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Abstract: We address the problem of how COVID-19 deaths observed in an oncology clinical trial
can be consistently taken into account in typical survival estimates. We refer to oncological patients
since there is empirical evidence of strong correlation between COVID-19 and cancer deaths, which
implies that COVID-19 deaths cannot be treated simply as non-informative censoring, a property
usually required by the classical survival estimators. We consider the problem in the framework of
the widely used Kaplan–Meier (KM) estimator. Through a counterfactual approach, an algorithmic
method is developed allowing to include COVID-19 deaths in the observed data by mean-imputation.
The procedure can be seen in the class of the Expectation-Maximization (EM) algorithms and will be
referred to as Covid-Death Mean-Imputation (CoDMI) algorithm. We discuss the CoDMI underlying
assumptions and the convergence issue. The algorithm provides a completed lifetime data set, where
each Covid-death time is replaced by a point estimate of the corresponding virtual lifetime. This
complete data set is naturally equipped with the corresponding KM survival function estimate and
all available statistical tools can be applied to these data. However, mean-imputation requires an
increased variance of the estimates. We then propose a natural extension of the classical Greenwood’s
formula, thus obtaining expanded confidence intervals for the survival function estimate. To illustrate
how the algorithm works, CoDMI is applied to real medical data extended by the addition of artificial
Covid-death observations. The results are compared with the estimates provided by the two naïve
approaches which count COVID-19 deaths as censoring or as deaths by the disease under study. In
order to evaluate the predictive performances of CoDMI an extensive simulation study is carried out.
The results indicate that in the simulated scenarios CoDMI is roughly unbiased and outperforms the
estimates obtained by the naïve approaches. A user-friendly version of CoDMI programmed in R is
freely available.

Keywords: COVID-19; survival analysis; kaplan-meier estimator; informative censoring; extended
greenwood’s formula; em algorithm; mean-imputation

1. Introduction

The problem of defining a common and appropriate method in survival analysis for
handling the dropouts due to coronavirus disease 2019 (COVID-19) deaths of patients
participating to oncology clinical trials has been recently stressed [1,2]. In oncology trials,
all-causality deaths are often counted as events for death-related endpoints, e.g., overall
survival. However, as it has been pointed out [2], counting a COVID-19 fatality as a
death-related endpoint requires a complex redefinition of the estimand, considering a
composite strategy for using the so-called intercurrent events [3], as, e.g., “discontinuation
from treatment due to COVID-19” or “delay of scheduled intervention”. The problem
is also exacerbated by the difficulty of homogeneously determining whether a death is
entirely attributable to COVID-19. In this paper, we address a simplified version of this
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problem, assuming that COVID-19-related deaths are homogeneously identified and are
the only intercurrent events to be considered. In this framework, we tackle the problem of
how data in an oncology trial having the overall survival as the endpoint can be dealt with
when deaths due to COVID-19 are present in the sample.

COVID-19 deaths should not be treated as standard censored data, because usual
censoring should be considered—at least in principle—non-informative. Informative censor-
ing, instead, occurs when participants are lost to follow-up also due to reasons related to
the study, as it seems to be the case with COVID-19 deaths of oncological patients. Direct
data on how COVID-19 affects survival outcomes in patients with active or a history of
malignancy are immature. However, early evidence identified increased risks of COVID-19
mortality in patients with cancer, especially in those patients who have progressive dis-
ease [4]. Patients with cancer and COVID-19 were associated with increased death rate
compared to unselected COVID-19 patient population (13% versus 1.4%) [4,5]. Based on
these findings, in survival analysis dropouts due to COVID-19 deaths should be consid-
ered as cases of informative censoring. Another way used in survival analysis literature to
represent this dependence is to view cancer deaths and COVID-19 deaths as competing
events, see, e.g., [6] Ch. 8. In this paper, we propose an algorithmic method to include
COVID-19 deaths of oncological patients in typical survival data, focusing on the classical
Kaplan–Meier (KM) product-limit survival estimator. Our method is in the spirit of the
Expectation-Maximization (EM) algorithms [7] used for handling missing or fake data in
statistical analysis. In this sense, the method could also be used in applications different
from clinical trials, e.g., reliability analysis. Correction of actuarial life tables can be also a
possible application.

An overview of methods for dealing with missing data in clinical trials is provided
by DeSouza, Legedza and Sankoh [8]. See also Shih [9]. In Shen and Chen [10] the
problem of doubly censored data is considered and a maximum likelihood estimator is
obtained via EM algorithms that treat the survival times of left censored observations as
missing. As concerning situations with informative censoring, where there is stochastic
dependence between the time to event and the time to censoring (which is our case if
“censoring” is a COVID-19 death), a distinction is proposed by Willems, Schat and van
Noorden [11] among cases where the stochastic dependence is direct, or through covariates.
In that paper [11], the latter case is considered and an “inverse probability censoring
weighting” approach is proposed for handling this kind of censoring. Since at this stage it
is difficult to model cancer deaths and COVID-19 deaths through covariates in common,
in this paper, we consider the case of direct dependence. We do not consider a survival
regression model based on specified covariates, and limit the analysis, as has been said,
to the basic Kaplan–Meier survival model, which is assumed to be applied, as usual, to a
sufficiently homogeneous cohort of oncological patients. In this framework, we propose a
so-called mean-imputation method for COVID-19 deaths using a purpose-built algorithm,
referred to as Covid-Death Mean-Imputation (CoDMI) algorithm. A user-friendly version of
this algorithm programmed in R is freely available. The corresponding source code can be
downloaded from the website: https://github.com/alef-innovation/codmi (accessed on
6 July 2021).

An alternative approach to survival analysis when COVID-19 deaths are present in
an oncology clinical trial in addition to cancer deaths could be based on the cumulative
incidence functions, which estimate the marginal probability for each competing risks.This
would lead to dealing with subdistributions and would require appropriate statistical tests
to be used, see, e.g., [12]. Our algorithmic approach, instead, acts directly on the data,
producing an adjustment that virtually eliminates the presence of the competing risk, thus
allowing the use of standard statistical tools. This comes at the price of accepting some
simplifications and specific assumptions.

The basic idea of CoDMI algorithm is of a counterfactual nature. Since the KM model
provides an estimation of the probability distribution to survive until a chosen point on the
time axis for any patients in the sample, for each of the patients which is observed to die of
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COVID-19 at time θ, we derive from this distribution êθ , the expected lifetime beyond time
θ, thus obtaining the “no-Covid” expected lifetime τ̂ = θ + êθ for each of these patients.
Each θ value is then replaced by the virtual lifetime τ̂ (this is the mean-imputation) and
the KM estimation is repeated on the original data completed in this way, providing a
new estimate of τ̂. This procedure is iterated until the change between two successive τ̂
estimates is considered immaterial (according to a specified criterion).

It is pointed out by Shih [9] that “The attraction of imputation is that once the missing
data are filled-in (imputed), all the statistical tools available for the complete data may be
applied”. Although in our case we are not dealing with missing data but with partially
observed data, this attractive property of mean-imputation still holds true. It should be
noticed, however, that in general, treating an estimated value—even an unbiased one—as
an observed value should require some increase in variance. In particular, the confidence
limits of KM estimates on data including imputations should be appropriately enlarged.
We propose an extension of the classical Greenwood’s formula providing this correction.

