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Abstract: The BRAF V600E mutation and DNA promoter methylation play important roles in
the pathogenesis of thyroid cancer (TC). However, the association of these genetic and epigenetic
alterations is not clear. In this study, using paired tumor and surrounding normal tissue from the same
patients, on a genome-wide scale we tried to identify (a) any association between BRAF mutation and
DNA promoter methylation, and (b) if the molecular findings may provide a basis for therapeutic
intervention. We included 40 patients with TC (female = 28, male = 12) without distant metastasis.
BRAF mutation was present in 18 cases. We identified groups of differentially methylated loci (DML)
that are found in (a) both BRAF mutant and wild type, (b) only in BRAF mutant tumors, and (c) only
in BRAF wild type. BRAF mutation-specific promoter loci were more frequently hypomethylated,
whereas BRAF wild-type-specific loci were more frequently hypermethylated. Common DML were
enriched in cancer-related pathways, including the mismatch repair pathway and Wnt-signaling
pathway. Wild-type-specific DML were enriched in RAS signaling. Methylation status of checkpoint
signaling genes, as well as the T-cell inflamed genes, indicated an opportunity for the potential use of
PDL1 inhibitors in BRAF mutant TC. Our study shows an association between BRAF mutation and
methylation in TC that may have biological significance.
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1. Introduction

Thyroid cancer is the most common malignant tumor of the endocrine system. Differ-
entiated thyroid cancers are subdivided mainly into papillary thyroid cancer (PTC) and
follicular thyroid cancer (FTC); PTC makes up 73.9%, and the follicular variant of papillary
carcinoma (FVPTC) is the most common at 26.1% [1]. Most cases of the differentiated
thyroid cancers have a good prognosis; the 5-year survival rate for thyroid cancer overall
is 98.1% [2]. In a prospective study, after lobectomy in PTC, recurrence was found in
1.1% of patients after a median follow-up of 72 months [3]. Surgical removal (total or
lobectomy depending on clinical evaluation) is the primary treatment for differentiated
thyroid cancers. In differentiated thyroid cancer, the thyrocytes can pick up iodine and that
is the rationale for post-surgical radio ablation with radioactive iodine (RAI) in select cases.
For the RAI-refractory differentiated thyroid cancers, the multikinase or tyrosine kinase
inhibitors may be used [4–8]. The activity of these multikinase inhibitors is not linked to
specific genomic changes and may be related to the anti-angiogenic effects of these drugs.
Some more specific FDA-approved drugs are also available targeting BRAF V600E, RET,
and TRK, and have been reviewed in other papers [4,5,7,8].
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The B-Raf proto-oncogene (BRAF) encodes a cytoplasmic serine/threonine kinase
with a key role in regulating the mitogen-activated protein kinase signal transduction
pathway [9]. The BRAF V600E mutation in exon 15 of the BRAF gene has been studied in
different cancers, including thyroid cancers [9–20]. Induction of the BRAF V600E mutation
in thyroid cells may lead to frequent hypermethylation [21]. In a meta-analysis, the overall
prevalence of the BRAF mutation in thyroid cancer was found to be 45% [22]. BRAF
mutation was found in 61.7% of PTC and in 1.7% of FTC [16]. The prevalence of BRAF
V600E mutation was higher in conventional PTC (51.0%) than in FVPTC (24.1%) and FTC
(1.4%) (p = 0.0001) [23]. In patients with conventional PTC, BRAF V600E mutation was
associated with older age, lymph node and distant metastasis, higher TNM stage, and
recurrences [23]. In a study, BRAF V600E mutations were detected in 43.6% of papillary
thyroid microadenoma and 42.4% of small PTC [18]. Of the mutant papillary thyroid
microadenoma, 54.1% demonstrated aggressive characteristics as compared to 19.4% of
the non-mutant microadenomas (p = 0.010) [18]. In a review article, Ralph P. Tufano et al.
showed PTC recurrence data of 2470 patients from 9 different countries [22]. The risk
ratios in BRAF-mutation-positive patients were 1.93 (p < 0.00001) for PTC recurrence, 1.32
(p < 0.00001) for lymph node metastasis, 1.71 (p < 0.00001) for extra thyroidal extension, and
1.70 (p < 0.00001) for advanced stage [22]. Fine needle aspiration (FNA) biopsy is currently
the best diagnostic tool for thyroid nodules [15], except for indeterminate or suspicious
lesions found in 10–15% of cases, which remains a challenge [24].

DNA methylation, the most widely studied epigenetic mechanism, varies in dif-
ferent cancers, and is notably altered in thyroid cancer [25–32]. Now, the role of DNA
methylation in cancer is being widely studied to determine markers that might guide
treatment. Methylation markers may also detect different subtypes of thyroid cancer and
augment early detection efforts [26]. The cancer genome is typically characterized by
global hypomethylation concomitant with hypermethylation of the CpG island of the
promoter regions associated with different cellular regulatory functions [33]. In recent
years, thyroid cancer treatment is shifting towards personalized approaches to avoid over-
diagnosis, overtreatment, and recurrences [34]. To investigate the methylation changes, a
number of studies were conducted using the candidate gene approach utilizing amplicon
sequencing [35,36], methylation-specific PCR [37–42], or qPCR [43,44]. There are also some
genome-wide methylation studies using microarray on 27K BeadChip [45,46] or 450K
BeadChip [29,47–50]. Methylation is also achieved on a genome-wide level using RRBS se-
quencing [51,52]. There are many genome-wide methylation studies where the fresh frozen
thyroid tissue is used for microarray [29,49,50,53]. Zafon C et al. have summarized the
DNA methylation studies in thyroid cancer [54]. Only a few have addressed the difference
in methylation profiles between BRAF mutant and BRAF wild-type cases.

