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Abstract: Background: tRNA-derived RNA fragments (tRFs) are a novel class of small ncRNA that 

are derived from precursor or mature tRNAs. Recently, the general relevance of their roles and clin-

ical values in tumorigenesis, metastasis, and recurrence have been increasingly highlighted. How-

ever, there has been no specific systematic study to elucidate any potential clinical significance for 

these tRFs in prostate adenocarcinoma (PRAD), one of the most common and malignant cancers 

that threatens male health worldwide. Here, we investigate the clinical value of 5′-tRFs in PRAD. 

Methods: Small RNA sequencing data were analyzed to discover new 5′-tRFs biomarkers for PRAD. 

Machine learning algorithms were used to identify 5′-tRF classifiers to distinguish PRAD tumors 

from normal tissues. LASSO and Cox regression analyses were used to construct 5′-tRF prognostic 

predictive models. NMF and consensus clustering analyses were performed on 5′-tRF profiles to 

identify molecular subtypes of PRAD. Results: The overall levels of 5′-tRFs were significantly up-

regulated in the PRAD tumor samples compared to their adjacent normal samples. tRF classifiers 

composed of 13 5′-tRFs achieved AUC values as high as 0.963, showing high sensitivity and speci-

ficity in distinguishing PRAD tumors from normal samples. Multiple 5′-tRFs were identified as be-

ing associated with the PRAD prognosis. The tRF score, defined by a set of eight 5′-tRFs, was highly 

predictive of survival in PRAD patients. The combination of tRF and Gleason scores showed a sig-

nificantly better performance than the Gleason score alone, suggesting that 5′-tRFs can offer PRAD 

patients additional and improved prognostic information. Four molecular subtypes of the PRAD 

tumor were identified based on their 5′-tRF expression profiles. Genetically, these 5′-tRFs PRAD 

tumor subtypes exhibited distinct genomic landscapes in tumor cells. Clinically, they showed 

marked differences in survival and clinicopathological features. Conclusions: 5′-tRFs are potential 

clinical biomarkers for the diagnosis, prognosis, and classification of tumor subtypes on a molecular 

level. These can help clinicians formulate personalized treatment plans for PRAD patients and may 

have similar potential applications for other disease types. 
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1. Introduction 

Prostate adenocarcinoma (PRAD) is one of the most common and malignant cancers 

that threatens male health worldwide. In China, PRAD cases are increasing, with an esti-

mated 125,646 new cases and 56,239 deaths in 2022 [1]. The lifetime probability of a PRAD 

diagnosis in men also increases significantly with age. Although the overall survival rate 

of PRAD is generally better than other cancers, its recurrence rate is also higher [2], and 

the majority of patients develop castration-resistant PRAD at advanced stages [3]. Despite 

great advances in the diagnosis and prognosis of PRAD [4], clinical parameters such as 

serum prostate-specific antigen (PSA) lack specificity for diagnosis and cannot defini-

tively indicate individual prognosis [5]. Over recent years, increased numbers of other 

biomarkers have been used for the clinical diagnosis and prognosis of PRAD. Of note, 

urine levels of 8-OHdG and 8-Iso-PGF2α before and after surgery in patients with PRAD 

can help predict radicality (and possibly local recurrence) after robot-assisted radical pros-

tatectomy [6]. However, clear biomarkers that facilitate accurate diagnosis, prognosis, and 

subtype classification are still lacking [7]. The identification of new, more definitive diagnostic 

and therapeutic biomarkers for PRAD would therefore be of great clinical significance. 

tRNA-derived RNA fragments (tRFs) are a novel class of small noncoding RNAs 

(ncRNAs) that are derived from precursor or mature tRNAs. So far, many thousands of 

tRFs have been identified. These tRFs are broadly classified into six categories based on 

the cleavage sites at their parental tRNA: 5′-tRFs, 3′-tRFs, 5′-tRNA halves, 3′-tRNA halves, 

i-tRFs, and 3′U-tRFs (also known as tsRNAs or 1-tRF) [8,9]. RNase Z and ELAC2 cleave 

the 3′ end of the precursor tRNAs to generate 1-tRF [10]. The other three classes of tRFs 

are generated from different parts of mature tRNAs, with 5′ ends in the D-loop for 5′-tRFs, 

3′ end in TψC loop for 3′-tRFs, and internal sites for i-tRFs [11]. In contrast, tRNA halves 

(including 5′-tRNA halves and 3′-tRNA halves) are generated from endonucleolytic cleav-

age of mature tRNA in the anti-code loop under angiogenin (ANG). These are also called 

tRNA-derived stress-induced RNAs [12]. 