The paper is organized as follows. In Section 2, the notations and the basic structure
of the KM survival estimator are provided and the related problem of computing expected
lifetimes is illustrated. The representation of Covid-death cases in the sample is described.
In Section 3, CoDMI algorithm is introduced and the details of the iteration procedure
are provided. The convergence issue is discussed and the underlying assumptions of
the algorithm are considered, taking into account some subtleties required by the non-
parametric nature of the KM estimator. A possible adjustment for censoring of the algorithm
is presented and a correction of Greenwood’s formula is derived for taking into account the
estimation error in the imputed point estimates. Application of CoDMI to real medical data
are provided in Section 4. Two oncological survival data sets which are well referenced in
the literature are completed by artificial Covid-death observations and the survival curves
estimated by CoDMI are compared with the no-Covid KM estimates and with the two
naïve KM estimates obtained by considering COVID-19 deaths as censorings or as death of
disease. The effect of the final adjustment for censoring is also illustrated. In Section 5, an
extensive simulation study is presented to evaluate the CoDMI predictive performances.
We discuss the details of the simulation procedure and provide tables illustrating the results.
Some conclusions and comments are given in Section 6. In Appendix A a derivation of the
extended Greenwood’s formula is provided.

2. Notation and Assumptions on Covid Deaths in the Sample
2.1. Typical Clinical Trial Data and the Kaplan–Meier Estimator

We consider a study group of n oncological patients which received a specified treat-
ment and are followed-up for a fixed calendar time interval. The response for each patient
is the survival time T0 which is computed starting from the date of enrollment in the study,
date 0.

Remark 1. This is in line with the standard actuarial notation, where Tx is used to denote the
survival time of a subject of age x. Our patients actually have “age 0” (in the study) at the time
they are enrolled.

Typically, the observations include censored data, that is, survival times known only to
exceed reported value. Formally, for a given patient there is a censoring at time point t if
we only know that for this patient T0 > t. If tmax denotes the last observed time point in the
study, i.e., tmax corresponds to the current date or the end of the study, the case of a censored
time t < tmax corresponds to a patient lost to follow-up. To take into account censoring, the
observations can be represented in the form:

{zi = (ti, di), i = 1, . . . , n} ,

where ti is the observed survival time of patient i and di is a “status” indicator at ti which
is equal to 1 if death of disease under study (DoD) is observed and is equal to 0 if there is a
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censoring (Cen) on that time. We assume that the group of patients provides a homogeneous
sample, that is, all the observations ti come from the same probability distribution for T0,
and our aim is to estimate the cumulated probability function F(t) = P(T0 < t), or the
related survival function:

S(t) = 1− F(t) = P(T0 ≥ t) .

The estimation of S(t) can be realized non-parametrically by the well-known Kaplan–
Meier product-limit estimator [13]. If we denote by:

z(i) = (t(i), d(i)), i = 0, 1, . . . , n ,

the observations zi ordered by increasing value of t (with t(0) = d(0) = 0), the KM estimator
is written as:

Ŝ(t) = ∏
i:t(i)≤t

(
1−

d(i)
R(t(i))

)
, (1)

where R(t(i)) is the number of subjects at risk at (immediately before) time t(i), and the
ratio h(t(i)) = d(i)/R(t(i)) is the hazard rate at time t(i). Therefore Ŝ(t) is a (left continuous)
step function with steps at each time a DoD event occurs.

Remark 2. (i) If there are ties in the sample, the ordering can always be unambiguously defined
by adopting the appropriate conventions. We refrain here from describing these conventions,
already considered in the original paper [13] and extensively discussed in the subsequent
literature.

(ii) In general, the event of interest (in our case DoD) acts on the ratio d(i)/R(t(i)) in the estimator
(1) by modifying both the numerator and the denominator. The not-of-interest event (Cen)
only acts on the denominator. This follows from the assumption that a Cen corresponds to a
non-informative censoring.

It is assumed that the censored observations do not contribute additional information
to the estimation, which is the case if censoring is independent of the survival process. If
the time points ti are given, it was already shown in the original paper [13] that (1) is a
maximum likelihood estimator. Obviously t(n) = tmax, the last time point in the observed
sequence. For our purposes, it is important to distinguish two cases, depending on whether
at tmax there is a DoD or a Cen.

2.2. The Case of Complete Death-Observations

If d(n) = 1, i.e., tmax relates to a DoD event, and if R(tmax) = 1, then one has S(tmax) = 0,
which means that the data allows us to estimate the entire probability distribution of T0.
Let us refer to this case as the complete death-observations case or, briefly, the complete case. In
this situation, we can compute the estimated expected future lifetime for a patient which is
alive at time θ ≥ 0. Let us denote the conditional lifetime, given θ, as:

Tθ = T0|(T0 ≥ θ) .

Then the expected future lifetime (the life expectancy) beyond θ is:

êθ := Ê(Tθ)− θ =
1

Ŝ(θ)

∫ t(n)

θ
Ŝ(t)dt . (2)

Since Ŝ(t) is a step function and the jump at time t(i) with d(i) = 1 equals the probability
q(i) to die of disease at this time point, (2) is equivalent to the average taken on the truncated
distribution of T0 − θ:

êθ =
∑i:t(i)>θ(t(i) − θ) q(i)

∑i:t(i)>θ q(i)
, (3)
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where q(i) = 0 if d(i) = 0.

2.3. The Incomplete Case

If the condition d(n) = 1 is not fulfilled, we are in an incomplete (death-observations) case:
one has S(tmax) > 0, meaning that the data are not sufficient to estimate the entire survival
distribution, then the expected future lifetime eθ cannot be derived without some ad hoc
choices or suitable additional assumptions.

Let us denote by t(D)
max the last observed time point of a DoD event (i.e., t(D)

max = max{ti :
di = 1}). If tmax > t(D)

max , the KM estimate only provides the final survival probability
Qfin = Ŝ(t(D)

max ) > 0. We then choose to complete the distribution by setting Ŝ(tmax) = 0,
which is equivalent to posing the entire probability mass Qfin on the last time point tmax. In
terms of the data, this is also equivalent to change to 1 the status indicator d(n). The effect
of this choice depends on the actual meaning we attribute to the random variable T0. If T0
represents the entire future lifetime of the patients since they entered the study, then posing
Ŝ(tmax) = 0 provides an underestimation of the life expectancy, since we have θ + eθ ≤ tmax

while we know that at least one patient was alive at the end of the study. In many cases,
however, it is convenient to assume that the variable of interest is the patient’s lifetime in
the study. Formally, we would consider the random variable T′0 = min{T0, tmax}, where tmax

is the duration of the study. The completed survival function refers to this random variable
and no underestimation would be produced in this case. This issue is strictly related to the
special nature of the final time point tmax in this kind of survival problems. For example,
self-consistency, an important property of the KM estimator, only holds if Ŝ(tmax) = 0

Remark 3. This was pointed out by Efron [14] p. 843, where it is observed that the iterative
construction underlying the KM estimator “sheds some light on the special nature of the largest
observation, which the self-consistent estimator always treats as uncensored, irrespective of” d(n).

2.4. Including Covid-Death Events in the Data

Assume that, in addition to the n patients who left the study by a DoD or a Cen event,
also m patients were present in the oncological trial for whom death of COVID-19 (DoC)
was observed on the time points θj, j = 1, . . . , m. The corresponding observed data set can
be represented as follows:

x = z ∪ θ =
{

zi = (ti, di), i = 1, . . . , n
}
∪
{
(θj, ·), j = 1, . . . , m

}
, (4)

where the status indicator of each DoC event is missing. It is clearly inappropriate to
pose these indicators equal to 1, but it is also not appropriate to set them equal to 0, since
the DoC event provides an informative censoring, given that we know this event does
carry prognostic information about the survival experience of the oncological patients.
More precisely, we know that there is a positive correlation between DoD and DoC events.
However, ignoring DoC data would cause an unpleasant loss of information and we would
like to adjust these data in some ways, so that it can be included in the study. Formally,
we are interested in replacing each of the observed θj by a different appropriate time
point τj > θj, a virtual lifetime conditional on θj, possibly with an appropriate value of the
corresponding status indicator, which we will denote by δj. We are confident that this
replacement of the DoC time points can be properly completed just because we assume
that, due to the dependence between DoC and DoD events, the “standard” data z contain
information on the COVID-19 data (and vice versa). The determination of the status
indicators δj is more challenging. However, with the appropriate adjustment we can
consider the whole data set:

w =
{

zi = (ti, di), i = 1, . . . , n
}
∪
{

z′j = (τj, δj), j = 1, . . . , m
}

, (5)
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and we can safely apply the KM estimator to these data, thus also using the information
contribution carried by COVID-19 deaths. In the following section, we will propose an
iterative procedure to suitably realize this adjustment.

