA is constrained,
and adequate representation of individual DNA fragments cannot be guaranteed [66].
Another advantage of liquid biopsies is their ability to better recapitulate the molecular
heterogeneity harbored by multiple distinct clonal populations that collectively shed cfDNA
into the blood. This is because the molecular diversity of disease is not as easily captured
by needle aspirates of single tumor sites and multiple needle passes to sample different
sites may be difficult or excessively invasive [56]. Finally, from a therapeutic perspective,
this technique allows for longitudinal sampling across successive time points providing
opportunities for studying tumor evolution resulting from treatment [56,58].

Early applications of liquid biopsy technology involve genotyping and mutation de-
tection, but indications for its use have since expanded to include epigenetic analyses,
including the study of ctDNA methylation [58,67–69]. The study of ctDNA methylation in
turn has several advantages. First, cancer-specific methylation changes occur earlier in tu-
morigenesis and represent an opportunity for early disease detection and diagnosis [57,70].
Moreover, combining methylation with orthogonal methods such as mutation detection and
fragmentomics to profile ctDNA further enhances the discriminative power of such tests by
interrogating biologic features that are characteristic of tumor-derived DNA [71]. Second,
methylation patterns in ctDNA are consistent with their tissue-of-origin, allowing for the
location of the source of a cancer, especially those with an unknown primary site [68,72].
Third, tumor cells tend to exhibit more homogenous DNA methylation changes versus gene
mutations that tend to exhibit greater intra-tumoral heterogeneity [67]. The consistency of
the methylation signal opens the door for evaluating tumor evolution, especially after being
subjected to the selective pressure of anti-cancer therapy. In the context of treatment resis-
tance, examining changes in differentially methylated regions (DMR) in ctDNA obtained
from longitudinal blood draws can shed light on epigenetic mechanisms that underpin treat-
ment resistance. Various bisulfite conversion (e.g., quantitative methylation-specific PCR
and cfMethyl-seq) and antibody-enrichment-based (e.g., cfMeDIP-seq) platforms for the
study of ctDNA methylation have been developed in the last decade. The details of these as-
says are beyond the scope of this review but were extensively discussed elsewhere [73–76].

2.3. Applications of cfDNA Methylation as Biomarker in Cancer
2.3.1. Methylation as a Diagnostic Biomarker

The concordance between tumor and cell-free cancer methylomes means that it can
be leveraged as a tool for cancer diagnosis. Assays that employ ctDNA methylation for
this application vary in their approaches. Some use targeted detection of methylated sites
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in specific genes such as SEPT9 [77,78], SHOX2 [79], PTGER4 [79], and SDC2 [80] while
others profile more extensive swathes of the genome.

Classifiers based on more extensive DNA methylation profiles to detect cancers via
plasma-based liquid biopsies were also developed. In this regard, the most significant
application of ctDNA methylome profiling is in multicancer early detection (MCED). The
importance of this application lies in the fact that early diagnosis of disease allows for
the administration of effective, curative treatment to optimize patient outcomes [81]. The
results of the Circulating Cell-free Genome Atlas (CCGA) study (NCT02889978) demon-
strated that ctDNA methylation profiling using the GRAIL test could detect cancer signals
across >50 cancer types with an overall accuracy of predicting cancer signal origin (CSO),
i.e., the tissue of origin of cancer in cases of true positives is 88.7% (95% CI: 87.0–90.2%).
This study showed that interrogation of ctDNA methylation could outperform tests that
relied on copy number and structural variants for cancer detection [82]. Results from
the prospective SYMPLIFY (ISRCTN10226380) and PATHFINDER (NCT04241796) cohort
studies further suggested the feasibility of this approach. In SYMPLIFY, 6238 symptomatic
individuals with possible underlying cancer as a cause were recruited and followed until
diagnostic resolution or nine months. The primary study outcome was the diagnostic
performance of the MCED test for the detection of new diseases. The specificity of the
test was 98.4% (95% CI: 98.1–98.8%), while the sensitivity was 66.3% (95% CI: 61.2–71.1%).
For cases wherein a cancer signal was correctly detected, the accuracy for predicting the
CSO was 85.2% (95% CI: 79.8–89.3%) [83]. Meanwhile, the PATHFINDER cohort included
individuals 6662 aged 50 and older regardless of their cancer risk factors, who were not
being evaluated for or had any history of cancer. The primary objective was the determi-
nation of the time needed to achieve diagnostic resolution in individuals with a positive
MCED test. A cancer signal was detected in 92 (1.4%) participants, of whom 35 (38%)
are true positives and 57 (62%) are false positives. The time to diagnostic resolution was
found to be 57 days (95% CI: 33–143) in true-positive participants and 162 days (95% CI:
44–248) in false-positive participants. False positive results were a challenge for screen-
ing tests as individuals with this result needed to undergo further diagnostic testing. In
this study among those with false positive results, <1% underwent invasive surgical or
non-surgical procedures. PATHFINDER likewise assessed the performance of GRAIL and
found that the test specificity was 99.1% while the sensitivity to detect disease over the
one-year follow-up period was 29%. Notably, the test could accurately predict the CSO in
97% of true positives [84]. Additional clinical trials were ongoing to validate the utility of
ctDNA methylation profiling for MCED: STRIVE (NCT03085888), SUMMIT (NCT03934866),
NHS-GALLERI (ISRCTN91431511), and PATHFINDER2 (NCT05155605) [82,85–87].

