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Abstract: Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers, repre-
senting a serious worldwide health concern. The recurrence incidence of hepatocellular carcinoma
(HCC) following surgery or ablation is as high as 70%. Thus, the clinical applicability of standard
surgery and other locoregional therapy to improve the outcomes of advanced HCC is restricted
and far from ideal. The registered trials did not identify a treatment that prolonged recurrence-free
survival, the primary outcome of the majority of research. Several investigator-initiated trials have
demonstrated that various treatments extend patients’ recurrence-free or overall survival after cu-
rative therapies. In the past decade, targeted therapy has made significant strides in the treatment
of advanced HCC. These targeted medicines produce antitumour effects via specific signals, such
as anti-angiogenesis or advancement of the cell cycle. As a typical systemic treatment option, it
significantly improves the prognosis of this fatal disease. In addition, the combination of targeted
therapy with an immune checkpoint inhibitor is redefining the paradigm of advanced HCC treatment.
In this review, we focused on the role of approved targeted medicines and potential therapeutic
targets in unresectable HCC.
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1. Introduction

The Global Burden of Disease places liver cancer as the second leading cause years
lost due to ill health. In the past 40 years, the incidence of liver cancer has risen drastically
with increased mortality. Hepatocellular carcinoma (HCC) is the most common liver cancer
subtype, produced from liver cells or intrahepatic biliary epithelial cells [1,2]. About 90% of
initial liver tumours are HCC. One of the main curative methods for HCC is liver resection.
After surgical resection, the annual recurrence rate of HCC is 10% and increases to 70–80%
after 5 years [3]. Identification of patients with a high risk of HCC recurrence following
curative surgical resection is crucial from a therapeutic standpoint. The five-year survival
rate following curative resection is commonly stated to be between 40 and 70 percent. Up
to 50% of individuals with resectable HCC who first have surgery later experience another
recurrence [4]. The high risk of recurrence has been ascribed to the lack of efficient adjuvant
therapy as well as the presence of occult micrometastasis from the primary tumour at
the time of surgery. Tumour size, tumour count, and portal vein invasion are additional
factors that are linked to early recurrence following resection. However, a pathological
assessment for an early HCC recurrence has not been provided [4,5]. In this review, we
look at current developments in targeted therapy to combat HCC recurrence and the
underlying mechanism. We also give an outline of the key areas of HCC research, such as
cutting-edge clinical trials that promise to enable significant advancement over the course
of the following ten years. Various target-specific drugs and their mechanisms of action are
described in the subsequent section of the review.
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2. Targeted Therapy for Unresectable HCC
2.1. Belinostat: A Histone Deacetylase Inhibitor (HDACi)

Histone deacetylase (HDAC) enzymes are mostly zinc-dependent proteins that com-
press chromatin and restrict the transcription of related genes by catalysing deacetyla-
tion of histone proteins. Increased HDAC expression is associated with cancer initia-
tion/progression and thus, it is an appropriate therapeutic target [6]. HDAC inhibitors
(HDACi) are now acknowledged as a distinct and powerful class of anticancer drugs. In
HCC cell lines and xenografts, it has been shown that inhibitors of HDAC cause apoptosis
and tumour regression in addition to having anti-proliferative, anti-metastatic, and anti-
invasive properties [7]. One member of the family, belinostat, has undergone testing for the
treatment of hepatocellular carcinoma both alone and in combination with other chemother-
apies and biological agents [8]. PXD101 (belinostat), an inhibitor of histone deacetylase,
inhibits the development of hepatocarcinoma cells in a dose-dependent manner and causes
histone acetylation. PXD101 therapy induces apoptosis without having a large impact on
viral gene expression. Twelve cellular genes with tumour suppressor roles experienced
varied changes in expression after being exposed to PXD101 for up to 48 h [9]. Phase I and
phase II trials consisted of 19 and 36 patients, respectively. In phase II trial, the median
progression-free survival (PFS) and OS were 2.83 and 8.89 months, respectively. The study
concluded that further in-depth studies are required, as the targeted PFS endpoint was not
achieved [10]. Wang et al. (2013) studied pharmacokinetics of belinostat in HCC patients to
determine its associated metabolic mode of action. The study identified UGT1A1-mediated
glucuronidation as a major mode of metabolic pathway alteration in HCC patients. The
clinical significance of this finding remains to be determined [11].

2.2. Bevacizumab: A Vascular Endothelial Growth Factor (VEGF) Inhibitor

The vast majority of HCC cases are diagnosed at an advanced stage, despite the fact
that many patients with the condition present at a younger age. With surgery or local
ablation, patients who present with early- and intermediate-stage illness may be cured.
The interaction between tumour cells and the elements of the tumour microenvironment
is evidently suggested to be a significant contributor to the development of HCC. The
establishment of an immunosuppressive environment is a crucial stage in the development
of tumours, and as HCC is an inflammation-associated tumour, targeting the immune
network may be a useful treatment strategy. Previous studies have shown that in unre-
sectable HCC, the simultaneous blockage of vascular endothelial growth factor inhibitor
(VEGF) and PD-L1 results in a longer progression-free survival [12]. Philip et al. (2012)
studied the effect of erlotinib and bevacizumab as combination therapy in HCC patients in
a two-stage phase II clinical trial. The combination therapy resulted in minimal activity
with a median survival of 9.5 months. Further studies are required to understand the effects
of combination therapy in molecularly categorised patients [13].

