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Abstract: The aim of this informative review was to investigate the application of radiomics in
cancer imaging and to summarize the results of recent studies to support oncological imaging with
particular attention to breast cancer, rectal cancer and primitive and secondary liver cancer. This
review also aims to provide the main findings, challenges and limitations of the current methodologies.
Clinical studies published in the last four years (2019–2022) were included in this review. Among
the 19 studies analyzed, none assessed the differences between scanners and vendor-dependent
characteristics, collected images of individuals at additional points in time, performed calibration
statistics, represented a prospective study performed and registered in a study database, conducted a
cost-effectiveness analysis, reported on the cost-effectiveness of the clinical application, or performed
multivariable analysis with also non-radiomics features. Seven studies reached a high radiomic
quality score (RQS), and seventeen earned additional points by using validation steps considering two
datasets from two distinct institutes and open science and data domains (radiomics features calculated
on a set of representative ROIs are open source). The potential of radiomics is increasingly establishing
itself, even if there are still several aspects to be evaluated before the passage of radiomics into routine
clinical practice. There are several challenges, including the need for standardization across all
stages of the workflow and the potential for cross-site validation using real-world heterogeneous
datasets. Moreover, multiple centers and prospective radiomics studies with more samples that add
inter-scanner differences and vendor-dependent characteristics will be needed in the future, as well as
the collecting of images of individuals at additional time points, the reporting of calibration statistics
and the performing of prospective studies registered in a study database.

Keywords: biomedical imaging; radiomics; machine learning; deep learning

1. Introduction

Cancer presents an exclusive medical decision-making environment when considering
its multiple forms during the disease course, the patient’s situation, available treatment
options and treatment response. Technological developments in oncology imaging offer
advantages in addressing the challenges associated with accurately detecting, characteriz-
ing and monitoring cancer, but conventional imaging assessment of cancer classically relies
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on visual assessments whose interpretations can be enhanced by innovative computational
techniques. Radiomics promises major progress in the quantitative interpretation of images.

Radiomics is the analysis of medical images to obtain multiple quantitative data
that cannot be identified by the human eye [1–8]. It provides insight into underlying
pathophysiological phenomena not accessible to simple visual analysis.

Radiomics can be divided into two categories [7]: handcrafted radiomics and deep
learning-based radiomics. The conventional radiomics workflow is typically based on
extracting predesigned “features” (also referred to as handcrafted or engineered features) by
a segmented region of interest (ROI). Nevertheless, recent advancements in deep learning
have inspired trends toward deep learning-based radiomics (DLRs), which is also referred
to as discovery radiomics.

In medicine, handcrafted radiomic models use data analytics to extract many features
from medical images and is made up of several steps: (1) segmentation of the target
lesion with manual segmentation by radiologists or with automatic and semi-automatic
tools, (2) feature extraction to obtain multiple quantitative metrics and parameters from
medical images, (3) feature selection with the aim of reducing the number of extracted
features by avoiding correlated or redundant metrics, (4) analysis/classification by creating
a predictive model using machine and deep learning approaches and (5) the validation of
the results [9–18].

The extracted radiomics parameters can be morphological or statistical, and can be of
first-order, second order and/or higher-order statistics. The morphological features charac-
terize the target’s segmented lesion shape and its geometric features. Statistical features
define the individual voxel values distribution, the associations between neighboring voxels
allowing for extraction from medical image features linked to lesion heterogeneity and the
quantification of successive voxels with equal intensities along certain directions. Higher
order statistical metrics are acquired through the application of filters or mathematical
transformations to the images [18–33].

Radiomics could be associated with clinical, pathological or genetic data to provide
a model with predictive ability in order to offer a tailored precision medicine using these
features as input of pattern recognition and artificial intelligence [34–59]. Currently, the
main kind of artificial intelligence techniques that could be used are machine learning (ML)
and deep learning (DL). MLs are widely used in medical imaging and have proven to be
brilliant tools to assist general clinical cancer research [27,28] and could be used considering
radiomics metrics as input data. However, some of the ML algorithms are not capable of
using unstructured data. DL is the best technique for analyzing unstructured data built by
multiple representation learning models on raw data [29–33]. The radiomics hypothesis
is that different imaging features could be used in diagnosis, in prognosis predicting and
therapeutic response in different cancer types. In fact, radiomics features provide data on
the tumor microenvironment that can relate to histologic grade, prognosis, response to
treatment and survival [22–26]. The automation brought by radiomics analysis and artificial
intelligence models offers the opportunity to enhance the radiologists qualitative judgment,
therefore improving tasks such as tumor detection, volumetry delineation, segmenta-
tion of lesions, linking intralesional imaging characteristics to genotypes and prediction
of outcomes.

The aim of this review was to investigate the application of radiomics analysis in
cancer imaging with the particular aim to summarize the results of recent studies to
support oncological imaging, specifically in regards to breast cancer, rectal cancer and
primitive and secondary liver cancer. Furthermore, we have proposed suggestions to
increase reproducibility and robustness in radiomics applications.

2. Materials and Methods
2.1. Literature Search

This review resulted in a self-contained study without protocol and without a
registration number.
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To select the studies for this informative review, different electronic databases were
considered, such as: “PubMed (US National Library of Medicine, http://www.ncbi.nlm.
nih.gov/pubmed, accessed on 16 December 2022), Scopus (Elsevier, http://www.scopus.
com/, accessed on 16 December 2022) and Web of Science (Thomson Reuters, http://apps.
webofknowledge.com/ accessed on 16 December 2022)”.