A second platform, this time that leveraged cfMeDIP-seq, an antibody-based, non-
degradative genome-wide DNA methylation enrichment assay was being developed for
use in MCED. Validation of this test was performed on a cohort of 4332 consisting of
untreated patients across eight different tumor types—bladder, breast, CRC, head, and
neck (HNSCC), lung, ovarian, prostate, and renal cell (RCC) cancers, and a set of age
and sex-matched controls [88]. The test performed well with an AUROC of 0.94 (95% CI:
0.93, 0.96) across all tumors and was robust in each individual tumor type including low
cfDNA shedding tumors—bladder, breast, prostate, and RCC—with an AUROC 0.92 (0.91,
0.94) [88]. The high detection of low-shedding disease was particularly noteworthy since
early-stage cancers with low tumor burden released small amounts of cfDNA into the
circulation and were an important hurdle to overcome for viable MCED tests.

In patients diagnosed with cancer, methylation profiling of ctDNA also showed utility
in tumor subtyping. Chemi et al. [89] reported that tumor-specific methylation patterns
could discriminate between transcription factor-defined SCLC subtypes. This reflected the
association between methylation and molecular heterogeneity within cancer types.

Table 1 outlines examples of plasma cfDNA methylation-based diagnostic biomarkers
in different stages of development.
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Table 1. Plasma cfDNA methylation-based diagnostic biomarkers in clinical use or development.

Application Cancer Test/Assay/Target Study Size (N) Sensitivity Specificity Comments References

Diagnosis Colon
Epi proColon®/

methylation specific
PCR/SEPT9

245 67% (95% CI:
56–77%)

89% (95% CI:
83–93%)

Obtained FDA
approval in

2016
[77]

Diagnosis Lung

Epi proLung®/
methylation specific

PCR/SHOX2 and
PTGER4

172

AUROC = 0.88; at
specificity = 90%,
sensitivity = 67%;

at sensitivity = 90%,
specificity = 73%.

Obtained
CE-IVD mark

in 2017
[79]

Diagnosis Colon
EarlyTect®

Colon/methylation-
specific PCR/SCD2

256 87.0% (95% CI:
80.0–92.3%)

95.2% (95% CI:
89.8–98.2%) -- [80]

Diagnosis Lung

EarlyTect® Lung
Cancer/methylation-

specific
PCR/PCDHGA12

-- 75.0% (95% CI:
61.8–81.8%)

78.9% (95% CI:
62.2–89.8%)

In
development
for use with

bronchial
washings or

blood

[90]

Diagnosis
(MCED) Pan-cancer

GRAIL(Galleri™)/
NGS and custom

classifier/
methylation

panel covering
1.1 × 106 CpGs

4077 51.5% (95% CI:
49.6–53.3%)

99.5% (95% CI:
99.0–99.8%)

Data based on
CCGA trial

(NCT02889978)
[91]

MRD Pan-cancer

Guardant
Reveal™/NGS and
custom classifier/

500 genes and 4Mb
of DMRs

CRC cohort = 84;
Breast cancer
cohort = 20

CRC cohort:
55.6% (95% CI:

35.3–74.5)
Breast cancer

cohort:
sensitivity =

85% 1

CRC cohort:
100% (95% CI:

90.5–100)
Breast cancer

cohort:
specificity =

100% 1

-- [92,93]

Diagnosis
(MCED)/

Prognosis/
MRD

Pan-cancer ADELA/cfMeDIP-
seq/whole genome

MCED = 4322
Prognosis:
HNSCC

cohort = 93;
RCC cohort = 151

MCED: Multi-cancer
cohort—Cancer cases

discriminated from controls with
an AUROC of 0.94 (95% CI: 0.93,
0.96). In low cfDNA shedding

tumors, AUROC was 0.92
(95% CI: 0.91, 0.94).