3. The EM Mean-Imputation Procedure
3.1. The CoDMI Algorithm

Obviously, the input data to the algorithm are given by the observation set x in (4).
We will assume, however, that all patients who died of COVID-19 would have died of
disease if COVID-19 had not intervened, thus setting δj ≡ 1, i.e., assuming that all the
virtual lifetimes τj would have been terminated by a DoD event). We will see in Section 3.4
how one can try to get around this limitation in this counterfactual problem. Under the
assumption δj ≡ 1, the basic idea of our COVID-19 adjustment is to estimate the virtual
lifetimes τj as the expectation E(Tθj), provided by the KM estimator itself. This is realized
by a procedure consisting of the following steps.

• Initialization step. One starts by setting (τj, δj) = (τ̂
(0)
j , 1) for j = 1, 2, . . . , m, where τ̂

(0)
j

are arbitrarily chosen initial values. Then one obtains an artificial complete data set
ŵ(0), as defined in (5). Examples of initialization are τ̂

(0)
j ≡ θj or τ̂

(0)
j ≡ θj + ê(z)θj

, where

ê(z)θj
is the life expectancy computed by applying the KM estimator to the standard

data z.
• Estimation step. The KM estimator is applied to ŵ(0) to produce the survival func-

tion estimate Ŝ(0)(t). In case of incomplete death-observations, the distribution is
completed by posing Ŝ(0)(tmax) = 0.

• Expectation step. Using ŵ(0), the m future life expectancy ê(0)θj
are computed as in (3).

The corresponding time points τ̂
(0)
j are then replaced by τ̂

(1)
j = θj + ê(0)θj

. One then
obtains the new artificial complete data set:

ŵ(1) =
{
(ti, di), i = 1, . . . , n

}
∪
{
(τ̂

(1)
j , 1), j = 1, . . . , m

}
.

• The estimation and the expectation steps are repeated, producing at the k-th stage a

new complete data set ŵ(k), provided by the expectations {ê(k)θj
, j = 1, . . . , m}. The

iterations stop when a specified convergence criterion is fulfilled. A natural criterion is:

max
1≤j≤m

{∣∣∣ê(k+1)
θj

− ê(k)θj

∣∣∣} < ε , (6)

for a suitable specified tolerance level ε > 0 (this choice will be left as an option for
the user). If condition (6) is not satisfied after a fixed maximum number of iterations
(which will also be chosen as a user option), the convergence is considered failed.

If the convergence criterion is met, the final values of the m life expectancy pro-
vide estimates which we will denote by êθj . The corresponding estimated lifetimes are
τ̂θj = θj + êθj and the estimated whole data set is:

ŵ =
{

zi = (ti, di), i = 1, . . . , n
}
∪
{

ẑ′j = (τ̂j, 1), j = 1, . . . , m
}

. (7)

This iterative procedure can be seen in the class of the well-known Expectation-
Maximization (EM) algorithms, since the estimation step can be interpreted as a maxi-
mization, given that the KM approach provides a maximum likelihood estimator. In this
class of algorithms the expectation step is often referred to as mean-imputation, hence we
will call our iterative procedure Covid-Death Mean-Imputation (CoDMI) algorithm.

Remark 4. (i) Usually EM algorithms, and the concept of imputation, refer to procedures aimed
to filling-in missing data. What we are dealing with here is data observed to a limited extent,
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rather than completely missing. Therefore, in this application the imputation corresponds
rather to a replacement (of the observed time points θj by the estimated time points τj). Our
method is, however, in the spirit of the fake-data principle, as illustrated by Efron and Hastie
[15], pp. 148–149.

(ii) It should be noted that the idea of estimating the virtual lifetimes τj as the expectation E(Tθj)
implies a further more subtle assumption. Let DoCj be the event: “Patient j died of COVID-19
at time θj” and RoCj: “Patient j became ill with COVID-19 but recovered at time θj”.
Using notation introduced by Pearl in causal analysis (e.g., [16]), we are assuming for this
patient that:

E
(
Tθj |do(DoCj = 0)

)
= E

(
Tθj |DoCj = 0

)
,

where do(A) is the intervention operator on event A. This means that we are assuming
that the event RoCj, which is not excluded by DoCj = 0, does not change the probability
distribution of Tθj . This is clearly a simplifying assumption that makes our counterfactual
problem easy to solve. In a more rigorous analysis, the effect of events as RoCj should be also
taken into account [1]. We refrain to do this here, since such an analysis would take us out of
the KM survival framework.

3.2. The Convergence Issue

In general, CoDMI is not guaranteed to converge. If we make the classical binomial
assumptions, we can derive the KM likelihood as a function of the hazard rates hi. Running
the algorithm, we find it is possible that different parameter sets, then different sets of
êθj estimates, correspond to the same likelihood value. This should indicate an issue in
parameter identifiability. However the classical KM likelihood is defined for fixed time
points, while the estimates êθj change at each step in our algorithm. Thus, the identifiability
problem should be more properly studied referring to a likelihood function which includes
the event times in the parameters as well.

Remark 5. A similar problem of iterated estimates for the KM product-limit estimator, but with
fixed time points hence without parameter identifiability issues, was studied by Efron [14]. He
proved in this case that, provided that the probability distribution is complete, the solution of
the convergence problem exists and is unique. The previously mentioned self-consistency refers
precisely to this property.

However, in order to manage the convergence problem, even based on the results of
the simulation exercise presented in Section 5, it is worth considering the following three
types of situation.

(1) Finite time convergence. The difference between two successive estimates becomes zero
after a finite number of iterations.

(2) Asymptotic convergence. The difference between two successive estimates tends to zero
asymptotically.

(3) Cyclicity. After a certain number of iterations, cycles of the estimated values are
established which tend to repeat themselves indefinitely, so that the minimum dif-
ference between two successive estimates remains greater than zero. In this case, if
this minimal difference is less than the tolerance ε, the corresponding estimate can
be accepted (this is actually referred to by the term “tolerance”). It often happens
that small changes in some of the θj values are sufficient to get out of cyclicity cases.
Therefore, some fudging of these data could be used to obtain acceptable solutions
when the minimum improvement is out of tolerance.

As shown in the simulation study in Section 5, cases of non-convergence are not very
frequent, and many of these can be circumvented by milding the convergence criterion (6)
and fudging the COVID-19 data a little, if necessary. In general, the results are found to
be sensitive to the initial values τ̂

(0)
j . In cases of convergence this is not a problem since

different solutions, but within the chosen tolerance criterion, are equivalent from a practical
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point of view. In some cases of non-convergence, on the other hand, it is possible to skip to
convergence cases by changing the initial values.

3.3. Assumptions Underlying CoDMI

The iterative procedure described in Section 3.1 can probably be easily justified by
intuitive reasoning. However, also to give internal consistency to the simulation procedure
presented in Section 5, it is convenient to better specify the assumptions underlying the
CoDMI algorithm. A preliminary remark is important to be made. In our framework,
the “true” probability distribution of the random variable T0 is the best-fitting distribution
in the KM sense, i.e., the distribution identified by applying the maximum likelihood
product-limit estimator to existing data. Without appropriate additional assumptions
(e.g., specifying an analytic form of the hazard function) this distribution is completely
non-parametric and there is no other way to identify it than by specifying the data as well
as the estimator used (the product-limit estimator, in fact). One could say, data provide
information to the estimator, and the estimator provides probabilistic structure to data.
Having remarked upon this, the basic assumption underlying CoDMI algorithm outlined
in the following section. When COVID-19 deaths are present in the study sample, there
is an extended underlying data structure composed of the n observed lifetimes ti (ending
with a DoD or a Cen) and by the m partially observed lifetimes τj (virtually ending, if we
assume δj = 1, with a DoD). The corresponding probability distribution is the best-fitting
distribution specified by this extended data, i.e., by applying the KM estimator to the data
set w = z ∪ z′. We will keep have this property in mind when we generate the simulated
scenarios on which to measure the algorithm’s predictive performance.

