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Abstract: Background: Discrimination between benign and atypical lipomatous tumors (ALT) is
important due to potential local complications and recurrence of ALT but can be difficult due to the
often-similar imaging appearance. Using a standardized MRI protocol, this study aimed to rank
established and quantitative MRI features by diagnostic value in the differentiation of benign and
atypical lipomatous tumors and to develop a robust scoring system. Methods: Patients with clinical
or sonographic suspicion of a lipomatous tumor were prospectively and consecutively enrolled from
2015 to 2019 after ethic review board approval. Histology was confirmed for all ALT and 85% of the
benign cases. Twenty-one demographic and morphologic and twenty-three quantitative features
were extracted from a standardized MRI protocol (T1/T2-proton-density-weighting, turbo-inversion
recovery magnitude, T2* multi-echo gradient-echo imaging, qDIXON-Vibe fat-quantification, T1
relaxometry, T1 mapping, diffusion-weighted and post-contrast sequences). A ranking of these
features was generated through a Bayes network analysis with gain-ratio feature evaluation. Results:
Forty-five patients were included in the analysis (mean age, 61.2 ± 14.2 years, 27 women [60.0%]).
The highest-ranked ALT predictors were septation thickness (gain ratio merit [GRM] 0.623 ± 0.025,
p = 0.0055), intra- and peritumoral STIR signal discrepancy (GRM 0.458 ± 0.046, p < 0.0001), orthogo-
nal diameter (GRM 0.554 ± 0.188, p = 0.0013), contrast enhancement (GRM 0.235 ± 0.015, p = 0.0010)
and maximum diameter (GRM 0.221 ± 0.075, p = 0.0009). The quantitative features did not provide a
significant discriminatory value. The highest-ranked predictors were used to generate a five-tiered
score for the identification of ALTs (correct classification rate 95.7% at a cut-off of three positive items,
sensitivity 100.0%, specificity 94.9%, likelihood ratio 19.5). Conclusions: Several single MRI features
have a substantial diagnostic value in the identification of ALT, yet a multiparametric approach by a
simple combination algorithm may support radiologists in the identification of lipomatous tumors in
need for further histological assessment.
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1. Introduction

Lipomatous tumors (LT) are the most common soft tissue neoplasms [1–3] and among
the most common tumors encountered in clinical practice [4,5]. Their lipomatous nature
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can readily be established in most cases by imaging [4]. Still, LT encompass a wide imaging
spectrum ranging from overtly dedifferentiated lesions without imaging features betraying
their lipomatous origin such as dedifferentiated liposarcoma (DDLS) to highly differen-
tiated masses almost indistinguishable from the surrounding fat tissue such as benign
lipomas (BL) or atypical lipomatous tumors (ALT) [1,4]. Especially in the latter group,
distinguishing between benign lipomas and ALT can be challenging for clinicians, radiol-
ogists and pathologists [6]. Nonetheless, this differentiation is essential, as intermediate
lesions can show local recurrence [3,7–9], requiring a reliable initial diagnosis and complete
resection. Magnetic resonance imaging (MRI) is the modality of choice for the evaluation of
lipomatous lesions [10], as high resolution, tissue contrast, and functional tissue properties
provide the reader with a wealth of information. Still, low inter-reader agreement has been
reported [8], as BL and ALT can share imaging features such as the non-adipose content [10].

Several publications have discussed imaging features to reliably differentiate between
BL and ALT, focusing on localization, morphology and MRI signal properties [8,11,12], high-
lighting the diagnostic value of several predictors such as lesion contour, size and contrast
enhancement [10,12] and special sequences such as short-tau inversion recovery (STIR) [13].
Several quantitative MRI sequences such as T2* and relaxometry sequences have seen
application for the evaluation of soft tissue tumors over the last years [14–17]. Still, the low
sensitivity and specificity of the MRI evaluations in ambiguous cases [18] often necessitate
a diagnosis by histopathological examination [8], which has made great diagnostic strides
on the basis of molecular analyses such as MDM2/CDK4 amplification analysis [3,19]. Prior
studies [14–17] on imaging features have relied on conventional statistics reporting of pre-
dictor properties such as sensitivity, specificity and odds ratios (OR), often not reflecting the
multitude of parameters simultaneously weighed by musculoskeletal imaging specialists
during reading [12]. Bayesian approaches allow modeling predictor interactions and yield
weighed rankings, decision trees or complex conditional networks [20].