Prognosis: HNSCC—Likelihood
of recurrence or progression (HR
3.51, 95% CI: 1.1–11.19, p = 0.034);
RCC—Likelihood of recurrence or

progression (HR 13.28, 95% CI:
5.47–32.26, p < 0.001)

MRD assay
currently in

development
[88,94,95]

1 95% CI: not reported.

2.3.2. Methylation as a Prognostic Biomarker of Patient Outcomes

As a ubiquitous mode of epigenetic regulation, DNA methylation of specific genes
provides value in prognosticating outcomes in cancer. Huang et al. [96] utilized bisulfite
conversion-based real-time PCR to determine the methylation status of the SEPT9 gene
(mSEPT9) in the plasma of 144 preoperative CRC patients. Patients who were mSEPT9+ had
lower disease-free survival (DFS) rates than those who were mSEPT9− (two-year DFS:
52.1% vs. 73.9%, p = 0.014), Moreover, mSEPT9 was an independent predictor of prognosis
(HR = 2.741, p = 0.009) in multivariate regression analysis [96]. Of interest, a 2021 system-
atic review by Hier et al. [97] identified over 100 different genes regulated by methylation
that carried prognostic significance. Apart from protein-coding genes, the loss of methyla-
tion of repeat elements was significant in early carcinogenesis and correlated with poor
prognostic outcomes [98,99]. Chen et al. [100] studied the methylation status of the Alu
element in cfDNA from 109 glioma patients. The authors found that Alu methylation was
lower in glioma samples versus non-cancer controls (p < 0.01) and that methylation of Alu
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correlated negatively with disease severity—high-grade gliomas showed less methylation
than low-grade gliomas (p < 0.01). Conversely, Alu methylation correlated positively with
survival (p < 0.01).

Recognizing that the tumor methylation signal was distinct from that of the non-cancer
genome, Ul Haq et al. [101] performed a whole genome approach to the assessment of the
cell-free methylome of SCLC using cfMeDIP-seq. The authors utilized an in silico approach
using paired peripheral blood leukocytes to subtract non-cancer noise from cfDNA methyla-
tion data similar to previous studies [71]. This approach identified two biologically distinct
methylation-defined SCLC prognostic groups with differences in overall survival [101].
Validation of ctDNA methylation as a prognostic biomarker in HNSCC and RCC was
performed and data from these studies were presented in abstract form at the ESMO
2023 conference (Table 1) [94,95].

2.3.3. Methylation as a Predictive Biomarker of Treatment Response

Methylation of the O6-alkylguanine DNA alkyltransferase (MGMT) promoter had been
a known predictor of response to the alkylator temozolomide in glioma [65]. The promoter
methylation status of this gene could be assessed using ctDNA obtained from blood or
cerebrospinal fluid via targeted, methylation-specific PCR and was found to be highly
concordant with tumor tissue [102]. Meanwhile, the expression of the DNA/RNA helicase
Schlafen 11 (SLFN11) predicted sensitivity to DNA-damaging alkylating agents and PARP
inhibitors [103–106]. The SLFN11 gene was observed to be under epigenetic control and
methylation of its promoter in ctDNA predicted resistance to therapy in ovarian cancer with
the prior mentioned agents [107]. Hypermethylation of the promoter of the MLH1 gene
represented a principal epigenetic mechanism that led to the MSI-H/dMMR state. Tumors
with deficient mismatch repair possessed a higher burden of somatic mutations, higher
infiltrating T-cell counts, and showed increased PD-L1 positivity—all these predispose
MSI-H/dMMR cancers to respond to immune checkpoint inhibitor (ICI) therapy [108,109].
Wang et al. [110] described a liquid biopsy-based approach to the detection of MLH1
promoter methylation in CRC using methylation-sensitive restriction enzyme PCR. This
assay had an AUROC value of 0.965 (95% CI: 0.94–0.99). The sensitivity and specificity of
the assay were 78% and 100%, respectively (95% CI: 0.45–0.95).