3.4. Adjusting for the Assumption δj ≡ 1

Relaxing the assumption that patients eliminated by a DoC event would have died of
disease without this event is not an easy task. The prediction regarding the status operators
δj increases the forecasting problem by one dimension and requires a reliable predictive
model, which is currently not available to us. We are therefore content to propose an
adjustment for censoring of the response of CoDMI algorithm which should mitigate the
possible bias produced by the assumption δj ≡ 1. If the algorithm met the convergence
criterion, the final data set is given by (7). We then consider the modified data set:

ŵ(R) =
{
(ti, 1− di), i = 1, . . . , n

}
∪
{
(τ̂j, 0), j = 1, . . . , m

}
, (8)

where both the observed and the estimated virtual lifetimes are kept the same, while all
the status indicators are reversed. Running the KM estimator on the set ŵ(R), one obtains
the so-called reverse Kaplan–Meier survival curve Ŝ(R)(t), which refers to Cen instead of
DoD endpoints, and provides the new conditional expectations τ̂

(R)
j , given θ, of the virtual

lifetimes. We then choose to derive the adjusted estimates τ̂∗j , for j = 1, . . . , m, as:

τ̂∗j =

τ̂j if α(θj) ≥ 0.5 ,

τ̂
(R)
j if α(θj) < 0.5 ,

(9)

where α(t) is the probability that an event observed at time t is a DoD (as opposed to a
Cen). In order to estimate these non-censoring probabilities, the standard observations
{zi = (ti, di)} are represented on a time grid spanning the time interval [0, tmax] with
cells l = 1, 2, . . . , G, and a parametric hazard rate function ĥl is fitted on this grid. The
same procedure is then applied to the “reverse observations” {z(R)

i = (ti, 1− di)} and the

corresponding hazard rate function ĥ(R)
l is then derived. The probability estimates are then

computed as α̂(t) = ĥl(t)/[ĥl(t) + ĥ(R)
l(t)], where l(t) is the cell containing the time point t.

Examples of estimated α̂(t) functions are provided in the next section.
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The above procedure is fairly ad hoc and the indications provided do not necessarily
have to be accepted. It may be the case that the user of the procedure has a personal opinion,
based on external information, on the value of (some of) the virtual status operator δj. In
this situation the coefficients α(θj) in (9) could be assigned or modified by the user on the
basis of this expert judgment.

3.5. An Extended Greenwood’s Formula

The virtual lifetime expectations τ̂j provided by CoDMI and included in the mean-
imputed data ŵ are point estimates which allow these data to be applied to any statistical
tool available for survival analysis. However, replacing an observed value with a point
estimate, even an unbiased one, increases the variance of the survival estimates, since the
mean-imputed data convey their own estimation error. Usually the standard deviation
of the KM survival function estimate is computed using Greenwood’s formula. On the
standard data, using the same notation in (1), this can be written as:

s.d.
(
Ŝ(t)

)
= Ŝ(t)

 ∑
i:t(i)≤t

h(i)
1− h(i)

1
R(t(i))

1/2

, with h(i) =
d(i)

R(t(i))
, (10)

where the summand is set to 0 if h(i) = 1. We provide an extension of this formula in order
to include the variance component due to the estimated time points τ̂j.

We start by the CoDMI output, eventually with the adjustment for censoring:

ŵ = {(ti, di), i = 1, . . . , n} ∪
{
(τ̂∗j , δj), j = 1, . . . , m

}
where the τ̂∗j are derived by (9) and the indicators δj can be equal to 0 or 1. We represent
the ŵ data set in the alternative form:

ŷ =
{
(t′i, d′i, δ′i), i = 1, . . . , n + m

}
,

where:

• t′i = ti or τ̂∗j are the observed or estimated survival times ordered by increasing value
(the usual conventions on tied values apply);

• d′i = 0 if t′i corresponds to a Cen and 1 otherwise;
• δ′i = 1 if t′i corresponds to a DoC and 0 otherwise.

Since the time points t′i are assumed to be ordered, we simplify the exposition in
this section by using the subscript i instead of (i) (and Ri instead of R(t(i))). We then
consider both the “direct” probability distribution {qi, i = 1, . . . , n + m} and the reverse
one {q(R)

i , i = 1, . . . , n + m}, both taken from the CoDMI output, and from these we derive
the m direct and the m reverse truncated distributions:

qi,j = qi
1{ti>θj}

∑k:tk>θj
qk

, q(R)
i,j = q(R)

i

1{ti>θj}

∑k:tk>θj
q(R)

k

, i = 1, . . . , n + m , j = 1, . . . , m .

These distributions are defined, with null values, also for t′i ≤ θj. Finally, we compute
the total probabilities:

Qi =
m

∑
j=1

q∗i,j , with q∗i,j = δj qi,j + (1− δj) q(R)
i,j , i = 1, . . . , n + m , (11)

and define Q(2)
i = ∑m

j=1(q
∗
i,j)

2, i = 1, . . . , n + m. Observe that ∑m
j=1 Qi = m.
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With these definitions, we propose the following correction of Greenwood’s formula:

s.d.
(
Ŝ(t)

)
= Ŝ(t)

 ∑
i:t′i≤t

(
h̄i

1− h̄i

1
R̄i

+
1

(1− h̄i)2
R̄i − 1

R̄i

Qi −Q(2)
i

R̄2
i

)1/2

, (12)

where the hazard rates h̄i are specified as:

h̄i =
d′i νi

R̄i
, with νi = (1− δ′i) + Qi, i = 1, 2, . . . , n + m ,

and the number of subjects at risk is computed as:

R̄i =

{
n + m for i = 1,

R̄i−1 −
(
1 + (νi − 1) d′i

)
for i = 2, 3, . . . , n + m.

The basic idea underlying this formula is that the m COVID-19 deaths are distributed
as “fractional deaths” Qi = ∑j q∗i,j over all the uncensored time points (both DoD and DoC),
and the hazard rate at time t′i has a random component with mean Qi/R̄i and variance

(Qi −Q(2)
i )/R̄2

i . The details of the derivation of Formula (12) are provided in Appendix A.
Using (12), the approximate 95% confidence intervals can be computed by:

log
(
Ŝ(t)

)
± 1.96

s.d.
(
Ŝ(t)

)
Ŝ(t)

. (13)

4. Examples of Application to Real Survival Data
4.1. Application to COVID-19 Extended NCOG Data

To illustrate the effects of our mean-imputation adjustments, we start by considering
some real survival data well referenced in the literature and apply CoDMI algorithm to
these data after the addition of some artificial COVID-19 deaths. This is carried out because,
currently, sufficiently rich real datasets containing both cancer-death and Covid-death
events are hardly available. To this aim, we chose, as the real reference data, the head/neck
cancer data of the NCOG (North Carolina Oncology Group) study, which was used to
illustrate the KM approach in the book by Efron and Hastie [15], Section 9.2. We considered
data from the two arms, A and B, separately.

4.1.1. Arm A of NCOG Data

Survival times (in days) from Arm A in the first panel of Table 9.2 [15] are reported in
Table 1.

Table 1. Censored survival times from Arm A (Chemotherapy) of the NCOG study.