The BRAF V600E mutation is common in thyroid cancer [13,15,16,18,22,23,25], as is
DNA methylation [25–32]. However, the interaction or association between them is not
well-studied. In this study, we investigate the association of this genetic alteration (somatic
mutation in BRAF V600E) and the epigenetic regulation (DNA promoter methylation) in
the pathogenesis of thyroid cancer and explore the potential use of these molecular changes
in identifying groups of patients for personalized treatment.

2. Materials and Methods

The study included a total of 40 consecutive patients (M = 12, F = 28) with histologically
confirmed diagnosis of thyroid cancer from Bangladesh. Patients did not receive any
radiotherapy or chemotherapy before surgery. Samples were collected from the operating
room immediately after surgical resection. For each patient, one sample was obtained from
the tumor mass, and another sample was taken from the resected, unaffected part of the
thyroid and stored immediately at −86 ◦C. The histopathological diagnosis was carried out
independently by two histopathologists at Bangabandhu Sheikh Mujib Medical University
(BSMMU), Dhaka, Bangladesh. We also abstracted key demographic and clinical data
and tumor characteristics for each patient from hospital medical records. The samples
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were shipped on dry ice to the molecular genomics lab at the University of Chicago for
subsequent DNA extraction and Methylation array.

2.1. DNA Extraction

DNA was extracted from fresh frozen tissue using the Gentra Puregene kit (Catalog#
158689, QIAGEN, Valencia, CA, USA). Quality control (QC) was performed for all samples
using the Nanodrop 1000.

2.2. Genome-Wide Methylation Assay

The Infinium Human Methylation 450K BeadChip array was used to examine genome-
wide DNA methylation (Illumina, San Diego, CA, USA). The methylation assay covered
a total of 485,577 loci across the genome, of which 150,254 are on CpG island, 112,067
are on shore (0–2 kb from CpG island), 47,144 are on shelf (2–4 kb from CpG island) and
the remaining 176,112 are in the deep sea (>4 kb from the CpG island). We excluded all
the markers in sex chromosomes. The cross-tabulation of the methylation markers in the
autosomes by functional group and in relation to CpG island is shown in Supplementary
Table S1. In this study, we focused only on the promoter-associated markers in the CpG
islands. For bisulfite conversion, EZ DNA methylation kit (Catalog# D5001, Zymo Research,
CA, USA) was used. Paired samples (thyroid cancer and corresponding normal) were
processed on the same chip at the same time to avoid the batch effect. The Illumina protocol
was followed for the methylation assay. A Tecan Evo robot was used for automated sample
processing and the chips were scanned on a single Illumina HiScan. Genome Studio version
V2011.1 methylation module was used for data extraction.

2.3. BRAF and KRAS Mutation

Tumor and adjacent healthy thyroid tissue from 40 patients were tested for BRAF exon
15p.V600E mutation and KRAS (rs112445441) mutation by high-resolution melt analysis. We
utilized the primers used previously by Gonzalez-Bosquet Jesus et al. [55]. Thermocycling
and melting conditions were optimized for CFX96 instrument, and Bio-Rad Precision
Melt Analysis software was used to identify BRAF positivity by differential melting curve
characteristics.

3. Statistical Analysis

To compare the continuous variables (e.g., number of detected loci/samples or average
signal intensity/average beta value etc. between the two groups), we used one-way analysis
of variance (ANOVA).

Genome-wide Methylation data analysis: For measuring methylation, we used the
Illumina Genome Studio software to generate the beta value for each locus from the in-
tensity of methylated and unmethylated probes. The beta was calculated as (intensity
of methylated probe)/(intensity of methylated probe + intensity of unmethylated probe).
Hence, beta ranged between 0 (least methylated) and 1 (most methylated) and was propor-
tional to the degree of methylated state of any particular loci. The beta values were exported
to PARTEK Genomic Suite (https://www.partek.com/partek-genomics-suite/, accessed
on 14 November 2022) for further statistical analyses. Principal component analysis (PCA)
and sample histograms were checked as a part of the quality control analyses of the data.
Mixed-model multi-way ANOVA (which allows for more than one ANOVA factor to be en-
tered in each model) was used to compare the individual CpG loci methylation data across
different groups. In general, “tissue” (tumor/adjacent normal) and sex (male/female)
were used as categorical variables with fixed effect, since the levels “tumor/normal”and
“male/female”, represented all conditions of interest; whereas “case ID#” (as proxy of
inter-person variation) was treated as a categorical variable with random effect, since the
person ID was only a random sample of all the levels of that factor. Method of moments
estimation was used to obtain estimates of variance components for mixed models [56]. As
per the study design, we processed both the thyroid cancer tissue and the corresponding
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adjacent normal sample from one individual in the same chip, and all the chips required
to run the samples were run in a single batch to avoid batch effect. In the ANOVA model,
the beta-value for the CpG loci was used as the response variable, and “tissue” (tumor or
normal), case ID#, and “sex” were entered as ANOVA factors. One example of a model is
as follows:

Yijlm = µ + Tissuei + Sexj+ CaseIDl+ εijklm

where Yijlm represents the m-th observation on the i-th Tissue j-th Sex, l-th CaseID, µ is the
common effect for the whole experiment, and εijlm represents the random error present in
the m-th observation on the i-th Tissue j-th Sex l-th CaseID. The errors εijlm are assumed to
be normally and independently distributed with mean 0 and standard deviation δ for all
measurements.

