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Abstract: During the last decade, immunotherapy has radically changed perspectives on anti-tumor
treatments. However, solid tumor treatment by immunotherapy has not met expectations. Indeed,
poor clinical response to treatment has highlighted the need to understand and avoid immunotherapy
resistance. Cholangiocarcinoma (CCA) is the second cause of hepatic cancer-related deaths because
of drug inefficacy and chemo-resistance in a majority of patients. Thus, intense research is ongoing
to better understand the mechanisms involved in the chemo-resistance processes. The tumor mi-
croenvironment (TME) may be involved in tumor therapy resistance by limiting drug access. Indeed,
cells such as cancer-associated fibroblasts (CAFs) alter TME by producing in excess an aberrant
extracellular matrix (ECM). Interestingly, CAFs are the dominant stromal component in CCA that
secrete large amounts of stiff ECM. Stiff ECM could contribute to immune exclusion by limiting
anti-tumor T-cells drop-in. Herein, we summarize features, functions, and interactions among CAFs,
tumor-associated ECM, and immune cells in TME. Moreover, we discuss the strategies targeting
CAFs and the remodeling of the ECM to improve immunotherapy and drug therapies.
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1. Introduction

Cholangiocarcinoma [1], a biliary tract cancer, is the second most common cause of
hepatic cancer-related deaths. CCA is characterized by an increasing annual incidence and
an unsatisfactory treatment outcome. Indeed, a considerable fraction of patients under
systemic chemotherapy for advanced unresectable CCA fails to respond to treatment [2],
leading to a poor prognosis with a five-year overall survival rate of less than 30% [3,4].
Thus, a better understanding of the cellular and molecular mechanisms leading to drug
resistance is urgently needed to develop more effective treatments against CCA.

The tumor microenvironment (TME) plays a central role in tumor development and
progression. During tumor progression, TME undergoes profound changes that give rise
to increased extracellular matrix (ECM) deposition and altered tissue architecture [5]. The
latter changes may elicit modifications leading to a resistant tumor status [6,7]. Cancer-
associated fibroblasts (CAFs), the main stromal cell types within the TME [8–10], play a
key role in secreting multiple cytokines, chemokines, and soluble factors. CAFs thus have a
role in modifying TME and controlling drug access to the tumor [11–13]. Notably, CCA
presents itself with a high amount of ECM and number of CAFs and is thus the prototype
of a tumor containing a stiff desmoplastic stroma [2,14].

In recent years, interest has grown regarding the role of the ECM and CAFs in TME
and tumor development. High throughput technologies and mechano-immunology have
allowed deciphering the role of CAFs and their secreted ECM in modulating the immune
system in several tumors. The features of tumor-associated immune cells and ECM are
more and more thoroughly investigated for their implications regarding drug resistance,
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immunotherapy resistance, and anti-tumoral immunity. Indeed, biochemical interactions
between some ECM components and immune cells, such as T-cells, macrophages, and
myeloid-derived suppressor cells (MDSCs), can occur via specific cell surface receptors,
such as CD44, RHAMM (CD168) [15], and DDR1 [16]. Therefore, the increased deposition of
an altered ECM can offer physical and biochemical protection against immune surveillance.

The impact of CAFs on tumor progression, drug delivery, and effectiveness has
been linked to the production of large amounts of altered ECM [17]. Furthermore, CAFs
modulate liver stiffness [18,19] by dysregulating collagen turnover [20] and its cross-linking
in the extracellular space. The spilling of ECM components in the extracellular space
provides migration cues to tumor cells [21,22]. Once a desmoplastic microenvironment
is established by CAFs, epithelial tumor cells can contribute to matrix deposition at later
stages of tumor progression [23]. In CCA, IGF2/IGFR1/IR CAFs-activated axis was recently
outlined by our team as a pathway involved in tumor cell plasticity, desmoplastic reaction,
and resistance to anti-EGFR therapy [11]. Modification of TME in CCA is further supported
by the evaluation of stiffness by shear wave elastography [24] that indicates that CCA has
a stiffness (57 ± 25 kPa) statistically higher than hepatocellular carcinoma (15 ± 10 kPa)
and tumor-free liver parenchyma (2.5 ± 2.5 kPa). Interestingly, CCA stiffness increases
with tumor progression [25–27]. CCA tissue shows high levels of collagen fibers (i.e.,
COL3A1) [28] and a high collagen reticulation index (CRI), defined as the number of
collagen fiber branches within the entire length of the collagen network. Levels of collagen
fibers and high CRI are associated with poorer overall survival of CCA patients [29]. The
concept aligns with a recent work showing tumor-associated collagen signatures (TACS) as
significant predictors of tumor progression and therapy resistance [30].