7 34 42 63 64 74+ 83 84 91
108 112 129 133 133 139 140 140 146
149 154 157 160 160 165 173 176 185+
218 225 241 248 273 277 279+ 297 319+
405 417 420 440 523 523+ 583 594 1101

1116+ 1146 1226+ 1349+ 1412+ 1417

To save space, data is presented, as in the book, in compact form, with the + sign
representing censoring. The conversion of these data into the form of a two-component
vector z = {(zi, di), i = 1, 2, . . . , n} is immediate. There are n = 51 patients, with 43 DoD
events and 8 Cen events. The final time point is 1417 days after the beginning of the study,
and a DoD is observed on that date. Therefore we are in a complete death-observations
case, with tmax = t(D)

max = 1417. The corresponding KM estimate of the survival function Ŝ(t)
is illustrated by the black line in Figure 1.
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Figure 1. Kaplan–Meier curves for alternative treatments of COVID-19 deaths—Arm A.

To illustrate the application of CoDMI algorithm, we add to these data an artificial
group of m Covid death observations, i.e., m DoC events assumed being observed at the
time points θ = {θj, j = 1, 2, . . . , m}. We chose m = 5 (roughly 10% of n) DoC events, on
5 time points roughly equally spaced in (0, tmax):

θ = {250, 500, 750, 1000, 1250} . (14)

Since the observation set x = z ∪ θ has been specified, we have to choose the virtual
lifetimes τ̂

(0)
j in the data set ŵ(0) which is used to initialize CoDMI algorithm. If, for

example, we choose the option to set τ̂
(0)
j ≡ θj, then we have ŵ(0) = z ∪ ẑ′(0), with:

ẑ′(0) = {(250, 1), (500, 1), (750, 1), (1000, 1), (1250, 1)} .

We run CoDMI algorithm with this initialization and ε = 0.1. The procedure converged
after 10 iterations, providing the following estimates for the lifetimes {τ̂j, j = 1, . . . , 5}:

{894.32, 1118.85, 1253.58, 1286.24, 1354.00} . (15)

The corresponding COVID-19 data:

ẑ′ = {(894.32, 1), (1118.85, 1) (1253.58, 1), (1286.24, 1), (1354.00, 1)} , (16)

are then used as mean-imputed data to obtain the final complete data set ŵ in (7). As
one can observe, the expectation Formula (3) provides non-integer values, which is not
a problem since the survival function provided by the KM estimator is defined on the
real axis.

Remark 6. A tolerance of 0.1 already provides overabundant precision for our applications. How-
ever, in order to stress the algorithm, we also tried with ε = 10−8 and ε = 10−18, obtaining conver-
gence after 33 and 51 iterations, respectively. This seems to be a case of asymptotic convergence.

The survival curve provided by the KM estimator applied to the completed data ŵ
(“DoC Imputed”) is illustrated in blue color in Figure 1, where it can be compared with the
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original survival estimate based on the z data (“Without DoC”, black color). For further
comparisons, we also present the survival KM curves estimated by the two naïve strategies,
comprising a classification of all DoC events as Cen, i.e., τ̂j ≡ θj and δj ≡ 0 (“DoC as Cen”,
green color), or all DoC events as DoD, i.e., τ̂j ≡ θj and δj ≡ 1 (“DoC as DoD”, red). In the
figure, the “critical” time points are reported by indicating the 14 Cen points by tiks and
the 5 θj points by red triangles on the black curve, while the 5 τ̂j points are indicated by
circles on the blue line (where, obviously, each circle corresponds to a jump).

We finally illustrate the application of the adjustment for censoring presented in
Section 3.4. After deriving from ŵ the modified data set ŵ(R) in (8), we apply the KM
estimator to these data, obtaining the following alternative lifetimes {τ̂(R)

j , j = 1, . . . , 5}:

{1207.49, 1296.23, 1347.78, 1347.78, 1398.13}. (17)

In Figure 2, on the left it is illustrated the probability curve α(t) estimated as specified
in Section 3.4. By this function, one obtains:

α(θ1) = 0.623, α(θ2) = 0.781, α(θ3) = 0.699, α(θ4) = 0.402, α(θ5) = 0.193 .

Therefore, the procedure suggests to consider the last two time points as (potentially)
censored, then estimated as in (17). The data set ẑ′ in (16) is then modified as:

ẑ′ = {(894.32, 1), (1118.85, 1) (1253.58, 1), (1347.78, 0), (1398.13, 0)} .

These suggestions, however, are purely indicative and can be rejected or changed
based on expert opinion.
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Figure 2. Non-censoring probability curves for Arm A (left) and Arm B (right).

In Figure 3, the survival function estimated after the suggested adjustment for cen-
soring is reported, together with the 95% confidence limits computed with the tradi-
tional Greenwood’s formula (red dotted lines) and with the extended Formula (12) (blue
dashed lines).



Curr. Oncol. 2023, 30 2117

200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

S
(t

)

Greenwood
extended

Figure 3. Kaplan–Meier curves estimated by CoDMI with adjustment for censoring and related
confidence intervals—Arm A.

4.1.2. Arm B of NCOG Data

In Table 2, we report censored survival times (in days) from Arm B in the second panel
of Table 9.2 [15].

Table 2. Censored survival times from Arm B (Chemotherapy+Radiation) of the NCOG study

37 84 92 94 110 112 119 127 130
133 140 146 155 159 169+ 173 179 194
195 209 249 281 319 339 432 469 519

528+ 547+ 613+ 633 725 759+ 817 1092+ 1245+
1331+ 1557 1642+ 1771+ 1776 1897+ 2023+ 2146+ 2297+

Furthermore, in this case, we refrain, for reasons of space, to present data converted
into z form. Data are heavily censored in this arm, having n = 45 patients, with 14 Cen
events, which are mainly distributed among the largest time points. Moreover, we are in
a case of incomplete death-observations, since the final time point tmax = 2297 is a Cen
point. The last time point with a DoD event observed is t(D)

max = 1776 and 4 Cen events are
observed thereafter. The final level of the survival curve provided by the KM estimator
is Ŝ(t(D)

max ) = 22.99% and we choose to allocate this probability mass entirely on the final
Cen point 2297. For the artificial data on COVID-19 deaths, also in this case we choose m
roughly 10% n and assume equally spaced DoC events in the interval (0, 2297). That is we
assume n = 5 with θj values in the set:

θ = {400, 800, 1200, 1600, 2000} . (18)

The last time point in θ is after the last observed DoD time point (1776). As in the
previous case, the initial data set ẑ′ is derived by setting δj ≡ 1, and the complete data set
ŵ(0) = z ∪ ẑ′ is used to initialize CoDMI algorithm. The algorithm, run again with ε = 0.1,
converged after 12 iterations (convergence was met after 49 iterations for ε = 10−8 and
78 iterations for ε = 10−18), providing the following estimates for the adjusted lifetimes
{τ̂j, j = 1, . . . , 5}:

{1654.63, 1934.24, 2004.07, 2041.32, 2148.59} .
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In Figure 4, we replicate the illustrations of Figure 1 on these data. As concerning the
adjustment for censoring, from the estimated probability curve reported in Figure 2 on the
right we obtain:

α(θ1) = 0.667, α(θ2) = 0.371, α(θ3) = 0.192, α(θ4) = 0.074, α(θ5) = 0.0002 .

Therefore, in this case, the procedure suggests to consider the last four time points as
censored. Using the criterion in (17), the final data set is obtained:

ẑ′ = {(1654.63, 1), (1922.76, 0), (1978.15, 0), (2084.32, 0), (2201.93, 0)} .

Figure 5 is the analogous for Arm B of Figure 3.
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Figure 4. Kaplan–Meier curves for alternative treatments of COVID-19 deaths—Arm B.