In GO enrichment analysis, we tested whether the genes found to be differentially
methylated fell into a Gene Ontology category more often than expected by chance. We used
the chi-square test to compare “number of significant genes from a given category/total
number of significant genes” vs. “number of genes on chip in that category/total number
of genes on the microarray chip”. A negative log of the p-value for this test was used as the
enrichment score. Therefore, a GO group with a high enrichment score represented a lead
functional group. The enrichment scores were analyzed in a hierarchical visualization and
in tabular form.

In addition to looking at differential methylation at the level of individual CpG loci,
we also examined differential methylation of a group of genes (gene set) using gene set
ANOVA. Gene set ANOVA is a mixed-model ANOVA to test the methylation of a set
of genes (sharing the same category) instead of an individual gene in different groups
(https://www.partek.com/partek-genomics-suite/, accessed on 14 December 2022). The
analysis is performed at the gene level, but the result is expressed at the level of the gene-set
category by averaging the member genes’ results. The equation for the model was:

Model: Y = µ + T + P+G + S(T*P) + ε

where Y represents the methylation status of a Gene set-category, µ is the common effect
or average methylation of the Gene set-category, T is the tissue-to-tissue (tumor/healthy)
effect, P is the patient-to-patient effect, G is the gene-to-gene effect (differential methylation
of genes within the GO-category independent of tissue types), S(T*P) is the sample-to-
sample effect (this is a random effect, and nested in tissue and patient), and ε represents
the random error.

The characteristics of the thyroid cancer patients for this study (see Table 1) showed
the majority of them had PTC (n = 29), followed by FVPTC (n = 7), and FTC (n = 4). A
photomicrograph of each type is presented in Supplementary Figure S1. Patients with FTC
were significantly older (age 55 years SD 7.07) than those with FVPTC (age 31.14 SD 8.47) or
with PTC (age 35.89 years SD 15.41) (ANOVA p = 0.026). We did not have any patients with
anaplastic carcinoma. Tumor size was larger in FTC (5.25 cm SD 2.87) compared to FVPTC
(2.43 cm SD 1.90) or PTC (2.14 cm SD 0.95). BRAF V600E mutation was present in 18 (45%)
cases. KRAS (rs112445441) mutation was not found in any of these tumors. Similarly to
other studies, BRAF mutation was more common in PTC (55.2%) than FVPTC (28.6%), but
the difference was not statistically significant (p = 0.40, Fisher’s exact test). None of the FTC
patients had BRAF mutation.

https://www.partek.com/partek-genomics-suite/
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Table 1. Characteristics of the patients.

Characteristics Category BRAF Mutation BRAF Wild p-Value

Sex
Female 13 15 1
Male 5 7

Age Mean 38.56 35.68 0.395
SD 15.58 14.42

Pathology
PTC 16 13 0.072

FVPTC 2 5
FTC 0 4

Cervical lymph node Absent 12 15 1
Present 6 7

Surgical procedure Lobectomy 2 6 0.258
Total

thyroidectomy 16 16

Tumor size (cm)
Mean 2.11 2.82 0.54

SD 1.16 1.92
Duration of illness

(months)
Mean 7.33 7.23 0.854

SD 2.51 2.6

3.1. DNA Promoter Methylation in Thyroid Cancer

We used paired (tumor and surrounding healthy thyroid tissues from the same indi-
vidual) DNA samples to identify the differentially methylated loci (DML) in thyroid cancer.
The magnitude of differential methylation (delta beta = beta value in tumor tissue—beta
value in healthy thyroid tissue) may be different in the presence or absence of BRAF mu-
tation. To identify DML for which the delta beta is statistically different in patients with
or without BRAF mutation, we used an interaction term “tumor × BRAF mutation” in the
ANOVA models. The p-values of this interaction term indicated that there were 4058 such
DML in the promoter regions where the magnitudes of differential methylation were signif-
icantly different in BRAF mutant patients compared to BRAF wild-type patients. Examples
from these loci with significant interaction p values are shown in Figure 1A,B. Figure 1A
shows an example where the magnitude of differential methylation (hypomethylation) of
NHLRC4 gene in tumor tissue is greater in the presence of BRAF mutation compared to wild-
type patients. Figure 1B shows an example when the magnitude of differential methylation
of the DDAH2 gene (hypermethylation) is greater in BRAF wild-type tumor tissue.
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In the next step, we analyzed the methylation data in BRAF mutant and in BRAF
wild-type patients separately to identify DML in these two groups of patients. In the BRAF
mutant group, there were 185 DML that were significant at FDR 0.05 level (see Figure 2A,B).
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In patients without BRAF mutation, there were 247 DML that were significant at FDR
0.05 level (see Figure 2C,D).