The purpose of this study was to evaluate a standardized MRI protocol for lipoma-
tous soft tissue tumor assessment including established morphological and quantitative
sequences (T1 mapping and tissue relaxation times), evaluate single predictor performance
and, on the basis of a Bayes network analysis, develop a generalizable and easy-to-follow
score to differentiate benign lipomas from ALT.

2. Materials and Methods
2.1. Approval by the Ethical Review Board

Study approval was granted by the Ethical Review Board of the Medical University
Innsbruck (proposal AN2015-0289 356/4.9).

2.2. Patient Recruitment

The inclusion criteria were as follows: (1) referral for an MRI due to an unknown soft
tissue mass with suspected lipomatous differentiation upon clinical or ultrasonographic
inspection, (2) confirmed soft tissue tumor of lipomatous differentiation according to the
WHO guidelines [21] or lipomatous tumor without imaging changes and tumor board
review after at least twelve months, (3) patient age 18 years or above, (4) read and signed
formal consent. The exclusion criteria were: (1) MRI or contrast agent contraindications,
(2) age below 18 years, (3) pregnancy. The patients were included in a consecutive fashion.
All participants gave their informed written consent after a detailed description of study
protocol deviations from routine imaging, including additional time within the scanner.
No adverse events of any grade occurred.

2.3. Histopathological Analysis

Histopathological analysis was performed by B.Z. (30 years of experience) following
international guidelines. All tissue samples were fixed in a buffered 4% formaldehyde
solution and embedded in paraffin (FFPE) for routine clinical pathological diagnostics
according to diagnostic standards. Preparation of hematoxylin-and-eosin-stained slides as
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the basic gold standard in pathological diagnosis was performed in each case. Automa-
tized immunohistochemistry with the primary antibodies anti-MDM2 (Abcam EPR1450 2),
-CDK4 (Abcam EPR4513-32-7) and -p16 (clone DCS-50, antikoerper-online.de) was con-
ducted on a Ventana Benchmark Ultra. Fluorescence in situ hybridization was performed
on 4 mm thick FFPE tumor slides to evaluate MDM2 amplification (Vysis MDM2/CEP
12 FISH Probe Kit).

2.4. MRI Protocol

MR imaging was performed on a 1.5T whole body MR scanner (MAGNETOM
Avantofit, Siemens Healthcare, Erlangen, Germany). The patients were scanned in supine
position. The receive coils were selected according to the respective body region examined
and always consisted of a matrix of phased-array coil elements. The examination protocol
consisted of the following sequences: (1) turbo inversion recovery magnitude (TIRM),
(2) T1w turbo spin echo sequence without fat suppression before and after contrast agent
application, (3) dual-echo (proton density [PD]/T2w) turbo spin echo sequence for T2
estimation, (4) 3D multi-gradient echo sequence (qDixon-Vibe) with automatic calculation
of proton density fat fraction maps based on a multi-fat-peak model after manual drawing
of the single-slice region of interest (ROI) [22], (5) readout-segmented echo-planar diffusion-
weighted sequence (RESOLVE) with five different b-values (0, 50, 200, 400, 800 s/mm2) and
four diffusion directions (4-scan trace), (6) T1 mapping, (7) 2D multi-echo gradient echo
(meGRE) [23], and (8) T1 VIBE Dixon before and after intravenous gadolinium administra-
tion. The detailed sequence parameters are shown in Table 1.

Table 1. MRI sequence parameters’ details.