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

S
(t

)

Greenwood
extended

Figure 5. Kaplan–Meier curves estimated by CoDMI with adjustment for censoring and related
confidence intervals—Arm B.
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5. A Simulation Study

In order to test the ability of CoDMI to correctly estimate the expected life-shortening
(or the corresponding virtual lifetime) due to DoC events in a study population, we
generate many scenarios each containing simulated data. These pseudo-data include a z̃
data set of standard observations and a τ̃(0) data set of (preliminary) virtual lifetimes. By
randomly censoring the time variables in τ̃(0) a corresponding set θ̃ of DoC time points is
derived. In order to equip these pseudo-data with a probabilistic structure consistent with
CoDMI assumptions, a KM best-fitting distribution is derived by applying the product-
limit estimator to z̃ ∪ τ̃(0). The “true” virtual lifetimes τ̃ are then derived by conditional
sampling, given θ̃, from this distribution. Running CoDMI algorithm on the pseudo-
observations x̃ = z̃ ∪ θ̃, the estimated virtual lifetimes τ̂ are obtained and the quality of
the estimator is measured by computing the average, over all scenarios, of the prediction
errors τ̃ − τ̂.

5.1. Details of the Simulation Process

The details of each scenario simulation are as follows:

1. Simulation of standard survival data z̃. The simulated standard (i.e., non-Covid) sur-
vival data z̃ is generated in each scenario starting from the same set of real data
z = {(ti, di), i = 1, 2, . . . n}, spanning the time interval[0, tmax]. The set z̃ is generated
by drawing with replacement nsim pairs (t̃i, d̃i) from the n real-life pairs (ti, di), main-
taining the proportion between DoD and Cen events in z. Let us denote by t̃(D)

max the
largest uncensored time point in z̃.

Remark. It should be noted that many tied values can be generated in this step, es-
pecially if nsim � n. Moreover, t̃(D)

max could result to be censored (a case of incomplete
death observations) even if the death observations are complete in the original data. It
is easy to guess that generating many scenarios in this way can produce a number of
“extreme” pseudo-data z̃. This is useful, however, for testing the algorithm even in un-
realistic situations. Most cases of failed convergence correspond to extreme situations.

2. Simulation of DoC time points θ̃. In order to simulate a number msim of COVID-19 deaths,

the time points τ̃
(0)
j , j = 1, 2, . . . , msim, are generated by drawings with replacement

from the ti points in real data z, satisfying the conditions di = 1 and ti ≤ t̃(D)
max . These

time points are interpreted as temporary virtual lifetimes and are first used to generate
the DoC time points θ̃j. A number msim of independent drawings ũj from a uniform
(0, 1) distribution are performed, and the corresponding DoC time points are obtained
as θ̃j = ũj · τ̃

(0)
j . Therefore, for all j one has 0 < θ̃j < τ̃

(0)
j ≤ t̃(D)

max , with θ̃j taking equally

probable values in (0, τ̃
(0)
j ).

Remark. The use of a uniform distribution is obviously questionable, and more “infor-
mative” distribution could be suggested. For example, a beta distribution with first
parameter greater than 1 and second parameter lower than 1 may be preferable, as it
makes more probable values of θ̃j closer to τ̃

(0)
j . However, the form of this distribution

is irrelevant to our purposes: we are interested in observing how CoDMI is able to
capture the simulated virtual lifetimes, independently of how they are generated.

3. Simulation of virtual lifetimes τ̃j. The temporary lifetimes τ̃
(0)
j (and the data set z̃)

cannot be directly used to test CoDMI algorithm, since their probabilistic structure is
indeterminate and, in any case, we have too few (pseudo-)observations. In order to
introduce a probabilistic structure consistent with CoDMI assumptions, we first run the
KM estimator on the data set w̃(0) = z̃ ∪ {(τ̃(0)

j , 1)}, thus obtaining the corresponding

death probability distribution {q̃(0)i , i = 1, 2, . . . nsim + msim}. The virtual lifetimes

τ̃
(1)
j , j = 1, 2, . . . , msim, are then obtained by computing the conditional expectations
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E(Tθ̃j
) by this distribution. However, this is not yet fully consistent with CoDMI

assumptions, since, as discussed in Section 3.3, the appropriate distribution is the KM
best-fitting distribution specified on the extended data, i.e., data including the virtual
lifetimes themselves. To obtain this result we should repeat the previous step, i.e.,
running the product-limit estimator on the new data set w̃(1) = z̃ ∪ {(τ̃(1)

j , 1)}, thus

producing the new distribution {q̃(1)i , i = 1, 2, . . . nsim + msim} and then simulating msim

new time points τ̃
(2)
j by taking the conditional expectation on this distribution. In

principle, this step should be iterated similarly to what is completed in the CoDMI
algorithm. To avoid convergence problems, however, we prefer to limit the number
of iterations to a fixed (low) value niter, thereby implicitly accepting a certain level of
bias in the estimations. After these niter iterations has been made, the final data set
w̃(niter) = z̃ ∪ {(τ̃(niter)

j , 1)} is obtained. Running the KM estimator on these data again,

the final distribution {q̃(niter)
i , i = 1, 2, . . . nsim +msim} is obtained and the definitive time

points τ̃j, with the corresponding ẽj = τ̃j − θj, are computed by conditional sampling,

given θ̃j, i.e., simulating from the truncated distribution {q̃(niter)
i , i : ti > θj} (after

normalization). These sampled values are taken as the true values of virtual lifetimes
and life expectancy, respectively, which should be estimated by CoDMI using only the
information z̃ ∪ θ̃.

4. Application of CoDMI and naïve estimators. CoDMI algorithm is applied to the
simulated data:

w̃ =
{

z̃i = (t̃i, d̃i), i = 1, . . . , nsim

}
∪
{

z̃′j = (θ̃j, 1), j = 1, . . . , msim

}
,

with z̃i obtained in step 1 and θ̃j in step 2. Provided that the algorithm converges, we
obtain the msim estimated virtual lifetimes τ̂j and the estimated life expectancy êj.
To allow comparison, we also derive in this step the predictions of the two naïve
“estimators” which are obtained by applying the KM estimator to the simulated data
w̃, modified by posing, for all j, τ̃j = θ̃j and δj = 1 (“DoC as DoD”) or δj = 0
(“DoC as Cen”).

5.2. Valuation of the Predictive Performances

In the simulation exercise, a large number N of scenarios are generated. This provides,
for j = 1, 2, . . . , msim and k = 1, 2, . . . , N, the N ·msim CoDMI estimates ê(k)j (from step 4) and

the N ·msim true realizations ẽ(k)j (from step 3). Then we can compute the prediction errors:

∆(k)
j = ẽ(k)j − ê(k)j , j = 1, 2, . . . , msim, k = 1, 2, . . . , N ,

and the average errors:

∆̄j =
1
N

N

∑
k=1

∆(k)
j , j = 1, 2, . . . , msim , ∆̄ =

1
msim

msim

∑
j=1

∆̄j .

Positive (negative) values of ∆(k)
j correspond to under(over)-estimates provided by

CoDMI. As usual, we can associate to these average errors the corresponding standard error,
i.e., the standard error of the mean (s.e.m.). Given the independence assumption, the central
limit theorem guarantees, as usual, that the sample means are asymptotically normal.
Therefore, the corresponding s.e.m. is inversely proportional to

√
N.

The same summary statistics are computed for the prediction errors relative to the two
naïve estimators.
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5.3. Results from Simulation Exercises

Two separate simulation exercises were performed, one using Arm A, the other using
Arm B as real-life data. In both the exercises, N = 10, 000 scenarios were generated, with
nsim = 100 standard observations (roughly double the real ones) and msim = 10 COVID-19
deaths. A tolerance ε = 1 was chosen for the CoDMI algorithm, with a maximum number of
allowed iterations itermax = 100. The number of iterations for generating the true values was
niter = 10 and for all the initializations the option τ̂

(0)
j = θj + ê(z)θj

was chosen. Since in some
scenarios CoDMI failed to converge (with the chosen values for ε and itermax), the sample
means and the corresponding s.e.m. where computed only on the Nc convergence cases.