Figure 3 shows the overlap of these three lists of DML. Using the intersections of the
Venn diagram, we identified the following three groups of DML:

1. DML (n = 51) common to BRAF mutation and wild type: These loci were differentially
methylated in tumor tissue compared to healthy tissue, irrespective of BRAF mutation
status, and the magnitude of the differential methylation was not different between
BRAF mutant and wild-type tumors. Of these 51 DML, 34 were hypomethylated
and 17 were hypermethylated in tumor tissue compared to corresponding normal
thyroid tissue. An example of this group is shown in Figure 4A. The CCND1 gene was
hypomethylated in both groups. Reasonable separation of tumor and healthy tissue
in the PCA plot using these 51 common loci for all the patients is shown in Figure 4B.

2. BRAF mutation-specific DML (n = 35): These loci were significantly differentially
methylated in tumor tissue only in the presence of BRAF mutation, and the magnitude
of differential methylation was significantly greater than in wild type. Of these
35 DML, 29 were hypomethylated and 6 were hypermethylated in tumor tissue
compared to corresponding normal thyroid tissue (for detail, see Supplementary
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Table S2). An example of this group is shown in Figure 4C. The TNFRSF1B gene
(encoding TNFR2) was hypomethylated in the mutant group, suggesting potential
overexpression of TNFR2 in BRAF mutant tumors. This is an important gene in
terms of therapeutic targeting potential, because TNFR2 is rarely expressed in normal
tissues. Reasonable separation of tumor and healthy tissue in the PCA plot, using
these 35 BRAF mutation-specific loci for patients with BRAF mutation, is shown in
Figure 4D.

3. BRAF wild-type-specific DML (n = 62): These loci are significantly differentially
methylated in tumor tissue only in the absence of BRAF mutation, and the magnitude
of differential methylation is significantly greater than in patients with BRAF mutation.
Of these 62 DML, 20 were hypomethylated and 42 were hypermethylated in tumor
tissue compared to corresponding normal thyroid tissue. An example of this group
is shown in Figure 4E. The REC8 gene is hypermethylated in the BRAF wild-type
group. Reasonable separation of tumor and healthy tissue in the PCA plot, using
these 35 BRAF wild-type-specific loci for patients with wild-type BRAF, is shown in
Figure 4F.
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Figure 4. Three sets of DML in thyroid cancer. Examples of one locus from each set are shown on 
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tumors, where (A) shows an example of this group—CCND1 was significantly hypomethylated in 
tumor tissue compared to normal tissue, and the magnitude of differential methylation in BRAF 
mutant and wild-type was not different (interaction p > 0.05); (B) shows separation of the tumor 
tissue and normal tissue based on these common 51 DML. The middle panel (C,D) represents the 
BRAF mutation-specific 35 DML; the lower panel (E,F) shows the BRAF wild-type-specific 62 
DML. 

The methylation status of these three groups of DML shows that BRAF-mutation-
specific promoter loci were more frequently hypomethylated (29 of 35), whereas BRAF 
wild-type-specific promoter loci were more frequently hypermethylated (42 of 62 DML) 
(p < 0.001, chi square test). GO-Enrichment analysis of the common 51 DML is shown in 
Figure 5, and the data are presented in detail in Supplementary Table S3. The result 
shows that this list of differentially methylated genes was enriched in genes related to a 
number of cancer-related KEGG pathways including mismatch repair pathway, Wnt-
signaling pathway, pathways in cancer, pancreatic cancer, colorectal cancer, breast can-
cer, gastric cancer, and thyroid cancer. In fact, the CCND1, RAC3, and FZD7 genes were 
common in many of these cancer pathways. We observed significant hypomethylation 
of the CCND1 promoter region in thyroid tissue in both BRAF mutant and wild-type 
tumors, indicating potential over-expression of the CCND1 gene in thyroid cancer (see 
Figure 6). However, we did not have gene expression data to confirm that. 
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the left side (ACE), and the PCA plots from all the DML of each set are shown on the right side
(B,D,F). The top panel (A,B) represents the 51 DML common in BRAF mutant and BRAF wild-type
tumors, where (A) shows an example of this group—CCND1 was significantly hypomethylated in
tumor tissue compared to normal tissue, and the magnitude of differential methylation in BRAF
mutant and wild-type was not different (interaction p > 0.05); (B) shows separation of the tumor
tissue and normal tissue based on these common 51 DML. The middle panel (C,D) represents the
BRAF mutation-specific 35 DML; the lower panel (E,F) shows the BRAF wild-type-specific 62 DML.