Articles published in the last four years were analyzed since this time window (January
2019–December 2022) and are consistent with the most recent developments and trends
in the use of radiomics in oncology. For the paper search, the following keywords were
combined: radiomics AND/OR rectal cancer/tumor AND/OR breast cancer AND/OR
liver cancer/tumor/metastasis. Exclusion criteria was: (1) articles of radiomics in other
fields different from cancer imaging; (2) type of article as commentary, updated article,
editorial letter, review article meta-analysis or case report; (3) articles without sufficient
information for consideration or if the paper did not provide the number of cases analyzed,
the partitioning of the dataset, the segmentation method, the radiometric features extracted,
the statistical model to evaluate performance or the analysis of findings in a quantitative
form. Moreover, papers that were not written in the English language were excluded.
PRISMA checklist [34] was used. The research was conducted according to PICOS model
(population; interventions; comparator group; outcomes; study design—Table 1).

Table 1. Inclusion and exclusion criteria adopted to select studies according to the PICOS model.

PICOS Inclusion Criteria Exclusion Criteria

Population Human studies Non-human, animal or in vitro studies

Interventions
Radiomics in cancer imaging including
rectal cancer, breast cancer and
primitive and secondary liver cancer

Radiomics in another district of
cancer imaging

Comparators Not relevant

Outcomes

Number of cases analyzed; partitioning
of the dataset; segmentation method;
radio-metric features extracted;
statistical model to evaluate
performance; analysis of findings in a
quantitative form

Studies not reporting the
defined outcomes

Study types Retrospective or prospective

Guidelines, meta-analyses, systematic
or narrative reviews, update articles,
abstracts, letters, editorials,
conference presentations and posters
and case reports

Language English Non-English

2.2. Data Extraction and Quality Analysis

Papers were selected by two investigators with over fifteen years of experience in
radiomics analysis in cancer imaging (V.G. and R.F.) according to a specific procedure
represented in the Figure 1. The two investigators performed data extraction and then
recorded the outcome, field of application, number of cases analyzed, partitioning of the
dataset, segmentation method, radiometric features extracted, feature selection approach
and statistical model used to evaluate the performance of the extracted features and the
paper results.

The methodological quality of each radiomics study was performed using the radiomic
quality score (RQS) [35] by two different readers in consensus and by a third operator to
solve disagreements between the two readers. The RQS includes 16 items that explore
crucial steps of a radiomics pipeline: (1) image protocol quality; (2) multiple segmentations;
(3) phantom study; (4) imaging at multiple time points; (5) feature reduction or adjust-
ment for multiple testing; (6) multivariable analysis with non-radiomics features; (7) bio-

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
http://www.scopus.com/
http://www.scopus.com/
http://apps.webofknowledge.com/
http://apps.webofknowledge.com/
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logic correlates; (8) cut-off analyses; (9) discrimination statistics; (10) calibration statistics;
(11) prospective studies registered in a trial database; (12) validation; (13) comparison to
gold standard; (14) potential clinical applications; (15) cost-effectiveness analysis; (16) open
science and data.
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Figure 1. Flowchart of research methods. Figure 1. Flowchart of research methods.

Each of these items has a different weight and can contribute positively or negatively
in terms of points attributed, with −8 being the minimum and 36 being the maximum
score that can be reached. The absolute score is then converted to a percentage value (with
36 = 100%). Figure 2 illustrates the values that can be attributed to the 16 items to obtain
the RQS.



Curr. Oncol. 2024, 31 407

Curr. Oncol. 2024, 31, FOR PEER REVIEW  5 
 

 

The methodological quality of each radiomics study was performed using the 
radiomic quality score (RQS) [35] by two different readers in consensus and by a third 
operator to solve disagreements between the two readers. The RQS includes 16 items that 
explore crucial steps of a radiomics pipeline: (1) image protocol quality; (2) multiple 
segmentations; (3) phantom study; (4) imaging at multiple time points; (5) feature 
reduction or adjustment for multiple testing; (6) multivariable analysis with non-
radiomics features; (7) biologic correlates; (8) cut-off analyses; (9) discrimination statistics; 
(10) calibration statistics; (11) prospective studies registered in a trial database; (12) 
validation; (13) comparison to gold standard; (14) potential clinical applications; (15) cost-
effectiveness analysis; (16) open science and data. 

Each of these items has a different weight and can contribute positively or negatively in 
terms of points attributed, with −8 being the minimum and 36 being the maximum score that 
can be reached. The absolute score is then converted to a percentage value (with 36 = 100%). 
Figure 2 illustrates the values that can be attributed to the 16 items to obtain the RQS. 

 
Figure 2. Radiomic quality score illustration. 

3. Results 
Figure 3 shows a schematic representation of the included and excluded manuscripts. 

There were 591 articles analyzed. Of these articles, 142 were rejected because they did not 
consider the use of radiomics in the field of clinical oncology. Another 158 studies were 
excluded because they were commentary articles, update articles, editorial letters, review 
articles, meta-analyses or clinical cases. A further 102 studies were excluded due to 
insufficient data in methodology or results. 

Therefore, 19 manuscripts are included in this review. Table 2 reports the data 
collected by radiologists for these articles. 

Figure 2. Radiomic quality score illustration.

3. Results

Figure 3 shows a schematic representation of the included and excluded manuscripts.
There were 591 articles analyzed. Of these articles, 142 were rejected because they did
not consider the use of radiomics in the field of clinical oncology. Another 158 studies
were excluded because they were commentary articles, update articles, editorial letters,
review articles, meta-analyses or clinical cases. A further 102 studies were excluded due to
insufficient data in methodology or results.
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Therefore, 19 manuscripts are included in this review. Table 2 reports the data collected
by radiologists for these articles.
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Table 2. Radiomics quality score (RQS) assessment for all included articles.
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Granata et al. [9] Liver 1 1 0 0 3 0 1 1 2 0 0 4 1 2 0 1 17 47.22