In Table 3, which is referred to Arm A data, the simulation results are reported for each
of the 10 DoC cases. We obtained Nc = 9, 802 convergence cases out of the 10,000 simulated.
In each row, the sample mean of the DoC time points θ̃j, the true life expectancy ẽj and the
CoDMI estimated life expectancy êj are reported in columns 2-4. In columns 5-9, we provide
summary statistics of the corresponding prediction errors: the mean error ∆̄j = ẽj − êj, the
related s.e.m., the relative mean error ∆̄j/ẽj and the minimum and maximum value of ∆̄j.

Table 3. Results by DoC event from N = 10, 000 simulations (Nc = 9802) generated by Arm A data.

Summary Statics of ∆̄j = ẽj − êj

j θ̃j ẽj êj avg. avg.% s.e.m. min max

1 134.14 421.94 426.14 −4.20 −1.00% 4.21 −677.54 1083.35
2 137.64 434.06 425.96 8.09 1.86% 4.31 −675.28 1077.25
3 140.10 427.67 425.51 2.16 0.51% 4.26 −692.93 1084.41
4 134.01 421.72 424.59 −2.87 −0.68% 4.31 −658.69 1070.25
5 138.20 432.20 425.59 6.61 1.53% 4.33 −649.86 1067.94
6 134.54 421.22 425.62 −4.40 −1.04% 4.23 −638.90 1067.69
7 138.66 434.07 426.54 7.53 1.74% 4.32 −671.86 1067.94
8 137.66 433.16 426.60 6.56 1.52% 4.31 −676.75 1071.44
9 141.41 430.15 425.71 4.44 1.03% 4.29 −631.85 1067.11
10 140.08 427.10 427.14 −0.04 −0.01% 4.29 −703.10 1072.31

The same results for 10,000 scenarios generated by Arm B data are reported in Table 4.

Table 4. Results by DoC event from N = 10, 000 simulations (Nc = 9472) generated by Arm B data.

Summary Statics of ∆̄j = ẽj − êj

j θ̃j ẽj êj avg. avg.% s.e.m. min max

1 170.39 901.20 893.29 7.91 0.88% 8.20 −1245.06 1546.86
2 165.77 903.10 894.93 8.16 0.90% 8.17 −1221.83 1545.27
3 168.02 892.31 891.88 0.43 0.05% 8.16 −1247.44 1527.10
4 168.50 881.61 894.61 −13.00 −1.47% 8.17 −1235.65 1551.53
5 168.56 887.58 893.39 −5.81 −0.65% 8.13 −1248.04 1557.19
6 172.76 889.36 895.64 −6.28 −0.71% 8.11 −1281.15 1545.27
7 167.56 885.83 895.42 −9.59 −1.08% 8.13 −1190.08 1547.59
8 166.83 881.27 895.01 −13.74 −1.56% 8.13 −1271.57 1539.00
9 169.95 886.48 894.43 −7.94 −0.90% 8.18 −1283.04 1547.59

10 167.30 888.51 892.08 −3.57 −0.40% 8.20 −1247.83 1550.47

Table 5 provides the results in Tables 3 and 4 aggregated over all the DOC events.
These overall results are summarized in blok “DoC imputed”. In the bloks, “DoC as DoD”
and ”DoC as Cen” the average prediction errors are reported for the two corresponding
naïve estimators. The main finding from the simulations is that the CoDMI estimates seem
to be essentially unbiased, with a relative prediction error of around 0.5% for both the
original data considered. Some more extensive (and time consuming) tests, with N = 105

or N = 106, have shown a further reduction of the error (as well as, obviously, of the
corresponding s.e.m.).
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Table 5. Overall results from 10, 000 simulations.

Global Averages of Prediction Errors

DoC Imputed DoC as DoD DoC as Cen

Data Nc θ̃ ẽ ê ∆̄ ∆̄% s.e.m. ∆̄ ∆̄% ∆̄ ∆̄%

Arm A 9802 137.64 428.33 425.94 2.39 0.56% 1.338 4.97 1.16% −20.28 −4.74%

Arm B 9472 168.56 889.72 894.07 −4.34 −0.49% 2.557 −12.65 −1.42% −63.64 −7.16%

As a final exercise, we used a modified version of the simulation procedure to obtain
an assessment of goodness of the adjustment for censoring described in Section 3.4. In
the modified simulation, all the msim true virtual lifetimes τ̃j were generated assuming a
censoring, instead of a DoC, as the endpoint. Then we set δj ≡ 0 and in step 3 of Section 5
we generated in all iterations the virtual lifetimes τ̃j using the truncated reverse probability
distribution, i.e., the distribution obtained by applying the Kaplan–Meier estimator to the
reversed data w̃(R) (see (8)). Correspondingly with this change in assumption, the estimated
values τ̂j in each simulation were obtained by applying the CoDMI algorithm with the final
adjustment for censoring, setting at 0 all the probabilities α(θj) in (9). The overall results
from these simulations are summarized in Table 6, which have the same structure as Table 5
and where the results without adjustment are also provided for comparison.

Table 6. Effect of CoDMI adjustment for censoring when all COVID-19 endpoints are simulated as
censored (δj ≡ 0). Overall results from 10, 000 simulations

Global Averages of Prediction Errors

DoC Imputed DoC as DoD DoC as Cen

Data Adjust. Nc θ̃ ẽ ê ∆̄ ∆̄% s.e.m. ∆̄ ∆̄% ∆̄ ∆̄%

Arm A NO 9804 137.55 1004.22 426.09 578.13 57.57% 1.377 579.94 57.80% 554.64 55.28%
YES 9804 137.55 1004.22 1001.91 2.30 0.23% 1.212 579.94 57.80% 554.64 55.28%

Arm B NO 9459 168.62 1394.29 894.01 500.28 35.88% 2.119 488.74 35.14% 437.73 31.47%
YES 9459 168.62 1394.29 1396.58 −2.29 −0.16% 1.899 488.74 35.14% 437.73 31.47%

As we can see, the changed assumption on the status of the DoC endpoints provides
a large increase of the true life expectancy ẽ, but the adjustment for censoring seems to
capture quite well this change. Of course, in real life we do not know what the true value of
the δj is, and we will have to try to choose the suitable τ̂j in (9) based on the αj probabilities
and/or using expert judgment.

6. Conclusions and Directions for Future Research

In the simulated scenarios, where all the virtual endpoints of COVID-19 cases are
assumed to be DoD, the results indicate that CoDMI estimator is roughly unbiased and
outperforms alternative estimates obtained by the naïve approaches. In the opposite
extreme situation, where all the virtual endpoints of COVID-19 cases are assumed to
be censored, the final adjustment for censoring of CoDMI also guarantees unbiasedness,
provided that the information on the status of DoC events is assumed to be known. The
non-convergence cases can often be circumvented by milding the convergence criterion
and/or fudging COVID-19 data a little. Furthermore, changing the initialization of the
algorithm can be useful in some cases.

By a natural extension of the binomial assumptions underlying the KM estimator, a
version of the classical Greenwood formula can be derived for computing the variance
of CoDMI estimates. Equipped with this formula, the CoDMI algorithm is proposed as a
complete statistical estimation tool.

As we pointed out in the Introduction, CoDMI algorithm, compared with the cumu-
lative incidence functions method often used to study competing risks, is a pragmatic
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approach that allows to directly apply all standard statistical tools to “augmented” data.
However, it remains important to compare the predictive performance of the two ap-
proaches. In our applications, where the competing events are DoD and DoC, we do not
yet have sufficiently rich data to test the effectiveness—and possibly the necessity—of an
approach based on the cumulative incidence functions, or even to test the possibility of
using the two methods in conjunction. Therefore, this topic is left for future research.