STIR T1w
TSE T1w TSE PDw/T2w

TSE
3D qDIXON-

VIBE +
RESOLVE-

DWI T1 Mapping 2D meGRE T1 Vibe
Dixon −/+

Orientation sagittal sagittal axial axial axial 3.9 200 axial

TR (ms) 3350 644 5590 15.8 4370 1.8 1.01–19.05 6.4

TE (ms) 23 11 32/85 2.38/4.76/7.14/
9.52/11.9/14.28 46 4–3700 - 2.39

TI (ms) 160 - - - - none CHESS -

Fat saturation STIR none none none CHESS 1 1 none

Echo
train length 8 6 6 6 18 4 20 2

Flip angle (◦) 90 90 90 4 90 250 × 250 250 × 250 we10

FOV
(mm × mm) # 300 × 300 300 × 300 170 × 170 170 × 143 170 × 170 128 × 64 128 × 128 250 × 250

Acquisition
matrix 512 × 410 640 × 512 384 × 269 128 × 101 88 × 62 128 × 128 128 × 128 256 × 192

Reconstructed
matrix 512 × 410 640 × 512 384 × 269 256 × 202 88 × 88 5.0 10.0 256 × 256

Slice thickness
(mm) 4.0 4.0 5.0 3.5 5.0 2.0 × 2.0 × 5.0 2.0 × 2.0 × 10.0 1

Voxel size
(mm × mm
× mm)

0.6 × 0.6 × 4.0 0.5 × 0.5 × 4.0 0.4 × 0.4 × 5.0 0.7 × 0.7 × 3.5 1.9 × 1.9 × 5.0 1 1 1.0 × 1.0 × 1.0

NEX 1 1 1 1 1 1 1

Parallel
imaging mode GRAPPA $ GRAPPA $ GRAPPA $ CAIPIRINHA

* GRAPPA none GRAPPA GRAPPA

Accel. factor 3 3 2 4 2 - 2 3

#—FOV was adjusted according to the respective body region, +—volumetric interpolated breath-hold,
$—GeneRalized Autocalibrating Partial Parallel Acquisition, *—controlled aliasing in parallel imaging results in
higher acceleration.

2.5. Patient Characteristics and Imaging Features

The evaluation of the MR images was performed by 2 experienced radiologists in
consensus (LG: six-year experience in musculoskeletal imaging, BH: eleven-year experience
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in musculoskeletal imaging) in a joint meeting, blinded to all available histological data.
All observations were determined in consensus. Primary measurements were performed in
our institution’s picture archiving and communication system (PACS) application Impax
EE (Agfa, Mortsel, Belgium).

The demographic and lesion parameters included in the analysis are presented in
Supplementary Table S1.

2.6. Gray Value Analysis of T1, T2, T2*, R2* and ADC Maps

A histogram analysis including mean, standard deviation, minimum and maximum
values was performed for T1, T2, T2*, R2* and ADC maps. The fat fractions were calculated
from qDIXON-Vibe sequences.

2.7. Statistics

All data were stored in Microsoft Excel 16.16.21 (Microsoft; Redmond, DC, USA). The
statistical software used were GraphPad Prism 9.0.0 (GraphPad Software LLC; La Jolla, CA,
USA) and WEKA 3.8.4 (University of Waikato; Waikato, New Zealand) [24].

Overall, the tumors were separated into a benign (B) and an atypical lipomatous tumor
(ALT) group.

Depending on group count and distribution, continuous data of both groups were
compared via an unpaired t-test or the Mann–Whitney-U test (in case of non-Gaussian distri-
bution); in case of multiple comparisons, an ordinary one-way ANOVA with a Holm–Sidak
correction or the Kruskal–Wallis test with Dunn’s post-test (in the case of a non-Gaussian
distribution) was performed. Normality was assessed by the Kolmogorov–Smirnov test. If
possible, a logarithmic transformation was performed to achieve normality for variables
with a non-Gaussian distribution. The categorical variables were compared via the Fisher’s
exact test.

Invalid or missing data were discharged from further analysis, and no imputation
techniques for missing data were applied. Statistical significance was considered when the
p-value was <0.05.