Granata et al. [11] Liver 1 1 0 0 3 0 1 1 2 0 0 4 1 2 0 0 17 47.22

Granata et al. [13] Liver 1 1 0 0 3 0 1 1 2 0 0 4 1 2 0 0 17 47.22

Yang et al. [22] Liver 1 0 0 0 3 1 0 1 2 0 0 2 1 2 0 0 13 36.11

Fusco et al. [23] Breast 1 1 0 0 3 0 1 1 2 0 0 2 1 2 0 1 15 41.67

Granata et al. [36] Liver 1 1 0 0 3 0 1 1 2 0 0 4 1 2 0 1 17 47.22

Granata et al. [37] Liver 1 1 0 0 3 0 1 1 2 0 0 4 1 2 0 1 17 47.22

Gao et al. [38] Liver 1 1 0 0 3 0 1 1 2 0 0 2 1 2 0 0 14 38.89

De Robertis et al. [39] Liver 1 0 0 0 0 0 1 1 2 0 0 0 1 2 0 0 8 22.22

Shi et al. [40] Liver 1 1 0 0 3 1 1 1 2 0 0 4 1 2 0 0 17 47.22

Xue et al. [46] Rectal 1 1 0 0 3 0 1 1 2 0 0 2 1 2 0 0 14 38.89

Chiloiro et al. [47] Rectal 1 1 0 0 3 1 1 1 2 0 0 0 1 2 0 0 13 36.11

Cusumano et al. [48] Rectal 1 0 0 0 3 0 1 1 2 0 0 4 1 2 0 0 15 41.67

Chiloiro et al. [49] Rectal 1 1 0 0 3 0 1 1 2 0 0 2 1 2 0 0 14 38.89

Chen et al. [50] Rectal 1 0 0 0 3 1 1 1 2 0 0 2 1 2 0 0 14 38.89

Tsuchiya et al. [53] Breast 1 0 0 0 3 0 1 1 2 0 0 0 1 2 0 0 11 30.56

Petrillo et al. [54] Breast 1 1 0 0 3 0 1 1 2 0 0 4 1 2 0 1 17 47.22

Feng et al. [58] Breast 1 1 0 0 3 1 1 1 2 0 0 2 1 2 0 0 15 41.67

Wang et al. [59] Breast 1 1 0 0 3 0 0 1 2 0 0 2 1 2 0 0 13 36.11
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The studies included used features calculated by several imaging modalities includ-
ing computed tomography (CT), positron emission tomography/CT (PET/CT), mag-
netic resonance imaging (MRI) and contrast-enhanced mammography (CEM) with dif-
ferent objective such as differential diagnosis, prognosis prediction, therapy assessment,
etc. [9,11,13,22,23,36–40,46–50,53,54,58,59].

Table 1 reported the RQS assessment for each included study. The median RQS score
was 15, which translates to 41.67% of the ideal score of 36. The lowest score was 8, which
translates to 22.22% of the ideal quality score. Compared to the ideal score, the RQS
of the following studies were the lowest in imaging at multiple time points: phantom
study on all scanners, calibration statistics and cost-effectiveness analysis (0%), followed
by multivariable analysis with non-radiomics features, prospective study registered in a
trial database and validation. Seven studies with high score of seventeen (47.22% of the
ideal quality score) [9,11,13,36,37,40,54]) earned additional points by using validation steps
considering two datasets from two distinct institutes and open science and data domains
(radiomics features calculated on a set of representative ROIs are open source).

3.1. Radiomics Studies in Rectal Cancer

Radiomics analysis in rectal cancer was used to assess and predict chemo-radiation
therapy in locally advanced rectal cancer (LARC) patients using an MRI. It was also used
in the prognosis prediction.

The five included studies in rectal cancer were retrospective studies (Table 3). The
lowest score was 13, which is 36.11% of the ideal quality score. The highest score was
15, which is 41.67% of the ideal quality score. None of the included studies detected
inter-scanner differences and vendor-dependent features, collected images of individuals
at additional time points, reported calibration statistics, performed prospective studies
registered in a trial database, performed a cost-effectiveness analysis report on the cost-
effectiveness of the clinical application or made the code and data publicly available.

Xue et al. [46] demonstrated that the integrated model based on T2 weighted imaging
and apparent diffusion coefficient maps had the potential for preoperative immunoscore
expectations in rectal cancer. They found a model based on T2-weighted imaging and
apparent diffusion coefficient images in the prognosis prediction and in the individualized
immunotherapy, guiding the integrated model showed in the validation cohort an AUC
of 0.768.

Chiloiro et al. [47] demonstrated that radiomics analysis achieved a good performance
in identifying complete responders in rectal cancer and demonstrated that the diagnostic
performance of radiomics improves when combined with standard clinical evaluation.
Three models were produced: a radiomics model, a multidisciplinary tumor board model
and a combined model that predicted with AUCs of 0.82, 0.73 and 0.84—the complete
pathological response.

Cusumano et al. [48] investigated a MR radiomics model to detect complete pathologic
response in LARC showing good performances both using 1.5 T and 3 T scanners. The
predictive model AUC applied to the whole data set was 0.72, while values of 0.70 and 0.83
were obtained when the patient subgroups obtained with 1.5 T and 3 T MRI scanners were
considered. Chiloiro et al. [49] supported a possible role of delta radiomics in predicting
following occurrences of distant metastasis in patients with LARC. A logistic regression
proved to be the best performing one with a testing set that balanced accuracy, sensitivity
and specificity of 78.5%, 71.4% and 85.7%, respectively, to predict distant metastasis.

Chen et al. [50] reported that pre chemo radiation therapy MRI, post chemo radiation
therapy MRI and delta radiomics-based models could predict tumor responses in LARC. The
GLRLM-GLN calculated before therapy was able to classify pathological complete response
groups with an accuracy at 88.5% on the training set and of 57.1% on the test set. When
combined with 3D diameter, the accuracy increased on training data to 92.3%. The best
predictors for a good response were the pre-global minimum combined with the clinical N
stage in the multivariate analysis that obtained an accuracy of 100% on training and test sets.



Curr. Oncol. 2024, 31 410

Table 3. Radiomics Clinical Studies in rectal cancer.