Beyond individual genes, methylation-profile-based scoring also predicted anti-cancer
therapy response. In an exploratory study from the phase 2 SWOG S1314 clinical trial,
pre-treatment cfDNA from 72 patients was used to generate a classifier methylation-
based response score (mR-score), which could predict pathologic response to neoadjuvant
chemotherapy in operable, muscle-invasive bladder cancer (MIBC). The model demon-
strated an AUROC of 0.636 (95% CI: 0.498–0.773) for baseline samples. Moreover, mR-scores
correlated with pathologic response with complete responders demonstrating the lowest
scores in the cohort and non-responders showing the highest mR-scores. Notably, this
same classifier showed better performance when applied to on-treatment samples (AUROC
of 0.720, 95% CI: 0.582–0.857) [111]. Methylation-profile-based scoring was also used to
predict therapy response in ICI. In a sub-study of the INSPIRE trial (NCT0264436), ctDNA
methylation kinetics in 51 heavily pre-treated patients were used to predict response to the
anti-PD1 monoclonal antibody Pembrolizumab. A decrease in both ctDNA fraction and
cfDNA methylation (cfMEDIP score) predicted the best response to Pembrolizumab (12mo
OS 87.5%, 95% CI: 72.7–100%). Meanwhile, a decrease in either ctDNA fraction or cfMeDIP
score also showed benefit (12mo OS 70%, 95% CI: 46.6–100% and 12mo OS 62.5%, 95% CI:
36.5–100%, respectively) compared to patients that demonstrated an increase in both pa-
rameters following ICI (12mo OS 29.4%, 95% CI: 14.1–61.4%) [112,113]. MethylCIBERSORT
utilized methylation profiles to predict the TME milieu and distinguished between immune
hot and immune cold tumors. This approach was further validated across multiple tumor
sites including head and neck carcinomas, CRC, glioma, and melanoma [114–117]. Differ-
ential Methylation Analysis for Immune Cell Estimation (DIMEimmune) could be another
approach to determine tumor-infiltrating lymphocytes (TILs) scores as well as estimation of
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CD8+ and CD4+ T-cell abundance. This technique used bulk methylation data and was less
reliant on cell line data than the former approach [118]. Studies have also reported on the
use of “methylation scores” to predict response to ICI therapy. Liu et al. [119] developed
a 5mC score based on the expression of twenty-one 5mC regulators in patients with lung
adenocarcinoma. The 5mC score was shown to predict ICI response and prognosis. The
authors reported that a low 5mC score corresponded with more immune cell infiltration
and improved response to ICI therapy. A similar approach was described by He et al. [120]
for developing a predictive 5mC score in lung squamous cell carcinoma treated with
ICI. Their cohort patients with a high 5mC score also showed diminished sensitivity to
immunotherapy in contrast to those with a low 5mC score.

2.3.4. Minimal Residual Disease

Effective oncologic therapy reduces tumor burden by >2–3 log10 which corresponds to
a tumor kill of >99%. Unfortunately, malignant cells may persist in patients who achieve
exquisite treatment responses and represent niduses for disease relapse. These recalcitrant
cancer cells, referred to as minimal residual disease (MRD), remain a key challenge in the
treatment of cancer [121]. To guarantee the durability of remission following curative-intent
therapy, increasingly sensitive methods for post-treatment surveillance are necessary [58].
Knowing that recurrent tumors detectable by conventional imaging contain >106 cancer
cells, the likelihood of successful treatment becomes less likely once it is demonstrable
by diagnostic scans [122]. Detection of ctDNA by liquid biopsies of different biofluids,
such as plasma and urine, represents an avenue for earlier detection of recurrent disease
thereby facilitating cancer interception, earlier intervention, and more optimal treatment
outcomes [123–128].