Rather than random degradation products of tRNAs, tRFs are highly abundant and 

conserved across species, and their cleavages are site-specific [9]. Mounting evidence sug-

gests that these small ncRNAs play important roles in cancer development and progres-

sion [13]. Aberrant expression of tRFs has been found to be involved in cell proliferation, 

invasive metastasis, and the progression of several human malignancies [9]. For example, 

CU1276 is involved in suppressing proliferation and modulating molecular responses to 

DNA damage by repressing endogenous RPA1 in B cell lymphoma [14]. tRFGlu, tRFAsp, 

tRFGly, and tRFTyr can play tumor suppressive roles by destabilizing oncogenic transcripts 

by binding to YBX1 in breast cancer cells [15]. LeuCAG3′tsRNA can promote hepatocel-

lular carcinogenesis by binding to two ribosomal protein mRNAs (RPS28 and RPS15) to 

enhance their translation [16]. Likewise, previous studies have also identified multiple 

tRFs involved in various aspects of prostate cancer [17]. tRNA-halves (also called SHOT-

RNAs) from tRNAAsp-GUC, tRNAHis-GUG, and tRNALys-CUU have been noted as promoters of 

cellular proliferation in breast cancer and PRAD in a sex hormone-dependent manner [18]. 

tRF-1001 is required for cell proliferation, resulting from the cleavage of the Ser-TGA 

tRNA precursor transcript by tRNA 3′-endonuclease ELAC2 cutting in PRAD [8]. tRF-315, 

derived from tRNA-Lys-CTT, prevents cisplatin-induced apoptosis and attenuates cispla-

tin-induced mitochondrial dysfunction in PRAD cells [19]. The expression of tRFs is also 

affected during cancer development and progression, due to the activation of oncogenes 

and the inactivation of tumor suppressors [20,21]. 

In this regard, aberrantly expressed tRFs have great potential as new biomarkers for 

cancer diagnosis, prognosis, and tumor subtypes [9,13]. To assess the clinical significance 

of new tRF biomarkers for PRAD, this study analyzed small RNA sequencing data from 

499 tumor tissues and 52 adjacent normal tissues of PRAD from The Cancer Genome Atlas 

(TCGA) dataset. 
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2. Methods 

2.1. Data Collection 

Small RNA sequencing datasets of 499 tumor tissues and 52 adjacent normal tissues, 

and PRAD somatic mutation datasets from TCGA, were downloaded from the Genomic 

Data Commons Portal (https://portal.gdc.cancer.gov/, accessed on 24 April 2021). The cor-

responding PRAD mRNA expression profiles (read counts) and patients’ clinical infor-

mation, including survival time, age, and tumor stage, were downloaded from the Inter-

national Cancer Genome Consortium (ICGC) Data Portal (http://dcc.icgc.org, accessed on 

26 April 2021). Gene annotations and corresponding sequences for 610 nuclear tRNA 

genes in humans were downloaded from GtRNAdb (http://gtrnadb.ucsc.edu). The se-

quences and positions of 22 mitochondrial tRNA genes were downloaded from NCBI 

(https://www.ncbi.nlm.nih.gov/nuccore/251831106). All these datasets were further pro-

cessed before subsequent analysis. 

2.2. Identification and Quantification of 5′-tRFs in PRAD 

A tRF annotation database for mapping and quantifying tRFs was built as previously 

described [22]. Using the created tRF annotation database, 5′-tRFs were detected and 

quantified from the small RNA sequencing datasets of PRAD. Briefly, reads in these BAM 

files were first remapped to sequence sets of our CCA-tRNA and pre-tRNA annotations 

using the burrows-wheeler transform (BWA) algorithm (http://biobwa.sourceforge.net/, 

accessed on 23 February 2021), allowing for no mismatches per read. These remapped 

reads were then used to count the number of reads belonging to each of the candidate 5′-

tRFs. Finally, the expression level of 5′-tRFs was quantified as reads per million (RPM) of 

total mapped reads. To obtain robust 5′-tRFs, the 5′-tRFs with 90th quantile RPM < 1 were 

filtered, and those remaining were treated as detectable 5′-tRFs in PRAD. Furthermore, 

the expression level of 5′-tRFs was log2-transformed and then the upper-quantile normal-

ized across samples before being used for downstream analysis. 

2.3. Quantification of mRNA Expression Levels 

mRNA expression levels from the corresponding PRAD samples in TCGA were nor-

malized using the read per kilobase per million mapped reads (RPKM). Similarly, low-

expressed genes with 90th quantile RPKM < 1 were removed and the remaining log2-trans-

formed RPKM values were used for downstream analysis. 

2.4. Identification of 5′-tRFs Dysregulated in PRAD 

Expression levels of 5′-tRFs were compared between tumor tissues and adjacent nor-

mal tissues using a two-sample unpaired Wilcoxon rank sum test. Differentially expressed 

5′-tRFs were detected using the Benjamini–Hochberg corrected P-value (i.e., false discov-

ery rate, FDR) < 0.01 and |log2FC| > 1 between tumor and normal samples (Table S1). 