Manuscript Outcome and Application Field Number of
Analyzed Cases Dataset Partition Segmentation Method Extracted Features Feature Selection

Approach
Statistical Model to
Assess Performance

Xue et al.
[46]

To establish and validate a
radiomics model based on

multi-sequence MR images for
preoperative prediction of

immunoscore in rectal cancer

A total of 133 patients

Randomly divided into
training cohort (n = 92)
and validation (n = 41)
cohort according to a

ratio of 7:3

The volumes of interest
were manually delineated in
the T2-weighted images and

apparent diffusion
coefficient images

A total of 804 radiomics
features were extracted

Spearman correlation
analysis and gradient
boosting decision tree
algorithm to select the

strongest features

Multivariate logistic
regression algorithm,

including two
single-mode models and
two dual-mode models

Chiloiro
et al. [47]

To investigate the contribution
of radiomics analysis on
post-treatment MRI for

predicting complete
pathological response after

neoadjuvant chemoradiotherapy
in locally advanced rectal cancer

A total of
144 LARC patients any

A resident radiologist and
radiation oncologist

delineated the gross tumor
volume on the axial oblique

T2-weighted images

A total of 232 radiomics
features were extracted
belonging to statistical,

morphological and
textural families

Features selection was
performed considering

the predictive
performance at the
univariate analysis

using the Wilcoxon–
Mann–Whitney test and
the Pearson correlation

A logistic regression
model was developed to

predict the treatment
outcome

Cusumano
et al. [48]

To develop a generalized
radiomics model to predict

pathologically complete
responses after neoadjuvant

chemoradiotherapy in patients
with locally advanced

rectal cancer

A total of 195 patients

The cohort from
Internal Institution was
136 cases and the cohort

from External
Institution was 59 cases

Gross tumor volumes were
delineated on the

MR images

A total of 496 radiomic
features were extracted

after applying the
intensity-based filter.

Features were
standardized with

Z-score normalization
and an initial feature

selection was conducted
using Wilcoxon–Mann–

Whitney test

Several logistic regression
models combining the key
features with a third one

selected by those
considered significant
were elaborated and

evaluated in terms of area
under curve

Chiloiro
et al. [49]

To study a correlation between
the change in radiomic

characteristics using pre- and
post-neoadjuvant

post-chemo-radio-therapy MRI
with the rate of metastasis two

years later (two years DM)

A total of 213 locally
advanced rectal
cancer patients
were collected

The dataset was firstly
randomly split into 90%
training data and 10%

testing data, for
the validation

Gross tumor volumes were
contoured by an abdominal

radiologist and blindly
reviewed by a radiation

oncologist expert in
rectal cancer

A total of 2606 features
extracted from the pre-
and post-chemo-radio-
therapy gross tumor

volumes were evaluated

Features selection was
performed using a

5-folds
cross-validation method

A total of 15 different
classifiers were tested

Chen et al.
[50]

To study radiomics features
extracted from MRI scans

performed before and after
neoadjuvant chemoradiotherapy
in predicting response of locally

advanced rectal cancer

39 patients who
underwent

neoadjuvant
chemo-radiation

therapy for locally
advanced rectal

cancer were included

All patients were from a
single center without
external validation.

Segmentation was made
segmented on the axial T2
weighted images with the
open-source software tool

IBEX by a radiation
oncologist with specific

expertise in rectal cancer

A total of 294 radiomic
features were extracted,

including shape,
first-order, high-order

texture and Laplacian of
Gaussian

filter-based features

After normalization,
independent features

were identified to
reduce data dimension

Support vector machine
based multivariate

classification was used
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The findings of these studies suggest that radiomics has the potential to provide
valuable information in evaluating therapy and predicting prognosis in rectal cancer.
However, there are still challenges in terms of standardization of imaging protocols, feature
extraction and validation of radiomics models. Further research is needed to validate the
clinical utility of radiomics and to establish its role in routine clinical practice.

3.2. Radiomics Studies in Breast Cancer

The usefulness of radiomics in distinguishing malignant from benign breast lesions as
well as in predicting histopathological type, estimating tumor grade and assisting the staging
procedure was explored in this manuscript. Therefore, the application of radiomics strategies
as prediction tools for treatment response will be explored alongside the risk of recurrence.

The five included studies in breast cancer were conducted retrospectively (Table 4).
The lowest score was 11, which is 30.56% of the ideal quality score, and the highest score was
17, which is 47.22% of the ideal quality score obtained published as open source extracted
radiomics features [54]. None of the included studies detected inter-scanner differences
and vendor-dependent features, collected images of individuals at additional time points,
reported calibration statistics, performed prospective study registered in a trial database or
performed an analysis report on the cost-effectiveness of the clinical application.

Fusco et al. [23] evaluated the possibility of using radiomics metrics by CEM and
dynamic contrast enhanced MRI in the benign and malignant breast lesion discrimina-
tion through different classifiers performing balancing and feature selection procedures.
The best performance was obtained considering 18 robust characteristics and a linear
discriminant analysis with a precision of 0.84 and an AUC of 0.88.

Tsuchiya et al. [53] assessed the MRI-based radiomics model to differentiate phyllodes
breast tumors from fibroadenomas, investigating several machine models. A support vector
machine reached the best AUC of 0.96, and the combined model, which was constructed
using both radiomics features and radiological features, had a significantly improved
performance in the validation set (AUC of 0.97).

Petrillo et al. [54] used the CEM and the radiomics analysis in the classification of suspi-
cious breast lesions and performed both univariate analysis and multivariate analysis to in-
vestigate the better approach and the higher accuracy in the classification of malignant and
benign lesions. At univariate analysis, the best accuracy in the differentiation of benign and
malignant breast lesions was obtained using the original_gldm_DependenceNonUniformity
with an accuracy of 89%, while in the classification of the hormone receptor presence, a
lower level of accuracy was found (81.65%). For multivariate analysis using features ex-
tracted from cranio-caudal images, the maximum test accuracy in the malignant and benign
lesion differentiation was 96% with logistic regression. For features extracted from medio-
lateral oblique images, the best test accuracy was 92% and was always in the classification
of breast lesions obtained using a classification tree algorithm.