Metastatic recurrences after curative hepatic resections are common; thus, therapeutic
interventions to produce antiangiogenesis effects have been attempted to aid HCC prog-
nosis. VEGF, a dimeric glycoprotein and an important angiogenic factor, increases blood
vessels’ permeability and is a potent mitogenic agent. Thus, by increasing angiogenesis and
metastasis, VEGF is directly involved in HCC recurrence. Niu et al. (2000) showed higher
serum levels of VEGF in the increasing order of normal, cirrhosis, and HCC patients [14].
In a different study, Guo et al. (2012) found significantly higher serum VEGF levels in HCC
patients compared to normal individuals. Different studies correlated higher serum VEGF
levels with poor overall survival in HCC patients, indicating VEGF’s prognostic value in
the disease [15,16].

Bevacizumab, a humanised monoclonal antibody targeting VEGF-A, has shown anti-
cancer efficacy in different types of cancers. The antibody inhibits the interaction between
VEGF and its receptor molecule by directly binding to it, which in turn checks the growth
and angiogenesis in tumour cells [17]. Bevacizumab showed better efficacy in HCC patients
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compared to available standard therapy and has been approved (2020) as an initial therapy
for HCC patients with metastasis or those who cannot be treated with surgery [18].

2.3. Bortezomib: A Proteasome Inhibitor (PI)

Proteasome inhibitors (PI) have shown promising potential as chemotherapeutic
agents in the treatment of HCC [19,20]. Dawson reviewed the mechanisms of different
PIs in HCC [21]. As the first in class, bortezomib (BZB) is recommended for the treatment
of mantle cell lymphoma and refractory multiple myeloma. It was given FDA approval
in 2003 and is now the only PI with clinical approval [22]. The use of BZB alone or in
combination with other treatments for HCC has drawn a lot of attention. The role of BZB
in the management of non-surgical and metastatic HCC was expertly examined by Huang
et al. (2018) as an alternative or a supplement to the current treatment paradigm [23].
Ciombor et al. (2014) studied the effects and tolerability of BZB and doxorubicin (DOX) in
HCC patients in a phase II clinical trial [24]. The proteasome inhibition was correlated with
the therapy response and survival in advanced HCC patients. The combination therapy
showed suitable tolerance in the patients, but the primary endpoint (objective response rate)
was not met. The study suggested the prognostic role of proteasome inhibition markers in
advanced HCC patients [24].

2.4. Cixutumumab: An IGF-IR Signalling Inhibitor

The insulin-like growth factor (IGF) pathway includes a family of receptors and
ligands. Since the IGF-1R (insulin-like growth factor-1 receptor) route regulates cellular
motility, apoptosis, and proliferation, it has been suggested that signalling through this
pathway contributes to a variety of cancers [25]. In HCC, IGF-IR expression and activity
are both increased. The genesis and progression of HCC tumours are also hypothesised to
be accelerated by elevated IGF expression [26]. HCC cell lines have experienced growth
suppression and apoptosis as a result of pre-clinical investigations with a range of anti-
IGF-1R techniques. In addition, studies indicate that the IGF-IR signalling cascade has
an angiogenic component since it can trigger the release of VEGF [27]. As a result, anti-
IGFR medication increases the efficacy of anti-VEGF therapy by further reducing tumour-
associated VEGF release. Recombinant human IgG1 monoclonal antibody cixutumumab
(formerly IMC-A12, ImClone Systems, Inc, Bridgewater, NJ, USA) is aimed at IGF-1R.
IGF-1R is internalised and degraded by cixutumumab, which also potentially binds to it
(Kd = 0.04 nM). Cixutumumab also inhibits the interaction between IGF and their respective
receptors and thereby reduces cell viability/proliferation in HCC cells [28–30]. Fully human
IgG1 monoclonal antibody cixutumumab binds to IGF-R1 with great specificity. The IFG-R1
tyrosine kinase domain is activated by IGF-1. The Akt survival route and the MAP kinase
proliferation pathway are both activated by phosphotyrosine residues. In a human tumour
xenograft model, cixutumumab efficiently prevented ligand-induced phosphorylation,
which inhibits tumour cell proliferation and induces apoptosis. Through internalisation
and degradation of the receptor, cixutumumab regulates the receptor localisation on tumour
cell surface [31]. A phase II trial (NCT00639509) studied the efficacy of cixutumumab in
advanced liver cancer. The study showed an 8-month median overall survival in patients
treated with cixutumumab.

2.5. Doxorubicin: A Topoisomerase I and II Inhibitor

DNA topoisomerase I and II induce DNA breaks. Liu et al. (2003) showed significantly
increased expression of TOP I in HCC tissue samples compared to adjacent normal tis-
sue [32]. It has been shown that TOP2 induces cell invasion and EMT in HCC cells, which
indicates its candidacy as a therapeutic target [33].

The stage of the disease determines the recommended course of HCC treatment.
Transarterial chemoembolisation (TACE) is advised for HCC patients who are unresectable
and at the intermediate stage. TACE entails delivering the cytostatic agent(s) to the tu-
mour through the hepatic artery using a drug delivery system (DDS). The DDS causes
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embolisation, which impairs blood flow to the tumour, causes hypoxia, increases drug
concentrations, and prolongs drug residence periods in the tumour target region. The pre-
dicted median survival is increased by about 4 months with the use of palliative TACE treat-
ments [34]. Cytostatic drugs placed into drug-eluting beads or emulsified in Lipiodol® (LIP)
are two popular DDSs utilised for TACE therapy for intermediate-stage HCC. Chemothera-
peutic chemicals that have a positive charge can be placed into DCB (DC Bead®) for later
local release [35]. The primary cytotoxic agent for intermediate-stage HCC is doxorubicin
(DOX) used as its hydrochloric salt. Anthracycline, antibacterial, and antineoplastic med-
ication DOX is used off-label to treat intermediate HCC despite having various cancer
indications [36]. At least three anticancer mechanisms, including intercalation to DNA
base pairs, free radical production, and reversible binding to topoisomerase (TOP) I and
II, appear to be responsible for the pharmacological actions of DOX [36]. The amount of
DOX needed to inhibit growth by 50% (IC50) in vitro depends on both the period and the
cell type [37]. Gish et al. (2007) compared the efficacy of DOX and nolatrexed in advanced
HCC patients in terms of overall survival in a phase III trial. Dox showed lesser toxicity
and increased survival in HCC patients compared to nolatrexed-treated patients [38].