Another interesting issue is the convergence of CoDMI algorithm, which is discussed
in Section 3.2. A natural way to approach this problem is to study the behavior of the
log-likelihood function. However, as we have pointed out, we are not in a fixed time points
situation. So it is not a trivial task to explicitly write the updated log-likelihood at each
iteration step, because the replacements in each step imply a re-ordering of the time points
and consequently a change in the number of items at risk in each death probability estimate.
This problem is also left as a future work.
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Appendix A. Derivation of the Extended Greenwood’s Formula

We organize data in a life table with K time intervals k = 1, 2, . . . , K, spanning the
interval [0, t′n+m], each with length ∆t = t′n+m/K. Let us denote by h′k and νk the hazard
rate and the number of DoD events, respectively, in the interval k and by nk the number of
subjects at risk at the end of the interval k− 1. In this setting the survival function is defined
as S′l = ∏l

k=1(1− h′k), l = 1, 2, . . . , K, and an estimate Ŝ′l for S′l is obtained by plugging in
an estimate ĥ′k for h′k, k = 1, 2, . . . , l. We make the binomial assumption:

nk ĥ′k ∼ Bin(nk, h′k) , with h′k = hk + Hk , k = 1, 2, . . . , K , (A1)

where the parameters hk and Hk are the DoD and the DoC hazard rate, respectively. In
addition to this usual assumption, we express Hk as the random variable:

Hk =
Nk
nk

, with Nk =
m

∑
j=1

1{(k−1)∆t<Tθj
≤k∆t} , (A2)

where, as usual, the random variable Tθj is the conditional lifetime T0|(T0 ≥ θj) and θj is
the time of the j-th observed DoC event. The probability distribution of Tθj , however, is not
necessarily specified for the moment. Let µk = E(Nk) and σ2

k = Var(Nk).
In order to derive an approximation of the variance of Ŝ′l , l = 1, 2, . . . , K, in the same

spirit of Greenwood’s formula we consider the variance of the logarithm:

Var
(

log Ŝ′l
)
= Var

[
l

∑
k=1

log(1− ĥ′k)

]
=

l

∑
k=1

Var
[
log(1− ĥ′k)

]
. (A3)

As for the second equality, it should be noted that the ĥk values are not indepen-
dent, since nk depends on the events in the previous periods. However successive con-
ditional independence, given nk (essentially, a martingale argument), is a sufficient con-
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dition for the equality to hold. Now we use the so-called delta-method approximation
Var(log X) ' Var(X)/[E(X)]2, to obtain:

l

∑
k=1

Var
[
log(1− ĥ′k)

]
'

l

∑
k=1

Var(1− ĥ′k)

[E(1− ĥ′k)]
2

. (A4)

By the binomial assumption (A1) we have, for all k:

E(ĥ′k|Hk) = hk + Hk ,

and:
Var(ĥ′k|Hk) =

1
nk

(hk + Hk) [1− (hk + Hk)] .

Therefore, for the expectation of ĥ′k we obtain:

E(ĥ′k) = hk + µk/nk , (A5)

and for the variance of ĥ′k we have:

Var(ĥ′) = Var
[
E(ĥ′k|Hk)

]
+ E

[
Var(ĥ′k|Hk)

]
= Var(hk + Hk) + E

[
(hk + Hk) [1− (hk + Hk)]/nk

]
,

or, with a little algebra:

Var(ĥ′k) =
1
nk

(hk + µk/nk)
[
1− (hk + µk/nk)

]
+

nk − 1
nk

σ2
k

n2
k

. (A6)

By inserting (A5) and (A6) into (A4) we have:

Var(log Ŝ′l) '
l

∑
k=1

Var(1− ĥ′k)

[E(1− ĥ′k)]
2

=
l

∑
k=1

[
hk + µk/nk

1− (hk + µk/nk)

1
nk

+
1

[1− (hk + µk/nk)]2
nk − 1

nk

σ2
k

n2
k

]
.

Plugging in hk = νk/nk and posing h̄k = (νk + µk)/nk, we obtain:

Var(log Ŝ′l) '
l

∑
k=1

[
h̄k

1− h̄k

1
nk

+
1

(1− h̄k)2
nk − 1

nk

σ2
k

n2
k

]
.

Using the inverse approximation Var(X) ' [E(X)]2 Var(log X), we finally have:

Var(Ŝ′l) ' (Ŝ′l)
2

l

∑
k=1

[
h̄k

1− h̄k

1
nk

+
1

(1− h̄k)2
nk − 1

nk

σ2
k

n2
k

]
. (A7)

Now, in the life table we take ∆t small enough to make each time interval contain at
most one time point t′i. In this limit, if ki denotes the interval containing t′i, we assume that:

1{(ki−1)∆t<Tθj
≤ki∆t} = 1{Tθj

=t′i}
,
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consistently with the fact that, in this setting, Tθj has discrete distribution with probability
masses in the points t′i. These probabilities are the q∗i,j provided by CoDMI. Then, by (A2)
and (11), we obtain:

E(Nk) =
m

∑
j=1

E(1{Tθj
=t′i}

) =
m

∑
j=1

P(Tθj = t′i) =
m

∑
j=1

q∗i,j = Qi .

For the variance, assuming the independence of the Tθj we have:

Var(Nk) =
m

∑
j=1

Var(1{Tθj
)=t′i}

) =
m

∑
j=1

q∗i,j (1− q∗i,j) =
m

∑
j=1

q∗i,j −
m

∑
j=1

(̄q∗i,j)
2 = Qi −−−Q(2)

i .

Thus, we estimate µk by Qi and σ2
k with Qi −−−Q(2)

i . Putting it all together, for the
survival function S′l we arrive at the product-limit estimator:

Ŝ′(t) = ∏
i:t′i≤t

(
1− h̄i

)
, t ≥ 0 , (A8)

where:

h̄i =
d′i νi

Ri
, with νi = (1− δ′i) + Qi, i = 1, 2, . . . , n + m ,

and Ri is computed recursively as:

R̄1 = n + m, R̄i = R̄i−1 − [1 + (νi − 1) d′i], i = 2, 3, . . . , n + m .

Correspondingly, (A7) reduces to:

Var
(
Ŝ′(t)

)
'
(
Ŝ′(t)

)2 ∑
i:t′i≤t

[
h̄i

1− h̄i

1
R̄i

+
1

(1− h̄i)2
R̄i − 1

R̄i

Qi −Q(2)
i

R̄2
i

]
. (A9)

In summary, the addition of the random component in the binomial assumption (A1)
has the effect of distributing each of the m COVID-19 deaths, which has been imputed by
CoDMI on the time points τ̂∗j , on all the uncensored time points according to its truncated
distribution q∗i,j. Summing over j we obtain the total probabilities Qi, for which the property
holds ∑i Qi = m. In the variance expression (A9) the estimation error of the τ̂∗j is taken into

account by the additional term containing the variance estimates Qi −Q(2)
i .

It should be noted, however, that the survival function estimate Ŝ′(t) given by (A8) is
slightly different by the estimate Ŝ(t) given by (1). Since the COVID-19 deaths are spread
out on all the time points, one usually has Ŝ′(t) ≥ Ŝ(t) for small t and Ŝ′(t) ≤ Ŝ(t) for large
t. One can accept the approximation:

Var
(
Ŝ′(t)

)
'
(
Ŝ(t)

)2 ∑
i:t′i≤t

[
h̄i

1− h̄i

1
R̄i

+
1

(1− h̄i)2
R̄i − 1

R̄i

Qi −Q(2)
i

R̄2
i

]
, (A10)

which gives Formula (12). The more conservative approximation:

Var
(
Ŝ′(t)

)
'
(

max{Ŝ(t), Ŝ′(t)}
)2 ∑

i:t′i≤t

[
h̄i

1− h̄i

1
R̄i

+
1

(1− h̄i)2
R̄i − 1

R̄i

Qi −Q(2)
i

R̄2
i

]
, (A11)

could be also considered.
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