Feng et al. [58] demonstrated that a radiomics feature set combining three DCE-
MRI parametric maps and ADC maps yielded an area under the ROC curve of 0.839
within the training set and 0.795 within the independent validation set in breast cancer
KI-67 determination.

Wang et al. [59] constructed a radiomics score significantly associated with disease-
free survival (DFS) for locally advanced breast cancer (LABC) patients in training cohorts,
validation cohorts and external validation cohorts (p < 0.001, p = 0.014 and p = 0.041, re-
spectively). The radiomics-based nomogram showed better predictive performance of DFS
compared with the TNM model. They demonstrated that radiomics scores could effectively
predict the prognosis of LABC after neoadjuvant chemotherapy and radiotherapy.
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Table 4. Radiomics Clinical Studies in breast cancer.

Manuscript Outcome and Application Field Number of
Analyzed Cases Dataset Partition Segmentation Method Extracted Features Feature Selection Approach Statistical Model to

Assess Performance

Fusco et al.
[23]

Differentiation between benign
and malignant breast lesions
using radiomic metrics from
CEM and DCE-MRI images

A total of 44 patients with
79 histo-pathologically
proven breast lesions

Dataset was divided
in training and

test set

Volume on interest
segmented manually by
two expert radiologists

using Slicer3D

A total of 48 radiomics metrics
using IBIS approach

A first selection of variables was
made based on the results

obtained from the univariate
analysis: significant at

nonparametric

Univariate and multivariate
analyses were performed:

non-parametric statistical test,
receiver operating characteristic

(ROC) and machine
learning classifiers

Tsuchiya
et al. [53]

To evaluate the diagnostic
performance of MRI-based

radiomics model for
differentiating phyllodes tumors

of the breast from
fibroadenomas

A total of 88 patients any Manual segmentation

A total of 1070 texture features
were extracted. Radiomic

features were extracted from
T2-weighted image, pre-contrast
T1-weighted image and the first
phase and late-phase dynamic

contrast-enhanced MRIs.

A least absolute shrinkage and
selection operator (LASSO)

regression was performed to
select features and build the

radiomics model

A combined model was
constructed using both
radiomics features and

radiological features. Machine
learning classifications were

conducted using support vector
machine, extreme gradient
boosting and random forest

Petrillo et al.
[54]

To evaluate radiomics features
to differentiate malignant versus

benign lesions, predict low
versus moderate and high

grading, identify positive or
negative hormone receptors and

discriminate positive versus
negative human epidermal

growth factor receptor 2

A total of 182 patients
Dataset was divided

in training and
test set

Manual segmentation by
two expert radiologists was
performed using 3SSlicer

A total of 837 radiomics metrics
were extracted by manually

segmenting the region of
interest from both

craniocaudally (CC) and
mediolateral oblique (MLO)
views by Pyradiomics tool

Adaptive synthetic sampling
balancing approach was used
and a feature selection process

was implemented.

Non-parametric
Wilcoxon-Mann-Whitney test,

receiver operating characteristic,
logistic regression and

tree-based machine learning
algorithms were used

Feng et al.
[58]

To evaluate a radiomics model
dynamic contrast-enhanced
magnetic resonance imaging

parametric maps and apparent
diffusion coefficient maps in the

Ki-67 determination

A total of 205 patients

Patients were
randomly divided
into a training set
(70% of patients)

and a validation set
(30% of patients)

Two radiologists with eight
years and ten years of

experience in breast MR
imaging completed the

layer-by-layer
manual segmentation

A total of 946 radiomics features
were extracted from each map

by PyRadiomics

Significant radiomics features
with p < 0.05 between patients

with high versus low Ki-67
expression were first identified

with the Mann–Whitney U-tests.
Then, the least absolute

shrinkage and selection operator
was used

Support vector machine
classifiers by combining

different parameter maps and
used 10-fold cross-validation to
predict the expression level of

Ki-67 were used

Wang et al.
[59]

To predict survival outcome for
locally advanced breast cancer
patients and the association of

radiomics with tumor
heterogeneity and
microenvironment

A total of 278 patients

Patients were
randomly divided at

a 1:1 ratio into
training and

validation cohorts

Region of interest of tumor
was manually segmented
along the lesion in every
slice by the first reviewer
and then reviewed by the

second reviewer

Feature extraction was
performed via 3D Slicer and its

extension‚—slicer
radiomics—derived from

Pyradiomics

Features with both
inter-observer and intraobserver

ICC higher than 0.75 were
selected for further analysis.
LASSO regression is applied

Univariate and multivariate Cox
proportional hazards model

was applied
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3.3. Radiomics Studies in Liver Primitive and Secondary Cancer

The main potential applications of radiomic models in liver primitive and secondary
carcinoma are to predict histology, predict response to treatment, predict genetic signature,
predict recurrence and predict survival.

The nine included studies in liver primitive and secondary cancer were retrospective
studies (Table 5). The lowest score was 8, which is 22% of the ideal quality score. The highest
score was 17, which is 47.22% of the ideal quality score. None of the included studies
detected inter-scanner differences and vendor-dependent features, collected images of
individuals at additional time points, reported calibration statistics, performed prospective
study registered in a trial database or performed an analysis report on the cost-effectiveness
of the clinical application. However, the studies [9,11,13,36,37,40] earned additional points
by using multivariable analysis with non-radiomics features or validation steps considering
two datasets from two distinct institutes or open science and data domain published
extracted radiomics features.

Granata et al. [9] demonstrated that radiomics and machine learning analysis, based
on the Gd-EOB-DTPA-enhanced magnetic resonance imaging (EOB-MRI) study, allow
the identification of several biomarkers for detection of the different growth patterns in
colorectal cancer liver metastases. Study [11] reported that using univariate analysis was
not possible to accurately discriminate the RAS mutation status. Instead, considering a
multivariate analysis and classification approaches, a k-nearest neighbors (KNN) exclu-
sively with texture parameters as predictors achieved the best results (an accuracy of 87.5%
with 91.7% of sensitivity and 83.3% of specificity on external validation cohort).