The methylation status of these three groups of DML shows that BRAF-mutation-
specific promoter loci were more frequently hypomethylated (29 of 35), whereas BRAF
wild-type-specific promoter loci were more frequently hypermethylated (42 of 62 DML)
(p < 0.001, chi square test). GO-Enrichment analysis of the common 51 DML is shown in
Figure 5, and the data are presented in detail in Supplementary Table S3. The result shows
that this list of differentially methylated genes was enriched in genes related to a number
of cancer-related KEGG pathways including mismatch repair pathway, Wnt-signaling
pathway, pathways in cancer, pancreatic cancer, colorectal cancer, breast cancer, gastric
cancer, and thyroid cancer. In fact, the CCND1, RAC3, and FZD7 genes were common in
many of these cancer pathways. We observed significant hypomethylation of the CCND1
promoter region in thyroid tissue in both BRAF mutant and wild-type tumors, indicating
potential over-expression of the CCND1 gene in thyroid cancer (see Figure 6). However, we
did not have gene expression data to confirm that.

We also looked at multiple promoter loci of the CCND1 gene, which is shown in
Figure 6.

GO-enrichment analysis of the list of 35 BRAF mutation-specific DML showed en-
richment of genes related to auto-immune thyroid disease, type 1 diabetes, and human
immunodeficiency virus (see Supplementary Table S4). HLA-E was the key gene. The dif-
ferential methylation of all the probes in the promoter region of HLA-E gene (see Figure 7)
shows that in BRAF mutant patients, HLA-E shows hypomethylation in tumor tissue,
whereas in BRAF wild-type patients, the HLA-E shows slight hypermethylation in tumor
tissue.
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Figure 6. Differential methylation status of all the probes for CCND1 promoter. Differential meth-
ylation in BRAF mutant patients is shown in (A), and the differential methylation in BRAF wild-
type patients is shown in (B). Gene probes are arranged on the x-axis by methylation level, and the 
mean of the beta value is shown on the y-axis. Multiple probes show similar hypomethylation in 
both BRAF mutant and wild-type tumors. 
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GO-enrichment analysis of the list of 62 BRAF wild-type-specific DML showed enrich-
ment of genes related to the Ras signaling pathway (see Supplementary Table S5). RASSF1
is one of the key players (see Figure 8). Differential methylation of RASSF1 in cancer is
demonstrated in other studies [57]. Another interesting enrichment was observed in genes
related to Yersinia infection (ARF6, IRF3, GIT2), which is usually seen with consumption of
unpasteurized milk or raw pork.

We also looked at the methylation status of some genes that have been reported to be
differentially methylated in thyroid cancer in previous studies, as shown in Supplementary
Table S6 [38,57–61]. The differential methylation of these genes in patients with BRAF
mutation and wild type are presented in Supplementary Tables S7 and S8, respectively.
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Figure 7. Differential methylation status of HLA-E. Differential methylation in BRAF mutant pa-
tients is shown in (A), and the differential methylation of BRAF wild-type patients is shown in (B). 
Note that multiple probes were hypomethylated in BRAF mutant tumor and hypermethylated in 
BRAF wild-type tumor. 
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Figure 8. Differential methylation status of RASSF1. Differential methylation in BRAF mutant pa-
tients is shown in (A), and the differential methylation of BRAF wild-type patients is shown in (B). 
Multiple probes were hypermethylated in both groups. However, the overall magnitude was 
slightly higher in wild type. 

We also looked at the methylation status of some genes that have been reported to 
be differentially methylated in thyroid cancer in previous studies, as shown in Supple-
mentary Table S6 [38,57–61]. The differential methylation of these genes in patients with 
BRAF mutation and wild type are presented in Supplementary Tables S7 and S8, respec-
tively. 

In the next step, instead of individual gene probes, we examined whether a set of 
genes (sharing the same category or functional group) was differentially expressed in 
thyroid cancer tissue compared to healthy skin tissue. We used the gene set ANOVA. 

Among the cancer-related gene sets (see Supplementary Table S9 for the list), the 
tumor suppressor genes were overall hypermethylated in both BRAF mutant (ANOVA p 
= 0.006) and BRAF wild-type (ANOVA p = 2.53 × 10−7) patients (see Figure 9), but the 
magnitude of differential methylation was greater in wild type (ANOVA interaction p = 
0.038). This hypermethylation may cause more downregulation of tumor suppressor 
genes in BRAF wild type. 

Figure 7. Differential methylation status of HLA-E. Differential methylation in BRAF mutant patients
is shown in (A), and the differential methylation of BRAF wild-type patients is shown in (B). Note
that multiple probes were hypomethylated in BRAF mutant tumor and hypermethylated in BRAF
wild-type tumor.
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Figure 8. Differential methylation status of RASSF1. Differential methylation in BRAF mutant patients
is shown in (A), and the differential methylation of BRAF wild-type patients is shown in (B). Multiple
probes were hypermethylated in both groups. However, the overall magnitude was slightly higher in
wild type.

In the next step, instead of individual gene probes, we examined whether a set of genes
(sharing the same category or functional group) was differentially expressed in thyroid
cancer tissue compared to healthy skin tissue. We used the gene set ANOVA.

Among the cancer-related gene sets (see Supplementary Table S9 for the list), the tumor
suppressor genes were overall hypermethylated in both BRAF mutant (ANOVA p = 0.006)
and BRAF wild-type (ANOVA p = 2.53 × 10−7) patients (see Figure 9), but the magnitude
of differential methylation was greater in wild type (ANOVA interaction p = 0.038). This
hypermethylation may cause more downregulation of tumor suppressor genes in BRAF
wild type.