Van Zogchel et al. [125] demonstrated that the detection of hypermethylated RASSF1A
in the plasma of cohort patients with different solid tumors (neuroblastoma, renal tu-
mors, rhabdomyosarcoma, or Hodgkin lymphoma) predicted negative outcomes following
chemotherapy. In this study, the performance of hypermethylated RASSF1A was best
when combined with the detection of RASSF1A mRNA in patient bone marrow aspirates
(p = 0.046). The results of this small cohort (n = 96) were to be confirmed in the larger,
prospective, multicenter SIOPEN HR-2 study (NCT04221035). Mo et al. [127] investi-
gated the utility of detecting MRD via ctDNA using six DNA methylation markers, which
included the well-studied SEPT9, in post-treatment blood samples from patients with
resectable CRC. Of 255 patients with available plasma samples, 59 were ctDNA-positive.
In this group, the recurrence risk was significantly higher than that of their counterparts
(HR 17.5; 95% CI: 8.9–34.4; p < 0.001). Notably, the optimal timing of measurement of
ctDNA was ≤1 month after surgery [126–128]. The prospective MEDAL study investigated
the feasibility of methylation-based postoperative surveillance in patients with resected
NSCLC (n = 195). The ctDNA methylation-based MRD model recapitulated perioperative
ctDNA mutation dynamics. Comparing the two methods, ctDNA methylation had better
sensitivity than ctDNA mutations (90.9% vs. 45.5%) but the latter was more specific (90.4%
vs. 67.3%). Moreover, DFS was shorter for those with high methylation-based MRD scores
(HR 15.32; 95% CI: 1.96–119.76; p < 0.001) and the average lead time before confirmation
of disease recurrence by clinical imaging was 137 days for those with ctDNA determined
by mutation status vs. 303 days for those with high methylation-based MRD scores. This
represented an earlier window of intervention afforded by the latter approach [129]. It is
worth mentioning that some MRD assays have become available for clinical use. A tumor-
uninformed assay designed to integrate mutation and aberrant methylation detection for
monitoring MRD was validated in CRC and breast cancer (Table 1) [92,93]. At the time of
writing, cfMeDIP-seq was being developed for MRD testing and would offer the advantage
of requiring low DNA inputs (5–10 ng), making it an attractive platform for monitoring
treatment response [71,76,130].
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3. Challenges and Future Directions
3.1. DNA Methylation in Oncology

Samples for DNA methylation profiling are subject to the same requirement of quality
as other biological materials for analysis. Specimens with low tumor content, inadequately
prepared samples, or old archival material may yield suboptimal DNA quality that can
confound discrimination between tumor and non-tumor material [131]. The variety of
platforms for studying DNA methylation offers distinct advantages in terms of ease of
use, assay resolution, and coverage. However, it has to be pointed out that each method
also has its inherent limitations. For example, bisulfite conversion can result in sample
degradation, while antibody performance can present a challenge for methylated DNA
enrichment techniques [73–75]. Furthermore, although DNA methylation provides valuable
information, this may need to be incorporated with additional omics data to provide greater
insight into tumor biology [71,113]. To this end, to leverage the expansive omics data
available, the use of machine learning algorithms that enable the integration of multi-
omics data for general or task-specific uses is essential and is an actively growing field
of study [132]. Importantly, information gleaned from multi-omics analyses can pave the
way for biomarker discovery. Such applications will ultimately need to be validated using
appropriate prospective clinical studies to confirm their value [133].

3.2. Liquid Biopsy in Oncology

The use of tumor cfDNA is not without its limitations. First, there is variability in the
timing and amount of DNA shed into the circulation [58]. The challenge is compounded by
the minuscule amount of nucleic acid that can be obtained from the blood in comparison
to material from conventional biopsy techniques. Also, circulating DNA has a short half-
life in the blood of a few minutes to up to two hours [134]. Second, cfDNA is shed by
both tumor and non-tumor tissue and this makes it difficult to parse out tumor-specific
signals [68,69,75]. Third, since ctDNA may reveal greater molecular heterogeneity than can
be captured by a needle biopsy obtained from a single tumor site, defining the gold standard
to use for determining the specificity and sensitivity of assays may be challenging [135].

The earlier constraints arising from the biology of ctDNA can be overcome by perform-
ing careful and rapid isolation of cfDNA from patient blood to avoid lysis of normal blood
cells resulting in contamination of samples with non-cancer cfDNA [56]. Alternatively,
cfDNA stabilizing tubes can be used to store samples that are not amenable to immediate
processing [56,135]. Leveraging advances in next-generation sequencing and computa-
tional methods can distinguish cancer-associated methylation signatures from non-cancer
signals during downstream analysis [56,57,67]. Employing multiple patient sample sources
in addition to plasma will increase the sensitivity of ctDNA testing but this needs to be
balanced against the risk of increasing false-positive cancer signals during testing [135].

3.3. ctDNA Methylation as a Biomarker in Oncology

It is important to note that for the myriad methods described here for ctDNA
methylation-based biomarkers, questions regarding clinical validity and utility remain.
This is particularly true in the case of MRD detection where validation of the positive and
negative predictive value of assays are few [136,137]. As many of the approaches described
are tailored for specific cancers using retrospective data, their broader utility needs to
be prospectively tested in the context of clinical trials. Other challenges with ‘bespoke’
approaches relate to generalizability—is an assay robust enough to be used in more than
a few clinical scenarios? Practicability is a closely related issue, which represents a key
stumbling block for translating technologies from bench to clinic [136,138].