In another study, Granata et al. [13] confirmed that radiomics data can be used to
detect several features that may have an impact on the treatment choice for patients
with liver metastases, obtaining a more tailored approach. The radiomics metric
Wavelet_HHL_glcm_Imc2 alone showed the best accuracy in discriminating between expan-
sive and infiltrative tumor growth equal to 79%. Wavelet_LLL_firstorder_Mean showed the
best accuracy in budding tumor detection equal to 86%, Original_firstorder_RobustMean-
AbsoluteDeviation showed the best accuracy in identifying mucinous tumor types equal
to 88% and Wavelet_HLH_glcm_Idmn showed the best accuracy in identifying tumor
recurrence equal to 85%. The best linear regression model was achieved in the recurrence
detection, combining linearly 16 radiomics metrics (accuracy of 97%). However, the best
results were reached in the tumor front growth detection, combining seven radiomics fea-
tures with an accuracy of 97%, a sensitivity of 90% and specificity of 100%. In addition,
Granata et al. [36] investigated radiomics and ML approaches in the mucinous colorectal liver
metastases evaluation by MRI, demonstrating that radiomics metrics could permit the charac-
terization of the lesion subtype with a more tailored therapeutic approach. They showed that
the best performance was obtained by T2-weighted combining linearly radiomics features
using a linear regression (accuracy of 94%). Moreover, Granata et al. [37] demonstrated
that the best performance in the discrimination of tumor budding was obtained by a KNN
considering four radiomics predictors by T2-weighted MRI, yielding an accuracy of 93%,
a sensitivity of 81% and a specificity of 97%. In all studies [9,13,36,37] the authors used
multiple segmentations from different radiologists, an external validation dataset, detected
and discussed biologic correlates and published as open data extracted radiomics features.

Yang et al. [22] established a predictive integrated model for early recurrence of
hepato-cellular carcinoma (HCC) after ablation, and the model presented good predictive
performance. Multivariate analyses suggested that the rad-score including four radiomics
features, number of lesions, integrity of the capsule, pathological type and alpha-fetoprotein
were independent influencing factors of HCC recurrence. The AUC of predicting early
recurrence at 1, 2 and 3 years in the validation group was 0.72 (95% CI: 0.58–0.84), 0.61
(95% CI: 0.45–0.78) and 0.64 (95% CI: 0.40–0.87).
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Table 5. Radiomics Clinical Studies in Liver primitive and secondary cancer.

Manuscript Outcome and
Application Field

Number of
Analyzed Cases Dataset Partition Segmentation

Method Extracted Features Feature Selection
Approach

Statistical Model to
Assess Performance

Granata et al.
[9]

To assess radiomics
and machine

learning analysis in
colorectal cancer liver

metastases
growth pattern

A total of 81 patients
and 151 lesions

A training set of
51 patients with

121 liver metastases
and an external
validation set of

30 patients with a
single lesion

The volume on
interest segmented

manually by
two expert

radiologists using
Slicer3D

A total of
851 radiomics
features were

extracted using
PyRadiomics

package

A first selection of
variables was made
based on the results
obtained from the

univariate analysis:
significant at

nonparametric

Nonparametric test,
univariate, linear

regression analysis and
patter recognition
approaches were

performed

Granata et al.
[11]

To assess the
association of RAS

mutation status and
radiomics-derived

data by contrast
enhanced-magnetic

resonance imaging in
liver metastases

A total of 76 patients
with 130 liver

metastases

The validation cohort
consisted of a total of

24 patients among
76 patients.

Manual slice-by-slice
segmentation was
performed on each

phase of VIBE T1-W
images by two

radiologists with
fifteen years of

experience on MR
liver images

A total of 48 texture
features by means of
a package provided

from MATLAB
programming

tools for
radiomics analysis

The least absolute
shrinkage and

selection operator
method was used to

detect the
robust features

Wilcoxon-Mann-Whitney
U-test, receiver operating

characteristic analysis,
pattern recognition

approaches with features
selection approaches

were considered

Granata et al.
[13]

To evaluate the
efficacy of

radiological features
by CT to predict
histopathological

outcomes after liver
re-section in patients
with colorectal liver

metastases, assessing
recurrence,

mutational status,
histopathological

features (mucinous)
and surgical

resection mar gin

A total of 77 patients
and 147 lesions

The internal training
set included

49 patients and
119 liver colorectal

metastases. The
validation cohort

consisted of
28 patients

with single liver
colorectal metastasis

The volume on
interest segmented

manually by
two expert

radiologists using
Slicer3D

A total of 851
radiomics features

were extracted using
PyRadiomics

package on CT
portal phase.

A first selection of
variables was made
based on the results
obtained from the

univariate analysis:
significant

at nonparametric

Nonparametric
Kruskal-Wallis tests,
intraclass correlation,

receiver operating
characteristic analyses,

linear regression modeling
and pattern recognition
methods (support vector

machine, k-nearest
neighbors, artificial neural
network and decision tree)

were considered
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Table 5. Cont.

Manuscript Outcome and
Application Field

Number of
Analyzed Cases Dataset Partition Segmentation

Method Extracted Features Feature Selection
Approach

Statistical Model to
Assess Performance

Yang et al. [22]

To investigate a
model for predicting
the early recurrence

of hepatocellular
carcinoma after

ablation

A total of
181 patients with

HCC

The training group
was 119 cases;

validation group was
62 cases

Radiologists
manually delineated
the region of interest
along the edge of the
lesion, layer by layer

LIFEx 4.90 software
was used to extract
radiomics features

after delineating the
VOI of each lesion,
totally 200 for each

patient.