To assess the correlation between imaging features and lesion differentiation (B vs. ALT), a
Bayes network analysis with a 30-fold cross-validation was used. The model results include
correct classification rate (CCR), mean absolute error (MAE) and weighted average for the
true positive rate (TPavg), false positive rate (FPavg), precision (Pavg) and receiver-operator
characteristics (ROC) area under the curve (AUC). To generate a predictor ranking, the gain
ratio feature evaluation with a ranker algorithm was used within WEKA. The predictor
results included gain ratio, ALT rates and odds ratios (OR) including 95% confidence
intervals (CI) calculated from contingency tables. In the case of continuous or ordinal
variables, the ideal cut-off was determined using receiver-operating characteristics (ROC)
curves and Youden’s J to convert them into binary variables.

Based on the above analysis, a six-tiered score (ranging from 0 to 5 points) based on
the five highest-ranked predictors was developed to identify atypical lipomatous tumors.
The cut-off values for the continuous variables were determined based on ROC analysis
and Youden’s index. The results are presented as box-plot, ROC-AUC and p-value.

3. Results
3.1. Lesion Characteristics

Overall, 45 patients could be prospectively included from June 2015 to August 2019.
Three participants had to be excluded after histopathological examination revealed a non-
lipomatous tumor. Please refer to Table 2 for demographic information. No difference in
regard to age (61.7 ± 14.1 vs. 57.9 ± 17.2 years, p = 0.546) or female gender (59.0% vs. 66.7%,
p > 0.999) was found between B and ALT patients.
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Table 2. Demographic information.

Overall Benign (B)
Atypical

Lipomatous
Tumors (ALT)

p-Value

Participants [n] 45 39 6 n/a
Age [years] (mean ± SD) 61.2 ± 14.2 61.7 ± 14.1 57.9 ± 17.2 0.546 *

Female sex [n,%] 27 (60.0%) 23 (59.0%) 4 (66.7%) >0.999 §

* unpaired t-test, § Fisher’s exact test.

On average, the tumors had a length of 104.6 ± 54 mm, a width of 64.7 ± 29.5 and a
short-axis diameter of 40.1 ± 22.1 mm. The most frequent lesion locations were the shoulder
(20.9%), chest wall (18.6%) and gluteal/hip region (9.3%), followed by the neck (7.0%);
37.8% of the tumors were located subcutaneously.

In total, 86.7% of the cases were histologically confirmed, with 32 lesions (71.1%)
excised in toto, one open biopsy (2.2%) and six core-needle biopsies (13.3%). All six tumors
diagnosed as ALT were resected in toto. Thirty-nine tumors were classified as benign,
33 after histopathologic confirmation (18.2% CNB [n = 6], 3.0% open biopsy [n = 1], 78.8%
full resection [n = 26]). For six lesions (13.3%), the classification as lipoma was based on
clinical history, unchanged follow-up MRI at least twelve months after the initial diagnosis
and interdisciplinary tumor board agreement.

3.2. Lesion Dimensions

There was no significant difference in regard to minimum (37.6 ± 18.6 vs. 56.3 ± 39.3 mm,
p = 0.149) or maximum (94.3 ± 49.2 vs. 171.2 ± 43.4 mm, p = 0.007) tumor diameters,
yet the benign lesions (166.9 ± 189.3 mL) were significantly smaller in volume than ALT
(648.7 ± 757.8 mL, p = 0.0006) (Figure 1a). Furthermore, sphericity was significantly lower
in benign tumors (1.14 ± 0.11 vs. 1.35 ± 0.42, p = 0.433), while circularity did not differ
significantly (0.75 ± 0.14 vs. 0.66 ± 0.13, p = 0.260) (Figure 1b).
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encountered subfascially (Figure 2a, p = 0.100). Fifty percent of ALT were encountered in 
the thigh or calf, while only a minority of benign tumors was found there (7.7%) (p = 0.037). 
In contrast to border definition, which was sharp in almost all cases (Figure 2b, p = n/a), 
significant lobulation correlated with a higher likelihood of ALT presence (Figure 2c, p = 
0.049). 