Next, the 13 most upregulated 5′-tRFs with |log2FC| > 2 and FDR < 0.01 were selected as 

tRF classifiers for the diagnosis of PRAD. Then, mathematical models were constructed to 

distinguish PRAD tumor tissues from normal tissues using different machine learning 

algorithms, such as random forest (RF), support vector machine (SVM), generalized linear 

model (GLM), and partial least squares (PLS). The receiver operation characteristic (ROC) 

was used to assess the sensitivity and specificity of the 5′-tRFs classifier at various classi-

fication thresholds. The area under the ROC curve (AUC) was calculated to evaluate the 

overall performance of tRF classifiers. 

2.5. Inference of Potential Functions of 5′-tRFs 

Studying the function of 5′-tRF is always problematic due to a lack of “prior” 

knowledge. To infer the functional role of dysregulated 5′-tRFs in PRAD, guilt by associ-

ation (GBA) analysis was performed. Based on co-expression patterns, GBA has been 
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widely used to study long non-coding RNAs [23]. Briefly, Pearson’s correlations (r) be-

tween expression of mRNA genes and dysregulated 5′-tRFs were estimated. mRNA genes 

co-expressed with dysregulated 5′-tRFs were identified when |r| > 0.3 and FDR < 0.05 

were satisfied. Then, gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) analyses of mRNA genes co-expressed with upregulated 5′-tRFs were 

performed using the web portal Metascape (https://metascape.org/ accessed on 28 March 

2022). 

2.6. Construction of Prognostic Predictor of 5′-tRFs 

The association of 5′-tRF expression with PRAD prognosis was analyzed using the 

univariate Cox proportional hazards regression model. As a result, a set of 16 5′-tRFs that 

were significantly correlated with progression-free survival (PFS) was identified (P-value 

from both Wald test and log rank test < 0.05). The hazard ratio (HR) and its 95% confidence 

interval (CI), Z-score, and P-value for each of these 16 5′-tRFs are listed in Table S2. 

The least absolute shrinkage and selection operator (LASSO) was performed to select 

prognostic 5′-tRFs candidates using the R package ‘glmnet’ (v4.1-1). The optimal lambda 

was determined by 10-fold cross-validation, ultimately leading to the identification of 13 

5′-tRFs by the LASSO analysis. These selected 5′-tRFs were further analyzed using a mul-

tivariate Cox regression model, of which eight 5′-tRFs remained statistically significant. 

To construct a prognostic model for PRAD, these eight 5′-tRFs were combined into one 

tRF score by summing their expression values multiplied by their corresponding coeffi-

cients in a multivariate Cox model. PRAD patients were divided into two groups accord-

ing to the median tRF score. Kaplan–Meier curves of PFS and DFS were plotted for low 

and high tRF score groups, as implemented in the R package ‘survival’. The survival dif-

ferences between two groups were assessed using a log rank test. The AUC metric was 

used to evaluate the overall performance of the tRF prognostic models for predicting 1-

year, 3-year, and 5-year PFS and DFS using the R package ‘timeROC’ (v0.4). The associa-

tion of clinical features (age, Gleason score, PSA, and the combination of Gleason and TS 

scores) with patient prognosis was also analyzed using the Cox regression models. 

2.7. Identification of Tumor Subtypes Based on tRF Expression 

The non-negative matrix factorization (NMF) method and consensus clustering anal-

ysis were performed on 5′-tRF expression profiles to identify molecular subtypes of 

PRAD. The consensus clustering with K-means method was then implemented in the R 

package ‘ConsensusClusterPlus’ (v1.58.0). Low-variation 5′-tRFs with interquartile ranges 

(IQRs) of <0.5 were filtered before NMF and cluster analyses. The optimal number of sub-

types was determined according to the cophenetic and dispersion correlation coefficients. 

Kaplan–Meier curves of PFS and DFS were plotted for these 5′-tRFs expression subtypes. 

The log-rank test was used to evaluate the statistical differences in survival between dif-

ferent tRF subtypes. 

2.8. Mutational Data Analysis 

Segment files of PRAD derived from SNP 6.0 Affymetrix arrays were downloaded 

from TCGA. The segment files were divided into four categories (including tF-1, tF-2, tF-

3, and tF-4), and then input into the online web portal Hiplot for the detection of amplifi-

cation and deletion in each tumor’s genome (https://hiplot-academic.com/, accessed on 30 

March 2022). The gene mutation data from PRAD were retrieved from the MAF file of 

TCGA, including single nucleotide variants (SNPs) and small insertions (INS) or deletions 

(DEL). These were then analyzed using the R package maftools (v. 2.10.5). The tumor mu-

tational burden (TMB) was calculated by counting the number of non-synonymous so-

matic mutations per mega-base in protein-coding regions. DNA damages in PRAD tumor 

cells, including aneuploidy and homologous recombination deficiency (HRD), were quan-

titatively measured [24]. The HRD score was measured by summing three DNA-based 
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measures of genomic instability: large (>15 Mb) non-arm-level regions with LOH, large-

scale state transitions (breaks between adjacent segments of >10 Mb), and subtelomeric 

regions with allelic imbalance. The aneuploidy score (AS) for each tumor was measured 

by counting the number of arm-level gains and losses for a tumor, adjusted for ploidy [25]. 