The least absolute
shrinkage and

selection operator
cox proportional

hazards regression
after univariate and

multivariate analysis
was used to screen
radiomics features

and build integrated
models

Clinical information and
image semantic features
were added to construct

combined model

Granata et al.
[36]

To evaluate the
radiomics and

machine learning
analysis based on

MRI in the
assessment of liver

mucinous colorectal
metastases

A total of 151 cases

The cohort of
patients included a

training set
(121 cases) and an
external validation

set (30 cases)

The volume on
interest segmented
manually by two

expert radiologists
using Slicer3D

A total of
851 radiomics
features were

extracted as median
values by means of

the PyRadiomics tool
on volume on

interest according to
IBSI initiative

A first selection of
variables was made
based on the results
obtained from the

univariate analysis:
significant at

nonparametric
Kruskal–Wallis test

and with an accuracy
≥80%.

Linear regression
modelling and pattern
recognition techniques

including support vector
machine, k-nearest

neighbors, artificial neural
network, and decision tree

were performed to
calculate the diagnostic

performance considering
the significant features

Granata et al.
[37]

To assess the efficacy
of radiomics features

obtained by
T2-weighted

sequences to predict
clinical outcomes

following liver
resection in colorectal

liver metastases
patients.

A total of 151 cases

The cohort of
patients included a

training set
(121 cases) and an
external validation

set (30 cases)

The volume on
interest segmented
manually by two

expert radiologists
using Slicer3D

A total of
851 radiomics
features were

extracted as median
values by means of

the PyRadiomics tool
on volume on

interest according to
IBSI initiative

A first selection of
variables was made
based on the results
obtained from the

univariate analysis:
significant at

nonparametric
Kruskal–Wallis test

and with an accuracy
≥80%

Linear regression
modelling and pattern
recognition techniques

including support vector
machine, k-nearest

neighbors, artificial neural
network and decision tree

were performed to
calculate the diagnostic

performance considering
the significant features
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Table 5. Cont.

Manuscript Outcome and
Application Field

Number of
Analyzed Cases Dataset Partition Segmentation

Method Extracted Features Feature Selection
Approach

Statistical Model to
Assess Performance

Gao et al. [38]

To develop a
predictive model for
postoperative early
recurrence of HCC
based on deep and
radiomics features
from multi-phasic

magnetic
resonance imaging

A total of 472 HCC
patients

Training (n = 378)
and validation
(n = 94) cohorts

Three-dimensional
segmentation of the
whole tumor in all

patients was
manually performed

on each phase
usingITK-SNAP

A total of
864 radiomics
features were

extracted based on
PyRadiomics.

The least absolute
shrinkage and

selection operator
logistic regression

algorithm for feature
selection and model

construction

Radiomics selected features
and deep features were
selected to construct a

combined predictive model.
With each model, through a

linear combination of
selected features, the

predicted probability value
of early hepatocellular

carcinoma recurrence was
calculated for a patient

De Robertis
et al. [39]

To develop a
predictive model for
liver metastases in

patients with
pancreatic ductal
adenocarcinoma

A total of
220 patients Not reported

Tumor segmentation
was performed

manually using a
software for medical

image processing
(LifeX)). Three regions
of interest were drawn

on the CT slice
corresponding to the

largest
tumor diameter

A total of 39 textural
features were
automatically
extracted from

the ROIs

Non performed Logistic regression model

Shi et al. [40]

To investigate
whether radiomics
and/or semantic

features could
improve the

detection accuracy of
RAS/BRAF gene
mutation status in

patients with
colorectal

liver metastasis

A total of
159 patients

A training set and a
validation set

were considered

Regions of interest in
the portal venous
phase CT images

were segmented with
a 3D semi-automatic

segmentation
method by

two radiologists

A total of 2 semantic
and 851 radiomics

features were
calculated

Features with an
intraclass correlation

coefficient or a
concordance

correlation coefficient
lower than 0.75 were

excluded for
subsequent analysis

Seven machine learning
methods were used to
construct three scores
predicting the gene

mutation status, including
artificial neural network,

Gaussian, Bayes, k-nearest
neighbors, support vector

machine, logistic
regression, AdaBoost,

gradient boost classifier
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Gao et al. [38] investigated the ability of radiomics and deep features by MRI in the
identification of a predictive model for the early recurrence of HCC after surgery. The
authors integrated radiomics and deep features into a combined model and demonstrated
improved performance in the detection of patients at high risk of early recurrence (area
under curve (AUC) 0.840, accuracy 77.7%).

De Robertis et al. [39] demonstrated that CT texture analysis of pancreatic adenocar-
cinoma could identify features able to predict the liver metastases likelihood. This study
included 220 patients. Tumor size, arterial HU_MAX, arterial GLZLM_SZHGE and portal
GLCM_CORRELATION were significant predictors of the likelihood of liver metastases,
with odds ratios of 1.1, 0.9, 1 and 1.49, respectively.

Shi et al. [40] reported that RAS and BRAF mutated tumors show discriminatory CT
radiomic features which, if combined with semantic features, could help in the detection of
tumors harboring RAS and BRAF mutations in patients with colorectal liver metastasis in
order to increase patient stratification and customized treatments. The combined score of
radiomic and semantic features could discriminate between wild-type and mutant patients
with an AUC = 0.95 in primary cohorts and =0.79 in validation cohorts.

Radiomics studies have demonstrated its predictive value such as the grade of hepato-
cellular carcinoma, the ability to predict recurrence or the differential diagnosis of other
primary or secondary liver tumors and the correlation with genetic mutations. However,
once again the added value of radiomics in modifying therapeutic choices, and therefore as
a decision-making model, is not clear.

4. Discussion

This manuscript summarizes recent radiomics studies in cancer imaging and discuss
the challenges and limitations of the methodologies employed.

Radiomics looks to be very promising, as it has been applied in oncology to improve
diagnosis and prognosis with the intention of helping the clinician, and is increasingly
oriented towards precision medicine. The foundation on which radiomics is built is that
imaging data indirectly carry significant information about tumor biology, behavior and
pathophysiology, and can provide information that would otherwise not be apparent to
purely visual radiological interpretation.