Looking forward, work on developing ctDNA methylation-based MCED illustrates the
progress being made at developing tumor-uninformed assays that can perform reliably in
the clinic. At present only four cancers: breast, cervix, colon, and lung have screening tests
with evidence supporting a cost-effective reduction in mortality [81]. The development
of pan-cancer screening tests based on ctDNA methylation is, therefore, a promising
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avenue with potential benefit for patients as it provides opportunities for the prevention
of death or disability arising from cancer. However, balancing this with false positives or
detection of diseases that do not have any effective treatment options will be necessary. The
results of the ongoing validation trials for the GRAIL and cfMeDIP-seq-based assay are
eagerly anticipated.

Meanwhile, the success of liquid biopsy-based assays in the clinic is related to their
ability to complement conventional tests to detect MRD during treatment response and
post-treatment monitoring. Efforts to push the limit of detection (LOD) of ctDNA ever lower
are central to arriving at an effective test to monitor MRD that performs superior to current
imaging and serum-based markers. The analytical limits of ctDNA assays are typically
quantified in terms of variant allele frequency (VAF)—the percentage of sequencing reads
with tumor-specific mutations in relation to the total number of sequencing reads over-
lapping the same genomic loci [139]. Advances in next-generation sequencing (NGS) are
crucial in driving down the LOD of ctDNA tests. The seminal hybrid capture-based NGS
platform CAPP-seq allowed the detection of VAFs down to ~0.02% with 96% specificity
and 85% sensitivity [140]. Advancements in this approach pushed the limit of detection
much lower, to ~0.003% with 100% specificity and 94% sensitivity [64]. Furthermore, other
studies showed that ctDNA fragmentation and methylation were biologically interrelated
and can complement mutation-based assays in cancer detection [64,71,141].

Finally, as ctDNA is present in different biofluids, sampling strategies that exploit the
spatial relationship between tumor site and biofluid type can further increase the sensitivity
of ctDNA detection. Especially important in the case of low disease burden settings,
biofluids sampled proximal to a tumor site (e.g., urine for urothelial carcinoma) [142]
can be more enriched for ctDNA than plasma [64]. Combining these approaches creates
opportunities for establishing highly sensitive ctDNA-based MCED and MRD tests for use
in the clinic.

4. Conclusions

Methylation influences carcinogenesis through the epigenetic control of gene expres-
sion and maintenance of genomic integrity. Its roles in the regulation of the noncoding
genome and its influence on the TME are emerging areas of study in cancer biology. Due to
the highly conserved nature of cancer-specific methylation, its detection in cfDNA using
liquid biopsies has been demonstrated and constitutes an area of great interest in biomarker
research in terms of diagnosis, treatment planning, and response evaluation. Notably,
several key challenges need to be addressed before cfDNA-based methylation biomarkers
become integrated into clinical practice. However, these challenges do not preclude the
development of ctDNA methylation-based biomarkers, as shown by the increasing number
of regulator-approved targeted and tumor-uninformed biomarker assays that have entered
the clinic in recent years.
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Appendix A. Narrative Review Search Strategy

In preparing this narrative review, the authors conducted a literature search using
the following search terms: “DNA methylation”, “5 methylcytosine”, “5-mc”, “methyl-
cytosine”, “cell free DNA”, “cfDNA”, “circulating tumor DNA”, “ctDNA”, “cancer”,
“oncology”, “liquid biopsy”, “biomarker”, “plasma”, “prognostic biomarker”, “predictive
biomarker”, “minimal residual disease”, “MRD”. Databases utilized included PubMed,
Europe PMC, LILACS, Elsevier Science Direct, Web of Science, ClinicalTrials.gov, and
Google Scholar. In addition, conference proceedings were perused for relevant abstracts.
The references of included studies were hand searched for additional relevant papers.
No limits were placed on the date of publication. Included studies consisted of clinical
trials, descriptive cohort studies, and preclinical studies related to the theme of the review.
Abstracts published in conference proceedings were also considered for inclusion if these
reported pertinent information. Studies determined by the authors to be outside the scope
and theme of the review were excluded. Only papers published in English were considered
for inclusion. Figure A1 summarizes the search strategy and results.
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