2.6. Erlotinib: An Epidermal Growth Factor Receptor (EGFR) Inhibitor

EGFR has attracted a lot of interest as a potential therapeutic target of tumour cells. As
a key player in signal transduction pathways involved in different cancer hallmarks, EGFR
is typically overexpressed in solid tumours. In some tumour types, its overexpression
is associated with disease progression and a worse prognosis [39,40]. Erlotinib’s main
therapeutic target, EGFR, possesses a transmembrane segment, a cytoplasmatic tyrosine
kinase domain, and an extracellular cysteine-rich ligand-binding region, which serve as
the binding sites for kinase inhibitors such as erlotinib. Through conformational changes
and subsequent phosphorylation of tyrosine residues, extracellular ligand binding initiates
events such as active receptor homo/hetero dimerisation and the formation of binding sites
for subsequent signal transducers, initiating a series of events that lead to the development
and growth of tumours [41]. In HCC, the EGFR is typically overexpressed. The increase
in ligand–receptor contact rather than point mutations or amplifications might be the
mechanism through which EGFR signalling in HCC gains function. Apoptosis and cell
cycle-regulating genes express differently as a result of erlotinib treatment for HCC [42].

The tyrosine kinase inhibitor drug erlotinib inhibits epidermal growth factor receptor
(EGFR) and is orally accessible. Erlotinib has the ability to prevent tumour cell growth,
invasion, metastasis, and angiogenesis [43,44]. Thirty eight patients with metastatic or
unresectable HCC participated in a phase II study to assess erlotinib’s effectiveness. The
most common grade 3 to 4 toxicities were fatigue (8%) and diarrhoea (8%). Child–Pugh
classification and toxicity severity (grade 3 or higher) were correlated; only 22% of Child–
Pugh A patients and 70% of Child–Pugh B patients had severe toxicity (p = 0.02). After
24 weeks, 32% of the patients were no longer progressing. Only 9% of responses were
confirmed in total [45]. Erlotinib alone appears to have relatively little effectiveness against
HCC, and more randomised studies are required to assess the drug’s potential advantages
for HCC patients [42]. Erlotinib has been tested in few clinical trials for the treatment of
advanced HCC, but due to a lack of detailed analysis, the mode of erlotinib efficacy was
not clear in advanced HCC. Thus, for a complete picture of the safety and effectiveness of
erlotinib, Zhang et al. (2016) carried out a comprehensive literature review and concluded
that erlotinib should be considered as a potential therapeutic option [46].

2.7. Galunisertib: A TGF-β Pathway Inhibitor

TGF-β is a multifunctional cytokine that regulates a variety of cellular processes in
most cells, including proliferation, cellular differentiation, adhesion, migration, and apop-
tosis. TGF-β serves as a tumour suppressor in normal tissues, but as tumour cells develop
strategies to circumvent its actions, it promotes the growth of the tumour. Although the
transition from a tumour suppressor to an oncogenic state is not fully understood yet,
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intrinsic and extrinsic variables appear to be significant [46,47]. A mesenchymal phenotype,
the loss of cell polarity, and the development of motile characteristics during epithelial–
mesenchymal transitions (EMT) are thought to be crucial intrinsic changes in the tumour
cells. Extrinsic variables from the tumour microenvironment, such as angiogenesis, inflam-
mation, and fibroblast activation, also contribute to TGF-β signalling’s pro-tumourigenic
potential. Modifications to the TGF-β signalling system can potentially contribute to tu-
mour growth in addition to changes in the tumour tissue. Therefore, TGF-β plays a crucial
role in the molecular aetiology of HCC; targeting TGF-β could offer new therapeutic in-
sights [48,49]. Three of the several small-molecule inhibitors of TGF-RI/II/ALK5 that have
been created are currently being tested in human clinical trials. The sole TGF-β pathway
inhibitor undergoing clinical testing in HCC patients is galunisertib (LY2157299), a selective
ATP mimetic inhibitor of TGF-RI/ALK5 (NCT01246986). Galunisertib has recently been
demonstrated to effectively block the expression of p-Smad2 and invasion in three HCC
models in vitro, but not proliferation [50].

TGF-β, a pro-inflammatory/profibrotic cytokine, is a complimentary signalling molecule
to VEGF that aids in the advancement of various HCCs. A subgroup of HCCs has higher
levels of TGF-β, which increases neovascularisation and encourages immune evasion and
immunosuppression, as well as migration and invasion [51]. In fact, compared to HCCs
not controlled by TGF-β, those showing indications of TGF-β activation also behave more
aggressively and suggest a worse prognosis [48,52]. The oral TGF receptor I (ALK5) small
molecule inhibitor galunisertib disrupts TGF signalling and harms HCC both in vitro and
in vivo [49]. The treatment slows the growth of HCC, lessens tumour vascularity, lowers
HCC motility and invasiveness, treats fibrosis, and boosts the local immune response.
Galunisertib monotherapy has been shown in phase I and II studies to have a positive
safety profile that does not overlap with that of antiangiogenic drugs and to provide a
small amount of therapeutic benefit via cytostatic disease control in patients with advanced
HCC [50,53]. A phase Ib/II study was designed (NCT02423343) to check the efficacy of
galunisertib dose escalation and its safety and tolerability in HCC patients. The study was
terminated in its early stage due to the low enrolment of HCC patients.