Herein, we summarize the features, functions, and interactions of CAFs, tumor-
associated ECM, and immune cells in TME. Moreover, we discuss the therapeutic strategies
based on targeting and remodeling CAFs and ECM for improving immunotherapy and
others tumor therapies.

2. Cancer-Associated Fibroblasts in the Tumor Microenvironment
2.1. CAF Origin

In normal tissues, fibroblasts can be defined as the cell type mainly involved in
maintaining tissue homeostasis. The secretion and deposition of a tissue-specific ECM
support tissue architecture and bioavailability of chemical factors in the microenvironment.
However, fibroblasts and tissue homeostasis are altered in a pathological condition, such as
tumor disease. Within the TME, fibroblast and mesenchymal-like cells result in activating
CAFs that display a myofibroblastic phenotype. Specifically, these activated cells can arise
from local fibroblasts, pericytes, hematopoietic stem cells, adipocytes, and epithelial and
endothelial cells. In addition, CAFs can develop from bone marrow-derived mesenchymal
stem cells (MSCs) recruited to the tumor site for tissue repair [31].

The fibroblast-like cell populations in the hepatic and pancreatic tissues are mainly
represented by hepatic stellate cells (HSCs) and pancreatic stellate cells (PSCs). In the tumor
context, these populations are another critical source of CAFs, becoming activated and
assuming specific features [32,33].

Given the considerable origin heterogeneity, different CAF subtypes could be present
within the TME. The evaluation and combination of several biomarker expressions and
morphological features have allowed the identification, definition, and isolation of CAFs.
Specifically, the CAF population isolated from tumor tissue should be negative for the
expression of non-mesenchymal biomarkers (such as EpCAM or CD45). Moreover, CAFs
should display a positive expression for mesenchymal biomarkers, such as vimentin, alpha-
smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and platelet-derived
growth factor alpha/beta (PDGFα/β) [34,35]. The expression of these specific CAF markers
has been associated with poor clinical prognosis in various cancer types [31]. That is why
in recent years, several researchers have focused on the mesenchymal cells within the
TME. In this context, novel high-throughput technologies (such as single-cell RNA sequenc-
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ing (scRNA-seq), multicolor flow cytometry, and multiplex immunofluorescence) have
enhanced the definition of biomarkers panels broadly recognized as expressed by CAFs.

Therefore, a better understanding of the CAFs expression profile could help the identifi-
cation of specific subtypes enriched in different tumors and open new therapeutic frontiers.

2.2. CAF Subtypes and Biomarkers

As previously described, CAFs are heterogeneous. The heterogeneity is also well
reflected in spatial localization within the TME, partly explaining the tumor heterogene-
ity [36–38]. Different CAF subtypes have been identified in tumors from various origins in
the last decade.

In PDAC, two spatially and functionally distinct CAF subsets have been identified
and characterized [32]. A myofibroblastic CAF subtype (myCAF) was identified within
the peri-glandular region in proximity to tumor foci. The myCAFs are αSMAhi positive,
express low levels of inflammatory mediators, and are functionally specialized in stromal
remodeling functions. An inflammatory CAF subtype (iCAF) was also identified and
localized distant from the tumor cells. The iCAF expresses αSMAlow and high levels of
inflammatory mediators (i.e., IL-1, IL-6, IL-11, LIF, and CXCL-1). The appearance of one of
the two functional phenotypes occurs by the alternative and balanced expression of IL-1
Receptor type 1 with TGFβ (pro-myCAF) or IL-1/JAK/STAT (pro-iCAF) signaling [39].
Moreover, scRNA-seq allowed the identification of an additional CAF subtype described
as antigen-presenting CAFs (apCAFs). The apCAFs represent a specific subset expressing
the major histocompatibility complex (MHC) class II family genes as well as CD74. The
singular expression profile supports an immunomodulatory role of apCAFs enabling the
activation of and interaction with CD4+ T-cells [40].