2.9. Statistical Analysis 

Continuous data were expressed as mean ± standard deviation (SD). Categorial data 

were presented as counts and frequencies. The Wilcoxon rank sum test was used to com-

pare continuous variables between two groups. The Kruskal–Wallis H test was performed 

to compare continuous variables among more than two groups. The Chi-squared test was 

used to evaluate categorical data among several groups. P < 0.05 was considered statisti-

cally significant. For multiple comparisons, the Benjamini–Hochberg procedure was used 

for correcting P-values (i.e., FDR). All statistical analyses were performed using the R sta-

tistical package (v4.0.2). 

3. Results 

3.1. 5′-tRFs Are Dysregulated in PRAD 

We analyzed small RNA-sequencing data from 499 tumor tissues and 52 adjacent 

normal tissues of PRAD from TCGA. To obtain robust 5′-tRF profiles, 5′-tRFs with a 90th 

quantile RPM < 1 were filtered. As a result, 292 5′-tRFs were detected in these PRAD sam-

ples. Globally, 5′-tRFs tended to be upregulated in PRAD tumor samples compared to 

their adjacent normal samples (Figure 1A), of which 63 were significantly upregulated 

and 7 were significantly downregulated (FDR < 0.01 and |log2FC| > 1) (Figure 1B and 

Table S1). Whilst a similar analysis for 3′-tRFs was performed, very few 3′-tRFs were de-

tected as differentially expressed between PRAD tumors and adjacent normal tissues and 

thus this research direction was not pursued further in our study. 

To infer the functional roles of these upregulated 5′-tRFs, a causal association analysis 

based on co-expression patterns was performed for PRAD samples. It is well known that 

a group of co-expressed genes tend to have similar functions or be involved in common 

biological processes. This analysis yielded a total of 2008 protein-coding genes that were 

significantly co-expressed with these 5’-tRFs (FDR < 0.05 and |r| > 0.3). These genes were 

mainly enriched in areas of focal adhesion, cGMP-PKG, Rap1, and Hippo signaling (Fig-

ure 1C), and in several molecular functions such as glycosaminoglycan binding, kinase 

binding, and integrin binding (Figure S1). In other words, these upregulated 5’-tRFs were 

potentially involved in the above-mentioned signaling pathways and molecular func-

tions. 
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Figure 1. Expression of 5'-tRFs is dysregulated in PRAD. (A) Empirical cumulative distribution of 

the overall 5'-tRF in PRAD tumors and adjacent normal tissues. (B) Volcano plot showing −log10 (p 

value) vs. log2 (fold change) of 5'-tRFs between PRAD tumors and adjacent normal tissues. p values 

represent significance level of the difference in 5'-tRF expression between PRAD tumors and adja-

cent normal tissues. (C) Pathways enriched for mRNA genes co-expressed with significantly dysreg-

ulated 5'-tRFs. 

3.2. 5’-tRFs Are Novel Biomarkers for Diagnosis of PRAD 

5’-tRFs showed distinct expression patterns between PRAD tumors and adjacent nor-

mal tissues (Figures 2A and S2). Of note, 63 of the 70 dysregulated 5’-tRFs were abnor-

mally upregulated in PRAD tumors and thus considered to have great potential as clinical 

biomarkers for the diagnosis of PRAD. To evaluate whether these upregulated 5’-tRFs 

could indeed be used as clinical diagnostic biomarkers for PRAD, we selected the top 13 

upregulated 5’-tRFs with fold changes > 4 to build 5’-tRFs classifiers (Table S1). First, we 
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randomly divided 551 PRAD tumor samples in TCGA into a training set (70%) and a test-

ing set (30%). Next, we constructed mathematical models for the diagnosis of PRAD using 

four machine learning algorithms, including random forest (RF), support vector machine 

(SVM), generalized linear model (GLM), and partial least squares (PLS) analyses (Figure 

2B). Then, the receiver operation characteristic (ROC) was used to assess the performance 

of the 5’-tRFs classifier at various classification thresholds. The area under the ROC curve 

(AUC) of the 5’-tRFs classifier defined by RF, GLM, SVM, or PLS achieved 0.912, 0.943, 

0.954, or 0.963, respectively (Figure 2C). These results demonstrated that 5’-tRFs have 

great potential as valuable diagnostic biomarkers and that these 5’-tRFs classifiers consist-

ently exhibit high sensitivity and specificity towards distinguishing PRAD tumor samples 

from normal samples. 