2.8. Nivolumab: A Programmed Cell Death Protein 1 (PD-1) Inhibitor

PD-1 (a coinhibitory receptor) and its ligand (PD-L1)-mediated pathway have been
implicated in compromised tumour immunity. The use of anti-PD-L1 antibodies enhances
tumour sensitivity and decreases tumour growth [54]. Wu et al. (2009) showed that the
interaction of PD-1 with its ligand contributes to immune suppression in human HCC. The
study suggested that PD-1 and PD-L1 interaction blockade carry important therapeutic
implications in HCC [55]. Scheiner et al. (2019) studied the safety and efficacy of nivolumab
in combination with other antibodies in a cohort of HCC patients. The study indicated the
better efficacy and safety profile of nivolumab in HCC patients [56]. In a meta-analysis, the
higher expression of membrane-bound and soluble PD-1 was positively correlated with
shorter overall survival in HCC patients [57]. Large important clinical trials have effectively
demonstrated the notion of inhibiting PD-1 activity in cancer patients.

Human immunoglobulin G4 (IgG4) monoclonal antibody nivolumab was created
by Bristol-Myers Squibb (BMS) to bind to the PD-1 receptor. The clinical success of the
antibody is due to its variable region’s high affinity (Kd 3.06 pM) and specificity (no
binding to CD28, ICOS, or CTLA-4) in binding the target (interaction with the PD-1 N-loop).
Nivolumab has high affinity and specificity for the PD-1 epitope that it targets [58,59]. A
phase I/II clinical trial focused on HCC assessed the efficacy of nivolumab, a completely
human immunoglobulin G4 monoclonal antibody to programmed cell death protein 1
(PD-1). Nivolumab showed a controllable safety profile throughout dosage escalation,
including acceptable tolerability. Regardless of the aetiology, PD-L1 expression in the
tumour, or previous sorafenib exposure, responses were seen. In patients with Child–Pugh
B cirrhosis, nivolumab showed activity and tolerability with ORR and DCR of 10% and
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55%, respectively. Nivolumab was given conditional FDA clearance based on this trial
(NCT02576509) [60].

Nivolumab and pembrolizumab were evaluated for safety and efficacy in patients
with advanced HCC who had previously failed to respond to sorafenib treatment in
the CheckMate-040 and KEYNOTE-224 studies, which provided the foundation for the
FDA’s accelerated approval of these drugs as second-line therapies [61,62]. Nivolumab’s
safety and effectiveness in an Asian cohort were confirmed by a subanalysis of the data
from CheckMate-040 [63]. An outstanding response to anti-PD-1 therapy has also been
recorded in a case report, and ICIs have demonstrated potential efficacy and tolerability
in advanced HCCs as systemic first-, second-, third-, and fourth-line treatments, with
median overall survival (OS) and progression-free survival (PFS) of 11.0 and 4.6 months,
respectively [56,64]. Although the phase III KEYNOTE-240 trial’s results for improved PFS
and OS did not reach the pre-specified statistical significance, they were consistent with
those of KEYNOTE-224 [65]. Pembrolizumab’s role in cases of advanced HCC with a viral
background may be clarified by the KEYNOTE-394 study, which is now being conducted
with Asian patients. Nivolumab did extend OS regardless of the PD-L1 expression profile
in HCC patients and also increased the survival of HCC patients with HBV/HCV as the
aetiology and prevented the reactivation of hepatitis. An anti-PD-1 inhibitor from China
called camrelizumab (SHR-1210, Hengrui Pharmaceutical, Jiangsu Lianyungang, China) is
being tested for the treatment of Hodgkin lymphoma and HCC. In a multi-centre, open-
label, parallel-group, randomised, phase II trial (NCT02989922), it was discovered to have
antitumour activity in Chinese patients with advanced HCC who had previously undergone
treatment. This finding supports the efficacy of PD-1 therapy for Chinese patients with
HBV-related HCC [66]. It is hoped that the outcomes of additional trials testing novel
ICIs such as durvalumab, avelumab, tislelizumab, sintilimab, tremelimumab, ipilimumab,
spartalizumab, and toripalimab will be encouraging and provide additional treatment
options for HCC patients, especially those who have relapsed on first-line therapies. Dual
ICI therapy and ICI combination therapy are two further strategies being used to improve
the effectiveness of ICIs as therapeutic agents. CheckMate 9DW’s early outcomes for dual
ICI treatment were astounding: the objective response rate was 32%, which was higher
than monotherapy of any ICIs alone. Using the combination of the therapeutic agents
(such as tivantinib and capmatinib), anti-PD1 and anti-PDL1 created an additive effect that
inhibits the formation of HCCs in mice. MET-mediated phosphorylation results in a lower
expression of PD-L1 [67]. For the treatment of advanced HCC, individual case studies
have also shown encouraging outcomes in TKI and anti-PD1/PD-L1 agents combination
therapy [68–70]. Early phase data that showed promise prompted the development of many
immune checkpoint inhibitor-based combination treatment regimens, the outcomes of
which will be made public in the coming years [71]. Several immune checkpoint inhibitor-
based combination treatment approaches have been started as a result of encouraging
early-phase data; the outcomes of these approaches will be known in the coming years.
Additionally capable of expressing PD-L1, tumour cells can do so while eluding the immune
system [72,73].