Among the DNA damage-related gene set (see Supplementary Table S10 for the list),
the checkpoint signaling genes were hypermethylated in both BRAF mutant (ANOVA
p = 0.0003) and BRAF wild-type (ANOVA p = 4.91 × 10−28) patients (see Figure 10), but
the magnitude of differential methylation was greater in wild type (ANOVA interaction
p = 6.41 × 10−10). This may be important from a therapeutic perspective regarding the
potential efficacy of immune checkpoint inhibitors (ICI).
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in BRAF mutant patients is shown in (A), and the differential methylation of BRAF wild-type pa-
tients is shown in (B). Gene probes are arranged on the x-axis by methylation level, and the mean 
of beta value is shown on the y-axis. For many genes, there were multiple probes on the chip. 
Gene symbols for all gene probes could not be shown on the x-axis. Multiple probes were hyper-
methylated in both groups. However, the overall magnitude was slightly higher in wild type. 

T-cell inflamed gene: This group of genes (see Supplementary Table S11 for the list) 
has been used to predict immunotherapy targeting programmed cell death protein-1 
(PD-1, also known as CD274)) [62,63]. We looked at the differential methylation of these 
genes in our patients to see if they were different by BRAF mutation status (see Figure 
11A,B). We observed that these genes were slightly but significantly hypomethylated in 
patients with BRAF mutation (p = 3.94 × 10−9), whereas in BRAF wild-type patients, these 
genes were hypermethylated (p = 4.45 × 10−7). This may suggest that from a gene expres-
sion point of view (for which we do not have data), these genes may be overexpressed in 

Figure 9. Differential methylation status of tumor suppressor genes. Differential methylation in
BRAF mutant patients is shown in (A), and the differential methylation on BRAF wild-type patients
is shown in (B). Gene probes are arranged on the x-axis by methylation level, and the mean of beta
value is shown on the y-axis. For many genes, there were multiple probes on the chip. Gene symbols
for all of the gene probes could not be shown on the x-axis. Multiple probes were hypermethylated in
both groups. Nevertheless, the overall magnitude was slightly higher in wild type.
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T-cell inflamed gene: This group of genes (see Supplementary Table S11 for the list) has
been used to predict immunotherapy targeting programmed cell death protein-1 (PD-1,
also known as CD274)) [62,63]. We looked at the differential methylation of these genes in
our patients to see if they were different by BRAF mutation status (see Figure 11A,B). We
observed that these genes were slightly but significantly hypomethylated in patients with
BRAF mutation (p = 3.94 × 10−9), whereas in BRAF wild-type patients, these genes were
hypermethylated (p = 4.45 × 10−7). This may suggest that from a gene expression point of
view (for which we do not have data), these genes may be overexpressed in tumor tissue in
the presence of BRAF mutation and may be a better candidate for PDL1 inhibitors.
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Figure 11. Differential methylation status of inflamed T-cell genes. Differential methylation in 
BRAF mutant patients is shown in (A), and the differential methylation of BRAF wild-type pa-
tients is shown in (B). Gene probes are arranged on the x-axis by methylation level, and the mean 
of beta value is shown on the y-axis. For many genes, there were multiple probes on the chip. 
Gene symbols for all gene probes could not be shown on the x-axis. Note that multiple probes 
were hypomethylated in BRAF mutant tumor and hypermethylated in BRAF wild-type tumor (in-
teraction p = 3.67 × 10−13). 

3.2. Validation of the DML in Independent Set of Samples 
Given the fact that this current study was conducted in a Bangladeshi population, 

for validation purposes, we used the methylation data from our previous study [29], 
where all the samples (16 PTC thyroid tumors and 13 healthy thyroid tissues) were col-
lected from US patients and the same chip was used for methylation analysis. We pulled 
the beta value of all the 51 common DML that we described in this study, of which 49 
markers were also significantly differentially methylated in the US patients. (see Figure 
12) 
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Figure 12. Venn diagram of the 51 common DML found in the current study. The differential 
methylation of these loci in Bangladeshi patients (current study) is shown on the left (A); the dif-
ferential methylation of these same 51 loci in US patients (previous study) is shown on the right 
(B). 

4. Discussion 
In our study, the BRAF V600E mutation was present in 18 (45%) cases, and it was 

more common in PTC (55.2%) than FVPTC (28.6%). Our result is consistent with previ-
ous studies on BRAF mutation and thyroid cancer [16,23]. We investigated the differen-
tial methylation of genes using 450 K methylation array of paired thyroid tumor and 
normal tissue from the same individuals with and without BRAF mutation. We identi-

Figure 11. Differential methylation status of inflamed T-cell genes. Differential methylation in BRAF
mutant patients is shown in (A), and the differential methylation of BRAF wild-type patients is shown
in (B). Gene probes are arranged on the x-axis by methylation level, and the mean of beta value is
shown on the y-axis. For many genes, there were multiple probes on the chip. Gene symbols for all
gene probes could not be shown on the x-axis. Note that multiple probes were hypomethylated in
BRAF mutant tumor and hypermethylated in BRAF wild-type tumor (interaction p = 3.67 × 10−13).