 

Figure 2. Expression of 5'-tRFs is a diagnostic biomarker for PRAD. (A) Hierarchical cluster analyses 

of PRAD specimens using 5'-tRFs expression profiles. (B) A schematic diagram for building machine 
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learning models predictive of PRAD tumors versus normal tissues. RF: random forest; SVM: sup-

port vector machine; GLM: generalized linear model; PLS: partial least square. (C) ROC curves to 

evaluate the sensitivity and specificity of 5'-tRF classifiers to discriminate PRAD tumor and normal 

samples. AUC: the area under the ROC curve. When AUC = 1, the tRF classifier can perfectly dis-

tinguish between PRAD tumors and normal tissues. 

3.3. 5′-tRFs Are Novel Biomarkers for Prognosis of PRAD 

Next, we evaluated whether these 5′-tRFs could be used as clinical prognostic bi-

omarkers for PRAD. Firstly, the association of each individual 5′-tRF with PRAD progno-

sis was examined using a univariate Cox regression model. Secondly, the identified 5′-

tRFs with marginal significance (P < 0.05) were subjected to variable selection using the 

least absolute shrinkage and selection operator (LASSO) according to their prognostic pre-

dictive values (Figure S3A). This LASSO analysis identified a set of 5′-tRFs (13 5′-tRFs in 

total) that were strongly associated with clinical outcomes in PRAD (Table S2). Thirdly, 

this set of 5′-tRFs was further assessed using a multivariate Cox regression model. As a 

result, eight 5′-tRFs collectively showed significant prognostic values in predicting PFS in 

PRAD patients (Table S3 and Figure S3B). 

The eight 5′-tRFs were then combined into one tRF score (TS) as a prognostic signa-

ture for PRAD by summing their expression values multiplied by their corresponding 

coefficients in multivariate Cox models (Table S3). Kaplan–Meier survival curves were 

then plotted for groups of patients stratified by the median tRF score (Figure 3A,B). Pa-

tients with a lower tRF score had a significantly longer PFS (log rank test, p = 6.85 × 10−9) 

and DFS (p = 1.50 × 10−7) than those with a higher tRF score. For PFS, the hazard ratio for 

the tRF score reached 1.67 (CI, 1.42–1.96), while the hazard ratios for two common clinical 

parameters, the Gleason score (GS) and PSA, were 2.47 (1.95–3.13) and 1.02 (1.00–1.03), 

respectively (Figure 3C). For DFS, the hazard ratio for the tRF score reached 1.90 (1.47–

2.46), while the hazard ratios for the two clinical parameters were 2.39 (1.66–3.44) and 1.01 

(0.96–1.06), respectively (Figure 3D). When considering the associations of tRF score, 

Gleason score, or PSA with PRAD patient outcomes in the same multivariate Cox regres-

sion model, tRF score and Gleason scores remained statistically significant, but PSA did 

not (Figure S3C,D). These results suggested that 5′-tRFs are valuable prognostic bi-

omarkers, and increased tRF scores are associated with poor prognosis in PRAD patients. 
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Figure 3. Expression of 5'-tRFs is a prognostic biomarker for PRAD. (A,B) Kaplan–Meier curves of 

PFS (A) and DFS (B) of PRAD patients with low vs. high tRF score. (C,D) Hazard ratios (HR) and 

their 95% confidence interval (CI) of GS, TS, PSA, and age from the univariate Cox regression model 

for PFS (C) and DFS (D). PFS: progression-free survival; DFS: disease-free survival; TS: tRF score; 

GS: Gleason score; PSA: serum prostate-specific antigen. 

3.4. 5′-tRFs Provide Independent Prognostic Information for PRAD 

Furthermore, we evaluated whether 5′-tRF is suitable as an independent prognostic 

factor for PRAD. The AUC values of the tRF score, Gleason score, and PSA for predicting 

the risk of a 5-year PFS were 0.733, 0.740, and 0.571, respectively (Figure S4A). The AUC 

values of the three biomarkers for predicting the risk of a 5-year DFS were 0.792, 0.731, 

and 0.573, respectively (Figure S4B). A similar performance of these biomarkers was ob-

served in predicting the risk of 1-year and 3-year PFS and DFS (Figure S4C–F). Interest-

ingly, the combination of the tRF and Gleason scores showed significantly better perfor-

mance than the Gleason score alone (Figure 4). For instance, the AUC values of the com-

bined tRF and Gleason scores for predicting a 5-year PFS and DFS were 0.788 and 0.815, 

respectively, which were significantly higher than the corresponding AUC values of 0.740 

(p = 0.006) and 0.731 (p = 0.003) for the Gleason score alone (Figure 4A,B). The superiority 

of the combination of tRF and Gleason scores was also demonstrated in predicting 1-year 

and 3-year PFS and DFS (Figure 4C–F). 