2.9. Peretinoin: A Cellular Retinoic Acid-Binding Protein

Despite effective treatment, HCC has a high risk of coming back. Patients with HCC
brought on by HBV or HCV experience the same mechanism of recurrence. Additionally,
although it might be challenging to pinpoint the mode of recurrence of certain lesions, the
time of recurrence is thought to vary. For instance, 2 years after the initial tumour has had
radical treatment, intrahepatic metastasis recurrence is more common than metachronous
multicentric recurrence. The prognosis of patients with HCC be enhanced by actively
reducing HCC recurrence in addition to early detection and therapy [74,75]. Kanemastu
et al. (1988) studied the level of cellular retinol binding protein levels in HCC tumour
samples compared to adjacent normal parenchymal tissue and found no significant differ-
ence between the two groups [76]. In a different study, Schmitt-Gräff et al. (2003) reported
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differential CRBP-1 levels in cancerous and normal liver cells. The study revealed that
modulating the CRBP-1 expression in HCC might inhibit the growth and progression of
tumours [77]. Lee et al. (2010) showed that targeting CRBP induces apoptosis in HCC
cells [78]. Recently, Liu et al. (2021) found that CRBP-1 is a crucial player in the initia-
tion and progression of HCC, which provides an independent prognostic biomarker and
therapeutic target for the diagnosis and treatment of HCC [79,80].

Peretinoin is a synthetic polyprenoic acid with retinoid-like characteristics that binds
to cellular retinoic acid-binding protein. Peretinoin’s method of action involves the ac-
tivation of target genes’ transcription through the receptors (such as retinoic acid) and
other transcriptional complexes. In HCC cells, peretinoin was discovered to alter the ex-
pression of genes that control cellular differentiation, cellular proliferation, and apoptosis.
According to several pharmacologic studies, peretinoin prevents the growth of subclinical
cancers and/or the carcinogenesis of precancerous lesions in the liver, thus preventing the
recurrence of HCC [81–83].

Initially, peretinoin was used to treat skin disease. Later on, a clinical study in curative
resected HCC patients on therapy showed increased survival rates and low recurrence of
the disease. Based on these encouraging outcomes, peretinoin was created in 1997 under
the trade name NIK 333 (Kowa Company, Ltd., Chuo-ku, Tokyo), and clinical trials on the
substance began in February 2012 under the new designation K-333 [84,85]. A phase III
trial study (NCT01640808) checked the efficacy of peretinoin (600 mg oral dose twice a day)
in terms of recurrence-free survival in HCC patients as a primary measure. The disease-free
survival and time to recurrence were studied as secondary outcomes in HCC patients.
Increased recurrence-free survival was observed in the peretinoin-treated group compared
to the placebo arm. Similarly increased disease-free survival and time to recurrence were
also observed in the peretinoin-treated arm. Extensive pre-registration phase III placebo-
controlled trials using peretinoin are now being conducted in Asia to assess its effectiveness
and safety in patients with virus-associated HCC after total tumour excision (Table 1) in
light of new information [86].

Table 1. Clinical trials on targeted therapy in hepatocellular carcinoma recurrence.

Study Design Clinical Trila.Gov
Identifier Phase/Type Primary

End Point
Secondary
End Point Study Status

Galunisertib + Nivolumab NCT02423343 I/II MTD PK/Cmin/PFS/
CR/TTR/OS Completed

Huaier Granule NCT01770431 IV IRMAH PSP Completed

Sofosbuvir + Ribavirin NCT01559844 II pTVR VF Completed

Peretinoin NCT01640808 III RFS DFS/TTR Completed

Bevacizumab NCT00055692 II PFS/CR + PR - Completed

Sorafenib NCT00692770 III RFS TTR/OS Completed

Doxorubicin + Bortezomib NCT00083226 II RECIST PFS/OS Completed

Cixutumumab NCT00639509 II PFS/ORR OS Completed

Selumetinib NCT00604721 I CR + PR PFS/OS Completed

Belinostat NCT00321594 I/II DLT/MTD Completed

Bevacizumab + Erlotinib NCT00365391 II ORR TTP/PFS/OS Completed

Bevacizumab + Temsirolimus NCT01010126 II CR + PR/T - Completed

Sorafenibtosylate NCT01502410 II CR + PR T/PK Completed

Biological: -205/NY-ESO-1
Fusion Protein

CDX-1401 ± Sirolimus
NCT01522820 I - - Completed
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Table 1. Cont.