Figure 1. Box plots comparisons of (a) maximum/minimum diameters and volume and (b) sphericity
and circularity of benign (B) tumors and atypical lipomatous tumors (ALT).

3.3. Morphology and Descriptive Signal Characteristics

Localization was no significant indicator of lesion differentiation, as subcutaneous
and subfascial localization was as frequent in benign lesions, even though all ALTs were
encountered subfascially (Figure 2a, p = 0.100). Fifty percent of ALT were encountered in
the thigh or calf, while only a minority of benign tumors was found there (7.7%) (p = 0.037).
In contrast to border definition, which was sharp in almost all cases (Figure 2b, p = n/a),
significant lobulation correlated with a higher likelihood of ALT presence (Figure 2c,
p = 0.049).
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Figure 2. Bar plots demonstrating the distribution of (a) localization, (b) border definition and
(c) border contour for benign (B) tumors and atypical lipomatous tumors (ALT).

Cases with atypical septation morphology (thickening, nodularity) were more likely
to be ALT (p = 0.002, Figure 3a), and this was mirrored by a significantly higher maximum
septation thickness in ALT (3.25 ± 2.65 mm vs. 0.80 ± 0.45 mm, p < 0.0001) (Figure 3b).
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Figure 3. Bar plots demonstrating (a) septation morphology compared to surrounding fatty tissue
and (b) maximum septation thickness in benign (B) tumors and atypical lipomatous tumors (ALT).
Outliers are depicted as circles.

Intralesional fluid accumulation patterns as assessed by STIR imaging did not differ
significantly between benign tumors and ALT (p = 0.099, Figure 4a), even though the
absence of intralesional STIR hyperintensity was significantly more likely in benign tumors
(p = 0.009). The perilesional STIR signal was not a significant predictor for ALT differentia-
tion (p = 0.1126, Figure 4b), yet the presence of intralesional STIR hyperintensity without
perilesional STIR signal was highly indicative of ALT presence (p < 0.0001, Figure 4c).
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Figure 4. Comparison of (a) intralesional short-tau inversion recovery (STIR) signal distribution,
(b) presence of surrounding STIR signal and (c) presence of intratumoral signal without surrounding
fluid in benign (B) tumors and atypical lipomatous tumors (ALT).

All ALT lesions showed contrast enhancement, while only a fourth of the B lesions did
so (p = 0.0005, Figure 5a). The contrast enhancement patterns demonstrated a significant
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association with differentiation, with the lack of contrast enhancement indicating benig-
nity, while especially nodular and whole lesion enhancement favored ALT differentiation
(p = 0.005, Figure 5b).
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Furthermore, most ALT exhibited focal, predominantly patchy, ADC alterations, whereas
the majority of benign lesions showed no areas of discernible ADC signal (Figure 5c,d).

3.4. Fat Fraction, T1, T2, T2*, R2* and ADC Maps Analysis

No significant difference in average T1w SI (p = 0.482, Figure 6a) or T2w SI (p = 0.906,
Figure 6b) was encountered, even though the maximum T2 values were significantly higher
for ALT (6.6 ± 1.4 vs. 5.7 ± 0.7 SI, p = 0.015) with an overall higher standard deviation
(3.6 ± 0.7 vs. 2.9 ± 0.7 SI, p = 0.024). The same was true for T2* imaging, with a signifi-
cantly higher standard deviation (1.7 ± 1.1 vs. 0.9 ± 0.6 SI, p = 0.005) and significantly
higher maxima (3.9 ± 1.0 vs. 3.1 ± 0.5 SI, p = 0.005) (Figure 6c), while relaxometry showed
no differing tumor properties (Figure 6d). The average ADC values were significantly
higher for ALT (1039.0 ± 819.9 vs. 487.1 ± 356.3 mm2/s, p = 0.0126), owing to fat suppres-
sion (Figure 6e). There was a significant difference in fat fraction between benign tumors
(90.2 ± 10.6%) and ALT (73.3 ± 30.3, p = 0.012) (Figure 6f).