In breast (BC) and ovarian (OC) cancers [8,41], four different CAF subtypes (CAF-
S1 to CAF-S4) have been identified. The subset of myCAF (CAF-S1, CD29med FAPhi

FSP-1low-hi αSMAhi PDGFRβmed-hi CAV-1low) was localized close to tumor foci and dis-
played stromal remodeling functions and inflammatory activities (CCL-11, CXCL-12,
CXCL-13, CXCL-14) [8]. Another myCAF subset (CAF-S4, CD29hi FAPneg-low FSP-1low-med

αSMAhi PDGFRβlow-med CAV-1low) was located in tumor foci and characterized by a
perivascular signature [8]. In aggressive breast cancers (triple negative and HER2) and
metastatic lymph nodes, high levels of CAF-S1 and CAF-S4 subsets have been observed,
highlighting a role in immune suppression and pro-tumoral effect [8]. Remarkably, CAF-S1
and CAF-S4 subsets and biomarkers were validated in several tumors [38,41–43]. The
partial overlapping of the CAF signature within other tumors raises the possibility of
matching features for shared CAF subtypes in similar tumors.

In CCA, the origin and functions of distinct CAF subsets promoting intrahepatic CCA
growth were recently identified. While myCAF and iCAF subsets were identified as derived
from HSCs, a novel identified rare subset, mesothelial CAF (mesCAF), originates from
portal fibroblasts and expresses mesothelial markers (Msln, Upk1b, and Upk3b). Analysis of
iCAF and myCAF subsets originating from CCA, by proteomic validation of scRNA-seq
datasets, identified high expression of HGF and HAS2 (Hyaluronic Acid Synthase 2), re-
spectively [33]. Another analysis by scRNA-seq revealed five distinct fibroblast subtypes
(from 0 to 4) in human intrahepatic CCA, partially overlapped with myCAF, iCAF, ap-
CAF, and mesCAF subsets. In addition, the tumor core and microvascular regions were
found to be mainly infiltrated by vascular CAFs (vCAFs), a CD146+ population expressing
IL-6/STAT3 signaling [44] (Figure 1 and Table 1). In another study, identifying distinct
CAF subsets linked to different immune infiltration in human CCA has highlighted a
novel possibility for patient stratification based on TME features. The four identified CCA
subgroups are defined by a spectrum of immune and TME signatures from the immune
desert (I1) to a slight immune infiltration (I2), up to the infiltration of myeloid (I3) and
mesenchymal (I4) cells [45]. Through this classification, the therapeutic effectiveness and
strategy are correlated and designed for the more complex TME, taking another step toward
personalized medicine [46].
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Figure 1. Overview of cholangiocarcinoma microenvironment and the main cancer-associated
fibroblast subsets.

Table 1. Summary of CAF subsets and their markers found in different tumors.

Tumor CAF Subset Markers Ref.

CCA

myCAF SerpinF1+; POSTN+; VCAN+; Col15A1+; HAS2+

[33]iCAF CXCL12+; HGF+; IL6+

mesCAF MSLN+; KRT19+; UPK1B+

CCA

myCAF αSMA+; PDGFRβ+; FN1+; POSTN+

[44]
iCAF αSMA+; PDGFRβ+; Saa1+; FBLB1+

apCAF αSMA+; PDGFRβ+; CD74+; MHCII+; CXCL12+

vCAF αSMA+; PDGFRβ+; IL-6+; CD146+

PDAC
myCAF FAP+ αSMAhi; IL-6low

[32]
iCAF FAP+ αSMAlow; IL-6hi; PDGFRβ+

PDAC

myCAF PDGFRαlow; αSMA+; CD90+

[40]iCAF PDGFRαhi; HAS1+; CXCL12+; IL-6+; CCL2+; Ly6C+

apCAF CD74+; Saa3+; MHCII+

BC

CAF-S1 CD29med; FAPhi; FSP-1low-hi; αSMAhi; PDGFRβmed-hi; CAV-1low; CCL2+;
CCL11+; CXCL12+; CXCL14; CD73+; DPP4+