Study Design Clinical Trila.Gov
Identifier Phase/Type Primary

End Point
Secondary
End Point Study Status

Sustained released 5-FU
and cisplatin NCT00817895 Interventional - - Completed

Statin therapy and the risk of
HCC recurrence NCT03490461 Observational - - Completed

Ginsenoside Rg3 NCT01717066 Interventional - - Completed

Lenvatinib NCT04415567 Observational - - Completed

Direct Acting Antivirals against
hepatitis C virus infection NCT03197155 Observational - - Completed

Rapamycin NCT02724332 I - - Completed

Ispinesib NCT00095992 II - - Completed

Licartin NCT00819650 II - - Completed

Epirubicin and lipiodol NCT00820053 II - - Completed

Ethiodised oil NCT00870558 III - - Completed

Bortezomib NCT00077441 II - - Completed

Gefitinib NCT00071994 II - - Completed

Interferon-alfa-2b and Ribavirin NCT00375661 IV - - Completed

Cixutumumab and
Sorafenib Tosylate NCT01008566 I - - Completed

Doxorubicin hydrochloride and
Nolatrexed dihydrochloride NCT00012324 III - - Completed

Erlotinib hydrochloride NCT00047346 I - - Completed

Oxaliplatin NCT00052364 II - - Completed

Interferon alpha-2b NCT00273247 III - - Completed

Oxaliplatin NCT00091182 II - - Completed

Sorafenib tosylate NCT00844168 I - - Completed

Dose-limiting toxicities (DLT); maximum tolerated dose (MTD); complete response + partial response (CR + PR);
median progression-free survival (PFS); median overall survival (OS); overall response rate (ORR); response
evaluation criteria in solid tumours (RECIST); recurrence-free survival (RFS); time to recurrence (TTR); disease-
free survival (DFS); percentage of participants with post-transplant virologic response (pTVR); virologic failure
(VF); incidence of recurrence and metastasis after hepatectomy (IRMAH); postoperative survival period (PSP);
maximum tolerated dose (MTD); pharmacokinetics (PK); minimum concentration (Cmin); time to progression
(TTP); toxicity (t).

2.10. Selumetinib: A Mitogen-Activated Protein (MAP) Kinase Inhibitor

There is evidence that the RAF/MEK/ERK pathway is important in the develop-
ment of HCC. It has been shown that in 50 to 100 percent of human HCCs, this route is
activated [78,87–89]. This is mostly attributed to receptor tyrosine kinases, such as IGF-1,
EGF, or c-MET, which are involved in autocrine/paracrine signalling. Furthermore, it was
recently discovered that HCCs seem to express fewer RAS pathway inhibitors than normal
tissues. Mixed results have been seen in studies of MEK/ERK inhibition in HCC during
in vitro and in vivo experiments [90]. Klein et al. used a variety of techniques to block the
MEK/ERK pathway, and they found that several HCC cell lines had decreased proliferation
and increased apoptosis [91]. Selumetinib was used by Huynh et al. against HCC cell lines,
and they once more showed that it was active in HCC experimental models. Selumetinib
(AZD6244, ARRY-142886) is a competitive inhibitor of MEK1/2, and its recommended oral
phase II dose has previously been determined to be 100 mg twice daily [92,93].
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Selumetinib was evaluated as a first-line therapy in a recent phase II study for indi-
viduals with advanced HCC. Nineteen patients were enrolled in the first stage, with plans
to recruit 25 more in the second stage if at least one objective response (the primary end
point) had been seen. This means that a total of 44 patients could have participated in
the research. The trial was terminated at the interim analysis because no radiographic re-
sponse was seen in the study population. Three (27%) of the eleven patients with increased
α-fetoprotein showed reductions of 50% or more, and the median time to progression
(TTP) was 8 weeks. The level of toxicity was consistent with selumetinib toxicity studies in
patients without cirrhosis. Selumetinib appeared to have a negligible single-agent effect,
despite the pharmacokinetic analysis showing that target activation was suppressed [94]. A
phase II trial study (NCT00604721) checked the efficacy of selumetinib in locally advanced
or metastatic liver cancer in terms of objective response rate as the primary measure. The
median progression-free and overall survival were studied as secondary outcomes in the
patients. The study reported moderate liver toxicity with PFS and OS of 1.4 and 4.2 months,
respectively.

2.11. Sofosbuvir: A Nucleotide Analogue

A non-structural protein 5B (NS5B) inhibitor, sofosbuvir (SOF) is also known as PSI-
7977. It received Fast Track FDA approval in August 2010. Two molecules with a similar
chemical makeup, PSI-7976 and PSI-7977, are combined in the medication. Both PSI-7976
and PSI-7977 molecules quickly transform into the same active triphosphate when the
medication enters the liver cell. The first ribonucleoside analogue inhibitor, SOF, was
authorised in 2013 for the treatment of chronic hepatitis C. The FDA approved the medicine
in 2014 as a prodrug and nucleotide analogue [95,96]. Widely used DAAs for treating
HCV, including SOF, specifically target the HCV RNA-dependent RNA polymerase (RdRp).
Importantly, SOF-based regimens were used to treat the majority of reported cases of
HCC development. In a Huh7-based subgenomic replicon, SOF effectively reduced HCV
replication, as predicted. By using MTT and Ala blue tests, SOF therapy for 48 or 72 h
had no discernible impact on the development of the majority of HCC cells. Surprisingly,
however, SOF improved all four HCC cell lines’ single cell-based clonogenic potential.
The much higher quantity and size of established colonies justify this aspect. Contrarily,
placebo therapy has no such impact. Thus, it has been unequivocally shown that SOF has
a direct stimulating influence on the beginning and expansion of clonogenic processes
based on single HCC cells, but not on the expansion of the majority of HCC cells. The
tumour microenvironment is a challenging and developing field, so neither these results
nor the previous study should rule out the possibility of a secondary effect of DAAs on
initiating the development of HCC. Therefore, future experimental and clinical research
must work together to shed light on this worrying situation and provide a mechanistic
understanding [97]. Atif et al. (2022) recently came to the same conclusion that SOF neither
causes nor eradicates HCC based on the expression patterns of a few chosen genes in
SOF-treated HCC cell lines [98].