3.5. Predictor Ranking

A Bayes network predictor analysis with a 30-fold cross validation showed CCR of
91.1%, MAE of 0.1037, TPavg of 91.1%, FPavg of 15.5%, Pavg of 92.7% and ROC AUC of 0.893.
The predictor ranking according to gain ratio merit can be found in Table 3.
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Figure 6. (a) Comparison of T1w, (b) T2w, (c) T2*, (d) R2* and (e) ADC signal intensity values as well
as (f) fat fractions for benign (B) tumors and atypical (ALT) lipomatous tumors (ALT). Outliers are
depicted as circles.

Based on this predictor ranking, a score based on maximum (cut-off 125.5 mm) and
orthogonal second-largest diameter (cut-off 39.5 mm), contrast enhancement, maximum
septation thickness (cut-off 1.3 mm) and intratumoral fluid accumulation without surround-
ing fluid was developed. The benign lesions showed a significantly lower average score
of 1.4 (95% CI 1.1 to 1.7) compared to the ALT score of 4.3 (95% CI 3.5 to 5.2; p < 0.0001)
(Figure 7a) for ROC AUC of 0.99 (p = 0.0001) and opposite distributions of B and ALT
lesions along increasing score numbers (p < 0.0001; Figure 7b). The correct classification
rate at a cut-off of 3 or greater was 95.7% (sensitivity, 100.0 [61.0 to 100.0%], specificity,
94.9 [83.1 to 99.1%], likelihood ratio, 19.5).



Curr. Oncol. 2023, 30 3323

Table 3. Gain-ratio merit predictor ranking for ALT differentiation in lipomatous tumors (absolute values in parentheses).

Predictor Avg. Rank Gain Ratio Merit Lipoma ALT Sensitivity (%) Specificity (%) PPV $ NPV $ p-Value $

Septation thickness (cut-off 1.3 mm) 1.6 ± 0.49 0.623 ± 0.025 0.8 ± 0.4 mm 3.3 ± 2.6 mm 90.0
[77.0 to 96.0]

66.7
[30.0 to 94.1]

94.7
[82.7 to 99.1]

50.0
[21.5 to 78.5] 0.0055

STIR discrepancy (intralesional vs. surrounding) 3.0 ± 0.37 0.458 ± 0.046 5.1% (2) 83.3% (5) 95.0
[83.5 to 99.1]

83.3
[43.7 to 99.2]

97.4
[86.8 to 99.9]

71.4
[35.9 to 94.9] <0.0001

Size (Y) (cut-off 39.5 mm) 3.0 ± 5.02 0.554 ± 0.188 37.6 ± 18.1 mm 56.3 ± 39.3 mm 95.0
[83.5 to 99.1]

66.7
[30.0 to 94.1]

95.0
[83.5 to 99.1]

66.7
[30.0 to 94.1] 0.0013

Contrast enhancement [yes/no] 4.8 ± 0.72 0.235 ± 0.015 25.6% (10) 100.0% (6) 74.4
[58.9 to 85.4]

100.0
[61.0 to 100.0]

100.0
[88.3 to 100.0]

37.5
[18.5 to 61.4] 0.0010

Size (X) (cut-off 125.5 mm) 5.5 ± 3.53 0.221 ± 0.075 94.3 ± 49.2 mm 171.2 ± 43.4 mm 75.0
[59.8 to 85.8]

100.0
[61.0 to 100.0]

100.0
[88.7 to 100.0]

37.5
[18.5 to 61.4] 0.0009

Differing septation morphology 6.4 ± 0.99 0.168 ± 0.026 12.8% (5) 66.7% (4) 87.5
[73.9 to 94.5]

66.7
[30.0 to 94.1]

94.6
[82.3 to 99.0]

44.4
[18.9 to 73.3] 0.0095

Contrast enhancement pattern (patchy, nodular,
whole lesion) 6.9 ± 0.85 0.158 ± 0.012 12.8% (5) 66.7% (4) 72.5