For visualization purposes, nomogram models that incorporate the corresponding 

tRF and Gleason scores for predicting 1-year, 3-year, and 5-year PFS and DFS were estab-

lished (Figure S4G,S4H). In these nomogram models, a probability of 1-year, 3-year, and 

5-year PFS and DFS survival could be queried for PRAD patients. Taken together, these 

results suggested that 5′-tRFs are independent prognostic biomarkers and offer additional 

prognostic information independent of the Gleason score for PRAD patients. 
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Figure 4. Expression of 5'-tRFs provides additional PRAD prognostic information independent of 

Gleason score. (A,C,E) ROC curves to evaluate the prognostic performance of 5-year (A), 3-year (C), 

and 1-year (E) PFS, using TS, GS, or TS and GS. (B,D,F) ROC curves to evaluate the prognostic 

performance of 5-year (B), 3-year (D), and 1-year (F) DFS, using TS, GS, or TS and GS. Bivariate 

prognostic models of GS and TS (i.e., GS and TS) were compared with univariate prognostic models 

to assess whether TS or GS could provide independent prognostic information. P value less than 

0.05 indicates that the performance of the bivariate prognostic models of GS and TS (i.e., GS and TS) 

is significantly better than that of the univariate prognostic model. TS: tRF score; GS: Gleason score. 

3.5. 5′-tRFs Are Novel Biomarkers for the Tumor Classification of PRAD 

We then assessed whether these 5′-tRFs could be used as clinical biomarkers for the 

tumor classification of PRAD. We conducted a NMF clustering analysis for 5′-tRFs expres-

sion data to identify molecular subtypes and determined four clusters (termed as tF-1, n 

= 107; tF-2, n = 82; tF-3, n = 132; and tF-4, n = 169, respectively) as an optimal choice accord-

ing to the cophenetic correlation coefficients, each of which has its own specific 5′-tRFs 

expression pattern (Figures 5A and S5). Meanwhile, consensus clustering was also carried 
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out on 5′-tRFs data. Interestingly, we found that the result of consensus clustering was 

consistent with that of the NMF method (Figure 5B). Furthermore, Kaplan–Meier survival 

analyses showed that there were significant differences in the survival times between 

these four PRAD molecular subtypes (p = 1.10 × 10−3 for DFS and p = 6.24 × 10−4 for PFS). 

Among these tRF subtypes, tF-1 had the best clinical outcome, while the tRF-2 had the 

worst clinical outcome, with tF-3 and tF-4 lying in a mid-range between the above two 

(Figure 5C, 5D). 

 

Figure 5. Expression of tRFs is a clinical biomarker for tumor classification in PRAD. (A) Analyses 

of 5'-tRFs in PRAD samples yielded four stable subgroups using a non-negative matrix factorization 

(NMF) approach. (B) Tumors were clustered into four subtypes according to 5'-tRF expression pro-

files. (C,D) Kaplan–Meier survival analysis of PFS (C) and DFS (D), showing significant prognostic 

differences among 5'-tRFs expression subtypes. 

In addition to their different clinical outcomes, these tRF subtypes also showed great 

variability in clinicopathological features such as PSA (Kruskal–Wallis H test, p = 0.02), 

Gleason score (Kruskal–Wallis H test, p = 2.07 × 10−6), and grade group (Chi-squared test, 

p = 3.93 × 10−7). Interestingly, the tF-1 subtype with the best prognosis tended to have a 

lower Gleason score, while the tF-2 with the worst prognosis tended to have a higher 

Gleason score. Similar trends were observed in grade groups for these tRF molecular sub-

types. These findings indicated that 5′-tRFs are valuable biomarkers for the tumor classi-

fication of PRAD, and these molecular subtypes classified by 5′-tRFs exhibit significantly 

different clinicopathological characteristics (Table 1). 
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Table 1. Clinicopathological features of four tRF subtypes of PRAD. 

 
tF-1 

(n = 107) 

tF-2 

(n = 82) 

tF-3 

(n = 132) 

tF-4 

(n = 169) 
p Value 

Age 60.60 ± 6.72 61.41 ± 6.37 61.60 ± 6.78 60.54 ± 7.01 0.744 

PSA 9.22 ± 9.42 11.68 ± 8.83 12.74 ± 15.95 10.53 ± 11.8 0.020 

Gleason score     2.07 × 10−6 

6 17 (15.89%) 2 (2.44%) 13 (9.85%) 13 (7.69%)  

7 69 (64.49%) 36 (43.90%) 51 (38.64%) 87 (51.48%)  

8 13 (12.15%) 9 (10.98%) 17 (12.88%) 25 (14.79%)  

9/10 8 (7.47%) 35 (42.68%) 51 (38.63%) 44 (26.04%)  

Grading group     3.93 × 10−7 

1 17 (15.89%) 2 (2.44%) 13 (9.85%) 13 (7.69%)  

2 47 (43.93%) 15 (18.29%) 31 (23.48%) 51 (30.18%)  

3 22 (20.56%) 21 (25.61%) 20 (15.15%) 36 (21.30%)  

4 13 (12.15%) 9 (10.98%) 17 (12.88%) 25 (14.79%)  