HCV is a positive strand virus that contains a single stranded (ss) RNA genome,
encoding a polyprotein that is processed into several structural and non-structural proteins.
The NS5B possesses RdRp activity, catalyses HCV RNA replication, and is a prime target
for antiviral drug discovery. Nucleoside/nucleotide analogs and non-nucleoside inhibitors
are the two important groups of HCV RdRp inhibitors. An RdRp-activity-targeting-drug
binds to its allosteric site and inhibits the imitation step by altering the structure–function
relation of the protein [99]. HCV-induced HCC is a complex process which includes the
development of a pro-carcinogenic environment (cirrhosis) and promotes malignancy in
the presence of viral proteins. This gradual process can take up to four decades to develop,
during which cell cycle-related proteins become mutated and ultimately convert normal
hepatocytes into malignant types [100].

HCC development is known to be correlated with chronic hepatitis C virus (HCV)
infection. Although the number of new HCV cases has decreased, people with HCC are
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more likely to have HCV infection. Direct-acting antiviral (DAA) therapies have revolu-
tionised the management of HCV infection. Compensated DAA agents achieve sustained
virologic response (SVR) in the liver function, and reduced need for liver transplantation
was also achieved [101]. Mixed responses have been reported concerning the outcome of
DAA therapy. Contrary to expectations, some recent studies found an unexpectedly high
rate of HCC formation following DAA treatment, while other research found no such risk.
Due to the diverse demographics and methodology used in many studies, it is still difficult
to draw a firm conclusion on this matter.

2.12. Temsirolimus: An mTOR Pathway Inhibitor

The significance of the mammalian or mechanistic target of rapamycin (mTOR) sig-
nalling pathway in controlling liver cancer cell growth was revealed by Li et al. (2013) [102].
The study team demonstrated that temsirolimus suppresses the activity of mTOR and
its downstream components, which has inhibitory effects on Bel-7402 liver cancer cells.
They proposed that mTOR inhibition might be used as a treatment for liver cancer [102].
Among the several molecular pathways involved in HCC development, mTOR is one
of the most investigated. A conserved checkpoint serine/threonine kinase called mTOR
takes part in a number of molecular signalling pathways both inside and outside of cells.
The downstream effects of mTOR activation include the response to cellular hypoxia and
control over intracellular energy storage, growth, and replication. Since mTOR is associated
with cellular growth and replication, inhibiting mTOR may be crucial in preventing the
development of cancer. The rapamycin analogues known as mTOR inhibitors are able to
deactivate mTOR by attaching to its C-terminal kinase domain. The three inhibitors that are
most frequently used in clinical settings are sirolimus, everolimus, and temsirolimus. Since
mTOR inhibitors are also immunosuppressive drugs, their use in liver transplant patients
who have previously had HCC have significant therapeutic implications for preventing
tumour recurrence. Because of the impaired liver function, standard chemotherapy drugs
are ineffective against HCC and poorly tolerated [103–105]. Everolimus (RAD001), tem-
sirolimus (CCI-779), and deforolimus are three examples of rapalogs whose bioavailability
has been increased due to the early success of rapamycin (AP23573). The primary focus
switched to anti-cancer therapy as a result of the significant function of mTOR in cell
growth and metabolism, and temsirolimus (CCI-779) was licenced for the treatment of renal
cell carcinoma in 2007. The first-line therapy portion of its trial in advanced HCC patients
(NCT01079767) was stopped due to its toxic effects [106]. Knox et al. (2014) studied the
efficacy of bevacizumab and temsirolimus combination therapy in advanced HCC patients.
The study demonstrated an increased overall response rate (ORR) with PFS and OS [107].

3. Combination Targeted Therapy—A Way out to HCC Recurrence?

The United States Food and Drug Administration (FDA) approved the multi-kinase
inhibitor sorafenib as a systemic treatment for HCC on the basis of a phase III trial that
showed non-surgical candidates with intact liver function with better overall survival over
placebo [108,109]. SHARP and Asia-Pacific trial results supported the approval of sorafenib
as the first-line targeted treatment for advanced HCC. Additionally, sorafenib exhibits anti-
tumour activity in cases of recurring malignancies after liver transplantation, providing a
survival advantage over the best supportive treatment. In clinical practice, sorafenib was
consistently safe for both Child–Pugh A and B patients, although side effects such diarrhoea
and hand–foot syndrome were linked to longer overall survival (OS) [110]. The increase in
survival remains moderate, and long-term sorafenib therapy causes acquired resistance
to develop quickly, limiting future benefits. Furthermore, research from several nations
has shown that sorafenib is not cost-effective at present pricing, which has attracted a lot
of attention and criticism. This emphasises how critical it is to treat HCC in non-surgical
candidates using a unique systemic strategy [111].
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Although prior initiatives, including the use of anti-viral medicines, have generally
failed, approaches to adjuvant therapy have been thoroughly researched due to the high
recurrence rates following hepatectomy for HCC [112]. Antiangiogenic drugs; MEK/ERK,
mTOR, HGF/c-Met, and EGF/EGFR pathway inhibitors; and histone deacetylase inhibitors
have all been used with sorafenib. There have been phase III trials for other drugs, includ-
ing interferon, selumetinib, capecitabine, tegafur-uracil, and gemcitabine and oxaliplatin
(GEMOX), but none of these combinations containing sorafenib have been successful
yet [113,114]. Improved postoperative survival was anticipated due to sorafenib’s poten-
tial in the adjuvant situation based on its successful palliative use. Unfortunately, this
has not been proven, and in the STORM trial and other Western trials, it did not dimin-
ish postoperative tumour recurrence [115,116]. However, sorafenib dramatically lowers
tumour recurrence and improves disease-free survival (DFS) in BCLC (Barcelona Clinic
Liver Cancer Classification) stage C patients, and Zhuang et al. showed that adjuvant
therapy improved both DFS and OS [116]. In contrast to intermediate HCC, sorafenib
treatment after hepatectomy dramatically extended the OS of advanced HCC. Regard-
less of the BCLC stage, patients who underwent hepatectomy and were found to have
microvascular invasion (MVI) upon a pathological examination benefited from adjuvant so-
rafenib therapy [112,117]. Following resection, sorafenib dramatically increased overall and
recurrence-free survival (RFS), according to data from a sizable recent trial with propensity
score matching analysis. Sorafenib’s effect in MVI patients after radical resection was being
investigated in a phase III clinical trial (NCT02867280), but the study was terminated due
to negative results obtained in the midterm analysis. A study (NCT02537158) with similar
objectives is active, but the information on recruiting patients is not available [118,119].