3.2. Validation of the DML in Independent Set of Samples

Given the fact that this current study was conducted in a Bangladeshi population, for
validation purposes, we used the methylation data from our previous study [29], where all
the samples (16 PTC thyroid tumors and 13 healthy thyroid tissues) were collected from
US patients and the same chip was used for methylation analysis. We pulled the beta value
of all the 51 common DML that we described in this study, of which 49 markers were also
significantly differentially methylated in the US patients. (see Figure 12)
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Figure 12. Venn diagram of the 51 common DML found in the current study. The differential methy-
lation of these loci in Bangladeshi patients (current study) is shown on the left (A); the differential
methylation of these same 51 loci in US patients (previous study) is shown on the right (B).

4. Discussion

In our study, the BRAF V600E mutation was present in 18 (45%) cases, and it was
more common in PTC (55.2%) than FVPTC (28.6%). Our result is consistent with previous
studies on BRAF mutation and thyroid cancer [16,23]. We investigated the differential
methylation of genes using 450 K methylation array of paired thyroid tumor and nor-
mal tissue from the same individuals with and without BRAF mutation. We identified
groups of genes that were (a) differentially methylated irrespective of BRAF mutation
status, (b) differentially methylated only in BRAF mutant tumors, and (c) differentially
methylated only in BRAF wild-type tumors. BRAF mutation-specific promoter loci were
more frequently hypomethylated, whereas BRAF wild-type-specific promoter loci were
more frequently hypermethylated. Some genes, such as the NHLRC4 gene (ubiquitin
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protein ligase activity) showed differential methylation (hypomethylation) in tumor tissue
that was greater in the presence of BRAF mutation compared to wild-type patients. The
DDAH2 gene showed more differential methylation (hypermethylation) in tumor tissue in
BRAF wild-type tumors compared to the mutant group. Huang S et al. found that DDAH2
protein may be associated with blocking the activation of the innate immune response [64].
In BRAF wild-type tumors, the hypermethylation of DDAH2 may be associated with lower
expression of DDAH2 and may have a beneficial effect.

We found that CCND1 was significantly hypomethylated, both in the presence and
absence of BRAF mutation. This finding is consistent with gene expression data from other
studies. Sora Jeon et al. showed that cyclin D1 is consistently overexpressed in PTC, and
cyclin D1 immunostaining is useful for identifying the extent of tumor involvement [65].
The cyclin D1 protein, coded by the CCND1 gene, is a gate-keeper regulating the transition
from the G1 phase into the S phase of the cell cycle [66]. Overexpression of cyclin D1
is observed in a variety of human cancers, and is involved in tumorigenesis [66]. The
overexpression of cyclin D1 in human cancers can result from genetic alterations, changes
in epigenetic regulation, gene transcription, and protein translation of CCND1. Expression
of cyclin D1 protein was observed at varying levels in 18/27 anaplastic thyroid cancers
(67%) [67]. Our study suggests that in thyroid cancer, hypomethylation of the CCND1
promoter may be the cause of CCND1 overexpression seen in other studies.

TNF is a unique cytokine that exerts two distinct actions depending on its two recep-
tors; one is tumor necrosis factor receptor 1 (TNFR1), which is regulated by TNFRSF1A
gene, and the other is TNFR2, regulated by TNFRSF1B. The TNFR1 surface receptor is
linked to a cell death pathway, while TNFR2 is linked to a cell proliferation pathway. TNFR2
is a particularly important molecular target because it is rarely expressed in normal tissues
and is overexpressed in many types of cancer cells and tumor microenvironments [68]. In a
recent review, Takahashi et al. have discussed the role of TNFR2 signaling in cancer [68].
TNFR2 is overexpressed in a variety of cancers, and its activation promotes tumor growth
and progression. TNFR2 is a signaling molecule found on the surface of a subset of potent
regulatory T cells (Tregs) that can activate the proliferation of these cells through nuclear
factor kappa B (NF-kB) [69]. TNFR2 is an attractive target protein because of its restricted
abundance in highly immunosuppressive Tregs and oncogenic presence in human tu-
mors [70,71]. Therefore, the targeting of malignant cells with TNFR2-specific antagonistic
antibodies may not only control cancer growth but also minimize adverse effects [71]. In our
study, we found that in tumor tissue from the BRAF mutant group, TNFRSF1B (encoding
TNFR2) was significantly hypomethylated, suggesting potential overexpression of TNFR2
in this group of patients. We admit our limitation in that we do not have gene expression
data in this study. However, to our knowledge, no study has shown the differences in
TNFRSF1B (encoding TNFR2) methylation (and thereby expression of TNFR2) dependent
on BRAF mutation status in thyroid cancer. Furthermore, no studies have thus far directly
investigated DNA methylation/demethylation of TNFR2 in malignant disease. Recently
there has been advancement in TNFR2-targeted immunotherapy [68,69,71]. If our finding
is confirmed by gene expression data in a future study, then one may consider investigating
the effect of TNFR2-targeted antibody therapy in BRAF mutant thyroid cancer patients in
the case of RAI failure.