Radiomics presupposes an alternative non-invasive tool for characterizing tumors,
which has experienced growing interest with the advent of more powerful and more
sophisticated computer machine learning algorithms. However, the incorporation of
radiomics into cancer clinical decision support systems still needs in-depth analysis of its
relationship with tumor biology.

Moreover, there were many differences in the methods used in image segmentation,
feature extraction and prediction model construction. Furthermore, some important aspects
have not always been considered by the authors such as the importance of the external
validation of the set in the evaluation of the intra and inter-observer variability and in the
balancing of the data set. In fact, the critical problems in radiomics use are the insufficient
standardization and generalization of radiomics results, data quality control, repeatability,
reproducibility, database matching and model overfitting issues [55,57].

A key attention is to determine the availability of sufficient data to support the devel-
opment of a radiomics signature. As a rule, for binary classification studies, one should
aim to obtain at least 10–15 samples for each feature that is provided in the final radiomics
signature [55,57].

In medicine, two different approaches can be applied to cancer imaging: radiomic
features extracted from the target lesion that can be used as inputs for machine learning
algorithms, or an entire medical image or a series of images to train a deep learning model
to directly perform tumor detection, characterization and monitoring [60–69].

This review reported that radiomics metrics can extract biological and path-physiological
evidence from target lesions from images, and the equivalent quantitative features can offer
a precise non-invasive biomarker for oncological diagnosis, prognosis and outcome moni-
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toring. Artificial intelligence has been used in conjunction with radiomics features to solve
difficult problems that would have been intractable using traditional statistical approaches.
In addition, artificial intelligence-based methods have made important advancements in
the field of radiological oncological medical imaging [70,71].

However, great variability has been observed in methodologies for radiomics extrac-
tion, reduction and classification models. This aspect influences the reproducibility and
generalizability of the results and a large level of variability can be observed in the scientific
reports of the different authors. Many authors have not partitioned the data set. In general,
the dataset should be divided into training datasets (70% of samples), test datasets (20% of
samples) and validation datasets (10% of samples) [71]. Furthermore, the samples should
also include external datasets to better validate the results of the radiomics and artificial
intelligence procedures [72–75].

In addition, another major problem is the repeatability and replicability of artificial
intelligence and radiomics techniques [76]. This problem is mainly linked to the variability
of the image acquisition equipment and of the protocol itself, as well as to the variability
of the reconstruction and pre-processing techniques of the images used, for example, to
optimize the signal-to-noise ratio. Furthermore, image segmentation or feature extraction
methods are not absolute and are problematic to apply to be completely standardized,
which means that the implementation of several tasks simultaneously with deep learning
and machine learning methods is still restricted [76–101].

To resolve this and to construct reproducible and standardized radiomics features
extraction and building models, the following aspects should be considered: (1) to obtain
reproducible radiomics features, image biomarker standardization initiative (IBSI) [77], a
radiomics standardization initiative of the international community, should be considered
and a common tool for feature extraction should be used to avoid lack of robustness and
reproducibility in the steps of definition, implementation and pre-processing of images of
radiomics features. (2) To build robust and generalizable models, the data can be enlarged
by shearing, rotating or inverting original images.

Also, it is important to check if the data is balanced. When the proportions between
classes are unequal in a classification problem, the data can be severely biased and a
larger sample size may be required for the developed model to be generalizable. Data
balancing techniques that include creating artificial data with algorithms such as the
synthetic minority oversampling technique may be considered [40,78–80]. However, only
a few papers have considered balancing techniques to reduce the unbalanced dataset
problem [23].

In addition to the technical, regulatory and ethical requirements, problems need to
be evaluated. As any big data project requires access to huge data sets, the collection
of critical issues such as patient privacy and informed permission need to be addressed.
This is critical not only by a medico-legal point of view, but also by a “human” point of
view, because, like Coppola et al. [81] stressed, we must not superintend the meaning
of the irreplaceable doctor–patient bond. Connecting doctors and patients directly will
always be an important phase of healthcare services that artificial intelligence can never
replace [2,20,68,102–109].

Among the studies analyzed, none assessed the differences between scanners and
vendor-dependent characteristics, collected images of individuals at additional points in
time, performed calibration statistics, represented a prospective study performed registered
in a study database, conducted an analysis report on the cost-effectiveness of the clinical
application or reported multivariable analysis with also non radiomics features. Seven
studies reached a high score of 17 [9,11,13,36,37,40,54]) and earned additional points by
using validation step considering two datasets from two distinct institutes and open
science and data domains (radiomics features calculated on a set of representative ROIs are
open source).

Our study has some limitations that should be taken into consideration. First, all
studies included in this meta-analysis were retrospective in study design, which was
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subject to selection bias, underscoring the need for prospective validation. Second, in
the absence of direct comparisons between radiomics models and other scoring or non-
radiomics models, it is difficult to draw a conclusion that radiomics models are superior to
other non-radiomics models. However, radiomics studies have had marked heterogeneity
in their workflow. In the future, it will be necessary to establish and promote an imaging
data acquisition protocol, standardize the research workflow, and conduct prospective
multicenter quality control studies. Furthermore, combining radiomics with multiomics
could lead to a breakthrough in the individualized medical treatment of tumors.

5. Conclusions

In conclusion, this research topic has involved many works which have made full use
of radiomics in cancer imaging, but even in this case many aspects regarding the method-
ologies used should be considered. The potential of radiomics is becoming increasingly
established, although there are still several aspects to be evaluated before the transition to
routine clinical practice.

There are several challenges to address, including the need for standardization at all
stages of workflow and the potential for cross-site validation using heterogeneous real-world
datasets. Furthermore, multiple centers and prospective radiomics studies with more samples
that add inter-scanner differences and vendor-dependent characteristics will be needed in
the future, along with collected images of individuals at additional time points, reported
calibration statistics and performed prospective studies registered in a study database.
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