[57.2 to 83.9]
100.0

[61.0 to 100.0]
100.0

[88.3 to 100.0]
35.3

[17.3 to 58.7] 0.0013

ADC pattern 7.6 ± 0.91 0.155 ± 0.019 23.1% (9) 83.3% (5) 75.0
[59.8 to 85.8]

100.0
[61.0 to 100.0]

100.0
[88.7 to 100.0]

37.5
[18.5 to 61.4] 0.0009

Subfascial localization 9.1 ± 0.6 0.099 ± 0.006 53.9% (21) 100.0% (6) 75.0
[59.8 to 85.8]

100.0
[61.0 to 100.0]

100.0
[887 to 100.0]

37.5
[18.5 to 61.4] 0.0009

Region (thigh/calf) 10.6 ± 0.99 0.084 ± 0.006 7.7% (3) 50.0% (3) 90.0
[77.0 to 96.0]

50.0
[18.8 to 81.2]

92.3
[79.7 to 97.4]

42.9
[15.8 to 75.0] 0.0370

$ based on Fisher’s exact test.
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ance of a potentially painful or debilitating procedures and cost-effectiveness in the diag-
nosis of soft tissue tumors [17]. Following a multivariate analysis approach, high tumor 
volume, atypical septation, septation thickness greater 1.3 mm, discrepancy of intra-
tumoral STIR without surrounding fluid signal, contrast enhancement and ADC altera-
tions were all indicative of ALT. These findings could mostly be confirmed via a Bayes 
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thickness, intra-tumoral without peritumoral STIR signal, presence of contrast enhancement and ADC
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4. Discussion

In this prospective study, we could demonstrate the diagnostic value of several predic-
tors for the differentiation of benign and atypical lipomatous tumors. As described before,
the advantages of an imaging-guided approach are low complication rates, avoidance of
a potentially painful or debilitating procedures and cost-effectiveness in the diagnosis of
soft tissue tumors [17]. Following a multivariate analysis approach, high tumor volume,
atypical septation, septation thickness greater 1.3 mm, discrepancy of intratumoral STIR
without surrounding fluid signal, contrast enhancement and ADC alterations were all in-
dicative of ALT. These findings could mostly be confirmed via a Bayes network analysis. A
simple algorithm based on the top five predictors to identify ALT demonstrated significant
diagnostic accuracy.

Age and gender did not differ between tumor subtypes. There were several predictors
aiding in the differentiation of benign tumors from atypical lipomatous tumors, as described
before [4,8,18], some reaching high positive and negative predictive values. In general,
even the top 10-ranked predictors offered moderate negative predictive values, and only
intralesional/surrounding STIR signal mismatch reached a sensitivity above 70%.

In general, ALT tend to be larger concerning their maximum and minimum diame-
ters, and even though not reaching statistical significance in a multivariate analysis, the
maximum and orthogonal second-largest tumor diameters ranked among the top five
predictors in the differentiation when following a Bayes approach. We arrived at a cut-
off of 125 mm for tumor length, similar to previous findings, that placed the cut-off at
130 mm [25]. Conversely, while the ALT volumes were significantly greater than those of
benign lesions, this predictor ranked comparatively low. Similar to a previous report on
soft tissue tumors [26], tumor sphericity was significantly higher for ALTs, yet ranked not
very high overall. Notably, when compared to other previous reports [8,13], the tumors in
our cohort were moderately sized and more often encountered superficially. Tumors of the
calf or thigh were more likely to constitute ALT, in line with the literature [12].

A lower fat fraction was also correlated with ALT differentiation, in line with a higher
cellularity and higher fibrous content in those subtypes [14]. Fat necrosis may mimic such
alterations, though [27]. Still, fat fraction assessment ranked only moderately high after
Bayes analysis.