5 8 (7.47%) 35 (42.68%) 51 (38.64%) 44 (26.04%)  

3.6. Genomic Landscapes of 5′-tRFs Tumor Subtypes of PRAD 

To depict the genetic landscapes of these four 5′-tRFs PRAD subtypes, we analyzed 

somatic mutation data and somatic copy-number variation from TCGA. We first esti-

mated the tumor mutational burden (TMB) by counting the number of non-synonymous 

somatic mutations per mega-base in the protein-coding regions. The tF-2 patients had the 

highest TMB, while the tF-1 and tF-4 patients had the lowest TMB among these 5′-tRF 

subtypes (Figure 6A). Next, we estimated homologous recombination defects (HRD), 

characterized by the inability of cells to effectively repair DNA double-strand breaks us-

ing the homologous recombination repair pathway [26]. Tumor cells from the tF-1 subtype 

were found to have fewer HRDs, while tumor cells from the tF-2 subtype had an increased 

number of HRDs (Figure 6B). We then estimated the aneuploidy score (AS) for each tumor 

by counting the number of arm-level gains and losses for a tumor, adjusted for ploidy. 

The tF-1 tumor subtype tended to have a low AS, while the tF-2 tumor subtype tended to 

have high a AS (Figure 6C). In addition, we estimated number of segmental duplications 

on each tumor genome. More segmental duplications were observed in tF-2 than in tF-1 

(Figure 6D). Consistently, the tF-1 tumor subtype had much fewer copy-number varia-

tions than the tF-2 tumor subtype (Figures 6E and S6). These results suggested that these 

5′-tRFs tumor subtypes of PRAD exhibit distinct genomic landscapes in tumor cells. The 

best prognostic tF-1 subtype represented mild genomic alternations, and the worst prog-

nostic tF-2 subtype represented a far more severe genomic alternation in tumor cells. The 

other two subtypes, tF-3 and tF-4, lay somewhere between the other two in this respect. 
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Figure 6. Distinct genomic landscapes among 5'-tRFs tumor subtypes. (A) Tumor mutation burden. 

The TMB was estimated by the number of non-synonymous somatic mutations (single nucleotide 

variants and small insertions/deletions) per Mb in protein-coding regions. (B) Homologous recom-

bination defects. The HRD score was calculated by summing three DNA-based measures of ge-

nomic instability: large (>15 Mb) non-arm-level regions with LOH, large-scale state transitions 

(breaks between adjacent segments of >10 Mb), and subtelomeric regions with allelic imbalance. (C) 

Aneuploidy score. The AS is the total number of arm-level gains and losses for a tumor, adjusted 

for ploidy. (D) Number of segments. The number of segments was the total number of segments in 

each tumor’s copy number profile. * p <  0.05, ** p <  0.01, *** p <  0.001, **** p <  0.0001, ns: nonsignificant. 
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We also investigated whether these 5′-tRFs tumor subtypes of PRAD were driven by 

some key molecular events, such as androgen-regulated fusions of ERG or other ETS fam-

ily members, or by other recurrent driver mutations. Interestingly, the tF-1 tumor subtype 

tended to have more frequent ETS family gene fusions than the tF-2 tumor subtype. These 

four 5′-tRFs tumor subtypes also showed significantly different frequencies of recurrent 

mutations in driver genes such as FOXA1 and KMT2D, with tF-2 having the highest fre-

quency (Table 2). Taken together, these results suggested that these 5′-tRFs molecular sub-

types are genomically distinct subgroups of PRAD. Understanding these genomically dis-

tinct alterations of these 5′-tRFs subtypes will therefore lead to a better diagnosis, progno-

sis, and treatment of PRAD. 

Table 2. Key driver events in four tRF subtypes of PRAD. 

 
tF-1 

(n = 89) 

tF-2 

(n = 52) 

tF-3 

(n = 38) 

tF-4 

(n = 147) 
p Value 

ERG (fusion)     1.24 × 10−4 

Yes 34(38.20%) 12(23.08%) 16(42.10%) 84(57.14%)  

No 55(61.80%) 40(76.92%) 22(57.90%) 63(42.86%)  

FOXA1 (mutation)      

Yes 5(5.62%) 5(9.62%) 1(2.63%) 2(1.36%) 0.038 

No 84(94.38%) 47(90.38%) 37(97.37%) 145(98.64%)  

KMT2D (mutation)     0.0018 

Yes 1(1.12%) 7(13.46%) 1(2.63%) 2(1.36%)  

No 88(98.88%) 45(86.54%) 37(97.37%) 145(98.64%)  

ZMYM3 (mutation)     0.063 

Yes 0(0.00%) 3(5.77%) 1(2.63%) 2(1.36%)  

No 89(100%) 49(94.23%) 37(97.37%) 145(98.64%)  

4. Discussion 

tRFs are a relatively newly discovered class of small ncRNAs that result from the 

precise cleavage of precursor or mature tRNAs by different types of nucleases. Over the 

recent years, their roles and clinical values in tumorigenesis, metastasis, and recurrence 

have attracted increasing attention [9]. However, there has been no systematic study to 

clarify the potential of these tRFs, especially 5′-tRFs, in the diagnosis, prognosis, and tu-

mor classification of PRAD. In this study, we analyzed small RNA sequencing data to 

systematically assess the clinical values of 5′-tRFs in prostate adenocarcinoma. Our study 

demonstrated 5′-tRFs as promising clinical biomarkers for the diagnosis, prognosis, and 

classification of tumor molecular subtypes, which show strong potential to aid clinicians 

in developing personalized treatment plans for PRAD patients. 