As per current guidelines from the National Comprehensive Cancer Network (NCCN) [4]
and consensus statement from the American Head and Neck Society Endocrine Surgery
Section and International Thyroid Oncology group [7], only patients with progressive or
symptomatic RAI-resistant thyroid cancer should be considered for medical therapy; that
may be guided by genetic testing [8], such as BRAF V600E mutation (for BRAF &/or MEK
inhibitor), RET fusion (for RET inhibitors), NTRK1/2 fusion (for NTRK inhibitors), or ALK
fusion (for ALK inhibitor) [4,7]. Epigenetic testing has a role in diagnostics. However,
epigenetic testing is currently of limited utility in therapeutic decision making, as there is
currently no commercially available compound for gene-specific methylation modification.
Therefore, its potential utility in therapeutics may be indirect, as a proxy for predicting gene
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expression. In this context, methylation data from our current study indirectly suggests an
opportunity for potential use of PDL1 inhibitor in BRAF mutant thyroid cancer.

In our study, REC8 showed significant hypermethylation in tumor tissue for the BRAF
wild-type group when compared to the BRAF mutant group. REC8 has tumor suppressor
activity. The role of the PI3K pathway in human cancer has been well established. The
role of REC8 in this PI3K pathway was studied by Liu et al. [72]. They showed that
REC8 (classically known as a meiotic-specific gene) is robustly downregulated by the PI3K
pathway through hypermethylation. REC8 hypermethylation was strongly associated with
genetic alterations and activities of the PI3K pathway in thyroid cancer cell lines, thyroid
cancer tumors, and some other human cancers. Their findings suggest that REC8 may have
tumor suppressor effects and act as a robust epigenetic target of the PI3K pathway. Aberrant
inactivation of REC8 through hypermethylation by the PI3K pathway may represent an
important mechanism for mediating the oncogenic functions of the PI3K pathway.

The RASSF1 gene showed hypermethylation in tumor tissue in both BRAF mutant
and wild-type cases. However, the overall magnitude was slightly higher in wild type. In a
study of PTC, correlations between the methylation status of four genes (TIMP3, RASSF1A,
RARβ2, and DCC) and the BRAF V600E mutation were studied. RASSF1A methylation
decreased the probability of BRAF mutation, while methylation in other genes increased
the probability of BRAF mutation [57].

When we analyzed the methylation status of HLA-E, we found that multiple probes
were hypomethylated in BRAF mutant tumors and hypermethylated in BRAF wild-type
tumors. We could not find the gene expression data for HLA-E and thyroid cancer with
BRAF mutation in other studies, but HLA-E and HLA-F expression significantly correlated
with depth of invasion, nodal involvement, lymphatic invasion, and venous invasion in
gastric cancer patients [73].

There are a few studies showing differences in methylation and/or gene expression
in relation to BRAF mutation. In PTC, 38% of cases exhibit a complete lack of SMOC2
expression, which is attributed to the presence of BRAF V600E mutations [74]. The results
of the analysis of DNA methylation chip indicate that the SMOC2 gene initiator region
contains a high-methylation CpG site [74]. A significant association was observed between
thyroid stimulating hormone receptor (TSHR) gene methylation and positive BRAF V600E
mutation cases in thyroid cancer [74]. In thyroid cancer with BRAF gene mutations, the
presence of promoter methylation in SMOC2, TSHR, TERT, SLC5A8, PLEKHS1, PTEN,
DAPK, PDLIM4, and RSK4 genes would lead to poor prognosis of thyroid cancer [74].
PTGS2, HOXA1, TMEFF2, p16, and PTEN genes were hypermethylated in FNAC of thyroid
tumor when compared between the tumor and healthy tissue. There were no significant
differences in the methylation status of these genes between BRAF mutation negative and
positive cases [58].

A cell line study was performed using a 12K methylation microarray on two cell lines
harboring BRAF mutation after knockdown of BRAF, HLX1, KLHL14, HMGB2, NR4A2,
FGD1, and ZBTB10 genes. BRAF gene knockdown was associated with hypermethylation
of about 59 genes, and all were related to cell cycle, cell development, DNA replication,
and inflammatory response [75].

One of the major limitations of our study is the lack of gene expression data from
the same tissue, which would allow us to confidently describe some of the methylation
results in terms of downstream effects. Depending on funding, we plan to do that in the
future. We also do not have post-surgical clinical follow-up data to associate our findings
with prognosis. We are also limited with only 18 BRAF mutant and 22 wild-type cases.
With all of the limitations of our study in mind, some of the strengths of the study may
be noted. First, paired tumor-normal samples from the same individual for comparison is
the most robust method for detecting any methylation changes in cancer. Second, we used
properly preserved fresh frozen tissue samples for methylation analysis. An array-based
methylation study from FFPE samples is difficult [76]. Third, to our knowledge, this is one
of the first studies on native Bangladeshi patients with thyroid cancer to comprehensively
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study a difference of methylation between BRAF wild-type and BRAF mutant thyroid
cancer patients. Fourth, our study also shows that this methylation data may indicate a
molecular basis for certain therapeutic options for a specific group of patients.

5. Conclusions

DNA methylation plays an important role in the pathogenesis of thyroid cancer.
Many genes are differentially methylated irrespective of BRAF V600E mutation status;
however, there are also BRAF-mutation-specific genes that show a markedly different
magnitude of methylation in thyroid cancer tissue. Some of the common and mutation-
specific DNA methylation data may have clinically relevant biological significance and
potential therapeutic implications for precision medicine.
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