[8]
CAF-S2 CD29low; FAPneg; FSP-1neg-low; αSMAneg; PDGFRβneg; CAV-1neg

CAF-S3 CD29med; FAPneg; FSP-1med-hi; αSMAneg-low; PDGFRβmed; CAV-1neg-low

CAF-S4 CD29hi; FAPneg-low; FSP-1low-med; αSMAhi; PDGFRβlow-med; CAV-1low;
CCL2+; CXCL12+; CXCL14+

OC

CAF-S1 CD29med-hi; FAPhi; FSP-1med-hi; αSMAmed-hi; PDGFRβmed-hi; CAV-1low

[41]
CAF-S2 CD29low; FAPneg; FSP-1neg-low; αSMAneg-low; PDGFRβneg-low; CAV-1neg

CAF-S3 CD29med; FAPlow; FSP-1med-hi; αSMAlow; PDGFRβmed; CAV-1neg-low

CAF-S4 CD29hi; FAPlow; FSP-1hi; αSMAhi; PDGFRβmed-hi; CAV-1neg-low
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2.3. CAF Activated Signaling and Targeted Therapy

Therefore, CAF subsets are differently located within the TME. The localization is
essential in establishing specific interactions and signals with the other cells in the TME.
In addition to the paracrine signaling, many growth factors and cytokines secreted by
CAFs are involved in maintaining and differentiating CAF subsets [47], together with
a tumor-specific ECM [48]. Indeed, CAFs secretome is heterogeneous and may result
from a balance in autocrine and paracrine signaling. Among them, an important role
is undoubtedly associated with the TGFβ superfamily members known to induce a pro-
tumorigenic phenotype in fibroblasts in several tumors [49,50]. Likewise, activin A is
essential for the secretion of ECM components, regulators, and other soluble factors via
SMAD2 signaling [51]. Therefore, the different signaling activated could be able to define
the expression of various markers and phenotypical features of several CAF subtypes.
Moreover, activating pathways involved in the secretion and deposition of ECM enhanced
the remodeling of the TME.

Within the TME, the dynamic interactions between the different cell types and the ECM
modulate and support tumor progression. In particular, these interactions limit the response
to anti-tumor therapies [52] and provide a protective barrier against immunosurveillance
together with the diffusion of anti-tumor factors [53]. Indeed, CAFs communicate with
tumor-infiltrating immune cells to drive an immunosuppressive microenvironment [6,8,32].
CAFs also strongly contribute to generating and maintaining an immune-suppressed
microenvironment by secreting WNT-2, a suppressor in differentiating and activating
dendritic cells [54]. Furthermore, the drop-in of the anti-tumor T-cells and their contact
with tumor cells is hampered by a stiff TME contributing to immune exclusion [16,55,56].

The targeted therapies aimed at remodeling the TME have shown promising results
in CCA. Navitoclax, an inhibitor of Bcl-XL/Bcl-2 proteins, triggers cell death. However,
tumor cells can develop resistance to navitoclax by increasing the expression of Mcl-1, an
anti-apoptotic factor. Yet, observing that CAFs are sensitive to navitoclax has opened novel
approaches for tumor therapy in CCA. Indeed, targeting CAFs by navitoclax could be
sufficient to reduce the desmoplastic reaction, ECM deposition, and tumor growth [57]. In
pancreatic cancer, depleting the CAF FAP+ population slowed tumor growth and increased
CD8+ T-cells tumor infiltration [58]. However, clinical trials assessing the FAP-specific
antibody (sibrotuzumab) in metastatic colorectal cancer were not conclusive, failing at
phase II [24]. Furthermore, direct and selective depletion of the CAF αSMA+ population in
pancreatic cancer resulted in poorly differentiated tumors, increased metastatic spreading
and intra-tumoral immunosuppression, leading to decreased survival overall [59]. Taken
together, the latter observations call for the advanced development of new immunothera-
peutic approaches, particularly those addressing vaccination strategies or activation of the
innate immune system [60] (Table 2).