In contrast to recently published findings [8], contrast enhancement was a relevant
predictor of ALT differentiation even after a Bayes analysis, more in line with other studies
on the topic [12,14,25]. The presence of contrast uptake alone was strongly suggestive, as
were nodular or heterogeneous whole-lesion enhancement patterns, underlining the role
of VEGF-based neoangiogenesis in ALTs [28]. An intralesional STIR signal corresponding
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to tissue water content did not identify ALTs, neither did the presence of surrounding
fluid. A combination of both elements—intralesional without a surrounding STIR signal—
though, demonstrated high sensitivity and specificity for ALT, similar to a previous study
by Donners et al. [13]. Benign lipomas may mimic well-differentiated liposarcoma in certain
cases, with signal increase after fat suppression, especially in case of traumatization or
fat necrosis [12,29]. Our data suggest that a combinatory assessment of the intra- and
peritumoral space could reduce the number of false positives in that regard (Figure 8).
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Figure 8. Examples of a benign (BL, upper row) and an atypical lipomatous tumor (ALT, lower row) 
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weighted (3rd column) images, ADC maps (4th column) and T1 VIBE Dixon images after 

Figure 8. Examples of a benign (BL, (upper row)) and an atypical lipomatous tumor (ALT,
(lower row)) in T1-weighted (1st column), short-tau inversion recovery T1-weighted (2nd column),
diffusion-weighted (3rd column) images, ADC maps (4th column) and T1 VIBE Dixon images after
intravenous contrast administration (5th column). Both tumors are predominantly composed of fat,
yet the larger ALT shows intratumoral areas of patchy T1w signal decrease, STIR signal increase,
atypical septation and patchy contrast enhancement.

Another ALT hallmark was a visually perceived thickening of septation morphology,
which ranked high in our analysis, as reported before [18]. Septal thickening ranked the
highest in the Bayes network analysis, even at a cut-off of 1.3 mm, a value slightly lower
than reported before [8].

Due to fat saturation, artificially low ADC values were encountered in benign tumors.
ALTs showed higher signal values, most likely resulting from tissue not affected by STIR-
based fat suppression to that degree. Still, a pattern-based approach—considering the
aforementioned peculiarities—proved to be highly specific and substantially sensitive
for ALTs.

As inter-reader discordance in the diagnosis of lipomatous tumors can be significant
even for experienced readers regardless of the plethora of available demographic and
imaging features [8], statistical methods have long been used to identify the relevant
predictors in lipomatous tumors [11]. Bayes-based statistical models calculate complex
probabilistic interdependencies and can reach the performance of experienced readers after
sufficient training [30]. We used a Bayes network analysis to reduce the list of all assessed
predictors to a small number, while retaining significant diagnostic accuracy. By combining
the five predictors that ranked the highest, a simple algorithm based on septal thickening,
STIR signal distribution, contrast enhancement and tumor dimensions was developed. This
algorithm showed a high diagnostic accuracy and should aid radiologists and clinicians in
the MRI assessment of newly diagnosed lipomatous tumors.
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Limitations

There are some limitations to report. Due to consensus reading, no interobserver
correlation was performed. The proposed algorithm cannot further discriminate between
histological subtypes of atypical lipomatous tumors, which still requires specialists in
musculoskeletal radiology. Not all patients underwent full tumor resection, opening the
possibility to core-needle biopsy or open resection sampling errors. The classification as
benign was based on a follow-up of at least twelve months without histological confirmation
in some cases. The benign tumors outweighed the ALT significantly compared to other
studies, with a more even differentiation distribution, most likely due to consecutive
study inclusion in our case—even though, in clinical routine, benign lipomas are also
encountered more commonly. Reading was performed in a consensus fashion, so no data
on interreader agreement can be provided. Given that all features are routinely used or
derive from routinely used MRI parameters, feature robustness can be assumed. A degree
of overfitting may occur in the Bayes network analysis, and our results should be confirmed
in a larger dataset.

5. Conclusions

An intralesional/surrounding STIR signal mismatch appears to be the most robust
single predictor for the presence of an ALT. A generalized multiparametric approach is
able to yield substantial diagnostic accuracy in the differentiation of benign from atypical
lipomatous tumors based on a simple five-tiered algorithm including septal thickening,
contrast enhancement, STIR signal distribution and tumor dimensions.
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