Similar to early attempts to create first-line medicines that were superior to sorafenib,
preliminary attempts to identify efficient second-line therapies were unsuccessful. The
RESORCE trial (phase III) examined regorafenib efficacy in sorafenib-treated worsened
patients. This study officially launched the second-line and sequential therapy era by
proving the efficacy of second-line medicines. Regorafenib improved survival regardless of
how quickly the disease had advanced during or following the last sorafenib dosage. Even
in patients with HCC recurrence after liver transplantation, regorafenib was demonstrated
to be successful for the sequential therapy of sorafenib followed by regorafenib. Not all
patients who respond to sorafenib are, however, eligible for second-line treatment [120].
Only about 30% of patients in clinical practice are eligible for second-line regorafenib
therapy [121]. The effectiveness and superior results of following treatment, including
lenvatinib, were influenced by the liver’s functional reserve and ECOG (Eastern Coop-
erative Oncology Group) performance status during sorafenib therapy [122]. Despite
these targeted medications discussed above, the search for novel agents has continued.
Components of targeted therapy (targets and respective drug) for recurrent hepatocellular
carcinoma are summarised in Figure 1.
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Figure 1. Therapeutic targets and respective drugs used for unresectable hepatocellular carcinoma.
Erlotinib inhibits EGFR and thereby negatively regulates cancer hallmarks through modulating the
STAT/PI3K/Akt/mTOR axis. Galunisertib inhibits TGFβR which in turn negatively regulates cancer
hallmarks through the PI3K/Akt/mTOR axis. Nivolumab, cixtumumab, and bevacizumab inhibit
PDL1, IGFR, and VEGFR, respectively, and thereby negatively regulate cancer hallmarks through
MAPK. Temsirolimus and selumetinib directly inhibit mTOR and MAPK, respectively, and thereby
negatively regulate cancer hallmarks in recurrent hepatocellular carcinoma.

4. Conclusions

In this review, we have discussed numerous possible therapeutic targets and associated
drugs which have been studied in HCC clinical patients. We focused on the drugs studied
for their effect on patient survival (disease-free and/or overall). Immune checkpoint
inhibitors (ICIs), including pembrolizumab, nivolumab, durvalumab, and atezolizumab,
have recently been studied in HCC patients, although clinical trials evaluating single-agent
ICI have revealed unimpressive outcomes. Immune-based combinations, on the other
hand, have proved more dramatic. In reality, a new standard of care for HCC patients
with advanced disease has been established as a result of the phase III IMbrave150 trial,
which compared sorafenib with atezolizumab–bevacizumab. The study revealed better
therapeutic outcomes (in terms of survival and therapeutic response) in patients receiving
the immune-based combination. Despite the fact that ICIs appear to have finally discovered
their place in combinatorial treatments for HCC, there are still a number of unsolved
problems. Since only a portion of HCC patients respond to immunotherapy, the lack of
established biomarkers of response is one of the important problems. Based on these
assumptions, it is crucial to comprehend the function of prospective biomarkers, such as
the expression of the programmed death ligand 1 (PD-L1), tumour mutational burden
(TMB), microsatellite instability (MSI) status, gut microbiota, and many more. Additionally,
the medicines, patients, research methods, study phases, and clinical results used in clinical
trials of HCC immunotherapy vary greatly.

None of the targeted therapies decreased the HCC recurrence up to the mark. More-
over, the review indicates that studying the role of targeted therapy alone or in combination
is a leading field in HCC research, considering the clinical impact. Even though some of the
aforementioned targets may appear promising, there are still some issues with studying this
subject. For example, the recurrence rate increases with the advancement of HCC; thus, the
targeted therapy should be categorised for the initial, intermediate, and advanced stages of
the disease to achieve a better clinical outcome. The metastasis and angiogenesis-related
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targets may be targeted using appropriate drugs for patients with advanced HCC. The
therapeutic drugs may be used in combination with toxicity-lowering agents, which could
enhance the therapeutic potential and quality of life, and decrease recurrence in patients.
Combinations of selumetinib and erlotinib; selumetinib and temsirolimus; erlotinib and
galunisertib/nivolumab; and nivoluab and selumetinib/temsirolimus may be studied in
HCC clinical trials, as these combination either target different molecular axes or strengthen
the activities of their direct target inhibition in association with the downstream inhibitor
partner (Figure 1). Slow-release formulations of the targeted therapeutic drug may be
developed for initial and intermediate HCC, which may delay the recurrence process. In
conclusion, more effective targeted therapy, either alone or in combination, is urgently
needed to deal with the recurrence problem in HCC patients, which will help in the fight
against this devastating disease.
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