3. Extracellular Matrix in the Tumor Microenvironment
3.1. ECM Composition and Targeting

Therefore, effective treatment and the normalization of the tumor stroma could lead to
beneficial effects for cancer patients. Indeed, the high presence of CAFs in the TME strongly
correlates with a poor patient prognosis in numerous cancers [61–63]. CAFs can organize
and remodel the TME by expressing ECM proteins accounting for up to 60% of the tumor
mass [64]. Secretion of tumor-associated ECM molecules leads to significant differences in
amount, composition, and organization compared to the normal tissue’s ECM. The altered
ECM is pointed out by the alternative splicing of genes coding ECM molecules. Observed
alterations impact the establishment of tumor niche, angiogenesis, and immune response,
enhancing tumor resistance [65].

The ECM has been found altered in several tumors in terms of components, deposition,
and modification. Higher collagen deposition is one of the main features of desmoplastic
TME, making the tumor stiffer than healthy tissue [66,67]. Collagen has several isoforms
and is secreted as fibers. Tumor cells can remodel and organize these fibers by generating
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regions of highly aligned collagen fibers [68]. The alignment provides sticky rails for
migrating tumor cells, reducing the energy required for the migration and facilitating
intravasation [69,70]. Patterns of collagen isoform expression can be associated with
poor prognosis in melanoma, breast, ovarian and lung cancers [71–74]. Consistently, the
inhibition of CAF-mediated collagen I synthesis has shown a reduction of tumor growth in
preclinical models [75,76] and phase II trials [77].

Like collagen, proteoglycans (PGs) and glycosaminoglycans (GAGs) are essential
components of ECM. Hyaluronic acid (HA) is a GAG found to be increased in several tu-
mors [78,79]. The reduction of CAF-derived HA deposition by PEGPH20, a hyaluronidase,
resulted in favorable outcomes in a phase II trial [80], but the subsequent phase III was
interrupted for lack of efficacy [81].

The expression profile and deposition of ECM significantly differ among tumors. Thus,
the evaluation of an ECM signature represents a practical and predictive component for
overall and disease-free patient survival [82]. Accordingly, an ECM-based diagnostic tool
could help the patient’s stratification [83], identifying chemo-resistant [84] and immune-
compromised [85] subgroups.

3.2. Extracellular Matrix and the Interaction with the Immune System

In the last decade, immunotherapy has radically changed the treatment for tumor
patients. However, the major obstacle to this successful therapy seems to be the increased
stiffness of tumor ECM, which limits the infiltration rate of both immunomodulatory drugs
and T-lymphocytes, thus hampering contact with tumor cells [86,87]. As a result of the
ECM-rich TME, the accumulation of immunosuppressive factors attracts regulatory T-cells
(T-regs) and polarizes macrophages to an M2 pro-tumoral phenotype [88,89]. As positive
feedback, the enrichment in T-regs and M2 macrophages strengthens the generation of an
immunosuppressive microenvironment. Moreover, this condition could also be triggered
by CAFs. In CCA, FAP-STAT3-CCL2 signaling has been identified in CAFs as sufficient
to induce a deleterious inflammatory program by recruiting MDSCs and triggering an
immunosuppressive TME [90]. Thus, the remodeling of tumoral ECM is recognized mainly
as a crucial factor in controlling immune cell infiltration, differentiation, activation, and
polarization [91,92].

Normalization of the TME can be reached by degrading tumor ECM. In this context,
using collagenase in a pre-clinical lung cancer model led to the disruption of aligned
collagen fibers surrounding the tumor stroma and enhanced T-cell migration [93]. A similar
observation was made in PDAC, where using the PEGH20 hyaluronidase generated small
windows inside the compacted matrix, increasing the efficacy of coupled chemotherapy [17].
In CCA, the disruption of the collagen matrix was complementary to the inhibition of
collagen fibers cross-linking. The less dense and structured ECM boosted the infiltration
and motility of T-cells, increasing the contact between tumor and T-cells, and improving
the efficacy of anti-PD-1 immunotherapy [25].

Apart from biochemical disruption of tumor ECM, physical disruption of TME can
be reached by localized and controlled nano-hyperthermia. Thus, a biophysical approach
to induce the remodeling of tumor stroma may also promote immune surveillance and
improve the success of immunotherapies. In a preclinical model of CCA, the time-limited
light (photothermal therapy) or electromagnetic (magnetothermal therapy) activation of
intratumorally implanted biodegradable gold-iron oxide nanoflowers (GIONFs) nanopar-
ticles showed a significant reduction in tumor stiffness, resulting in CAF depletion and
substantial ECM remodeling [94].
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Table 2. Summary of ECM/CAFs pre-clinical and clinical trials in different tumors.

Tumor Target Drug Clinical Trial Outcomes Ref.

CCA,
PDAC, BC Collagen BAPN + anti-PD-1 Pre-clinical

Reduction of tumor stiffness;
Remodeling of ECM;

Reduction of tumor size;
Increased CD8+ T-cell infiltration

[27]

CCA CAFs Navitoclax Pre-clinical
Depletion of CAFs;

Reduction of tumor size;
Remodeling of ECM

[58]

CCA CAFs αSMA+,
ECM PTT Pre-clinical

Depletion of CAFs;
Reduction of tumor stiffness;

Remodeling of ECM;
Reduction of tumor size

[91]

PDAC HA PEGPH20 +
Gemcitabine Pre-clinical

Depletion of HA;
Inhibition of tumor growth;
Improved overall survival

[17]

PDAC CAFs αSMA+ Depletion +
anti-CTLA-4 Pre-clinical

Depletion of CAFs combined with
anti-CTLA-4;

Reduction of fibrosis;
Improved overall survival

[59]

PDAC CAFs FAP+

Depletion/anti-
CXCR4 +

anti-CTLA-4/anti-
PD-L1

Pre-clinical
Depletion of CAFs/CXCR4 combined with

anti-CTLA-4/anti-PD-L1;
Reduction of tumor size

[60]

PDAC HA PEGPH20 + Nab-
Paclitaxel/Gemcitabine Phase II

Depletion of HA;
Inhibition of tumor growth;
Improved overall survival

[80]

PDAC HA PEGPH20 + Nab-
Paclitaxel/Gemcitabine Phase III

Depletion of HA;
No effects on overall survival;

No effects on progression-free survival
[81]

LAPC CAFs, Collagen Losartan + Folfirinox Phase II Improved overall survival [76]

CRC CAFs FAP+ Sibrotuzumab Phase II No significant remission [26]

OC ECM Losartan Pre-clinical Decreased ECM content [75]

BC CAFs, Collagen Losartan + Dox-L Pre-clinical
Depletion of CAFs;

Reduction of Collagen I;
Inhibition of tumor growth

[76]

LC Collagen Collagenase Pre-clinical Increased CD8+ T-cell infiltration [90]

BC, LC, PC CAFs FAP+ DNA vaccine Pre-clinical

Depletion of FAP+ cells;
Reduction of tumor size;

Improved overall survival;
No effects on prostate cancer

[61]

4. Conclusions

In the last decade, the new high-throughput approaches have boosted a massive
integration of information deriving from different fields, enhancing the knowledge of TME
and stromal remodeling at several levels.

In the context of TME, the balance between secretion and degradation of ECM is
a central component contributing to the physical, mechanical, biochemical, and cellular
features of the tumor. ECM composition and architecture evolve together along with tumor
progression. As the main characters of the stroma, CAFs are the designers and the engineers
of tumor remodeling, promoting tumor growth, regulating the progression of the disease,
and affecting the therapeutic response.
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The complex and diverse ECM is a scaffold with which each cellular component (CAFs,
immune, tumor cells) can interact by specific cell surface receptors, impacting or being
impacted within the interplay of the TME. Moreover, specific ECM and CAF signatures can
have opposing functions in different tumors and stages of tumor progression, indicating
that these signatures cannot be generalized to all tumor types.

As mentioned above, ECM strongly impacts tumor therapeutic resistance, trapping
drugs and hampering T-cell infiltration. Therefore, the efficacy of several ECM-targeted
approaches is already under evaluation, even if the dual role of ECM as pro- and anti-tumor
complicates the development of ECM-targeted therapies. The recent trials involving ECM
or CAF depletion compromised and worsened patient outcomes. Consequently, a better
understanding of the interplay and modulation dynamics among CAFs, ECM, and immune
cells could favor the development of new strategies for controlling tumoral disease, combi-
nation CAFs or ECM targeting approaches with chemotherapy or immunotherapy. Overall,
these therapeutical interventions could even boost drug delivery and T-cell infiltration in
desmoplastic tumors, improving the beneficial effects and patient survival.
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