The overall levels of 5′-tRFs were significantly upregulated in the PRAD tumor sam-

ples compared to their adjacent normal samples. Interestingly, these aberrantly expressed 

5′-tRFs were noted as those critically involved in many cancer-related pathways such as 

focal adhesion, cGMP-PKG, Rap1, and Hippo signaling, as well as in multiple related mo-

lecular functions such as glycosaminoglycan and integrin binding. For example, focal ad-

hesion kinase is positively associated with the WHO grade group, tumor stage, Gleason 

score, perineural invasion, and extracapsular extension in PRAD [27]. Similarly, upregu-

lation of the Hippo signaling effector YAP1 was noted to contribute to an earlier recur-

rence of PRAD [28]. It has also been reported that the increased expression of proteogly-

cans, including versican, biglycan, and syndecan-1, is associated with poor PRAD prog-

nosis [29]. These abnormally upregulated 5′-tRFs in PRAD tumors therefore have great 

potential as clinical biomarkers for the diagnosis of PRAD. tRF classifiers composed of 13 

such 5′-tRFs achieved AUC values as high as 0.963, showing high sensitivity and specific-

ity in distinguishing PRAD tumor samples from normal samples. 
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In addition to serving as diagnostic biomarkers, multiple 5′-tRFs were identified as 

being associated with the PRAD prognosis. The tRF score, as defined by a set of 8 such 5′-

tRFs, was highly predictive of PFS and DFS in PRAD patients. PRAD with high tRF scores 

tended to have a worse prognosis than those with low tRF scores. The Gleason scoring 

system, the most common prostate cancer grading system, is based on the extent to which 

the cancer looks like healthy tissue when viewed under a microscope. In addition to de-

termining the tumor stage, the Gleason score helps the clinician tailor a patient-specific 

treatment plan. PRAD with low Gleason scores tends to be less aggressive and have better 

outcomes than those with high Gleason scores. The AUC values of the tRF score, Gleason 

score, and PSA for predicting the risk of 5-year PFS were 0.733, 0.740, and 0.571, respec-

tively, while the AUC values of the three biomarkers for predicting the risk of 5-year DFS 

were 0.792, 0.731, and 0.573, respectively. Interestingly, the combination of the tRF and 

Gleason scores showed significantly better performance than the Gleason score alone, 

suggesting that 5′-tRFs can offer PRAD patients additional accuracy in prognostic infor-

mation. Therefore, integrating the clinically commonly used Gleason score with the new 

biomarker tRF score will further improve individualized prognostic assessment and clin-

ical decision-making in PRAD patients. 

5′-tRFs can also serve as biomarkers for the molecular classification of tumor sub-

types in PRAD. Four molecular subtypes of PRAD tumor were identified based on their 

5′-tRF expression profiles. These tRF molecular subtypes exhibited marked differences in 

survival, with tRF-1 having the best outcome, tRF-2 having the worst, and both tRF-3 and 

tRF-4 having an intermediate prognosis. These subtypes classified by 5′-tRFs are also clin-

ically relevant, characterized by different clinicopathological features. For example, the 

best prognostic tF-1 subtype tended to have a small Gleason score and a low-grade tumor, 

while the worst prognostic tF-2 tended to have a large Gleason score and a high-grade 

tumor. 

These 5′-tRFs tumor subtypes of PRAD also bear distinct genomic landscapes in tu-

mor cells. The tF-1 subtype with the best prognosis carried mild genomic alternations in 

tumor cells, while the tF-2 subtype with the worst prognosis carried much more severe 

genomic alternations in tumor cells. The other two subtypes, tF-3 and tF-4, lay intermedi-

ate between the two in this regard. Furthermore, these 5′-tRFs subtypes were driven by 

different key molecular events, such as androgen-regulated fusions of ERG and other ETS 

family members or recurrent driver mutations. For example, the tF-1 tumor subtype tended 

to have more frequent ETS family gene fusions than the tF-2 tumor subtype. 

The molecular subtype classification of PRAD tumors by 5′-tRFs can not only provide 

clinicians with additional valuable prognostic information independent of the Gleason 

score but can also help clinicians formulate personalized treatment plans. Immunother-

apy can improve the ability of the immune system to detect and destroy tumor cells. Over 

the recent years, many patients have benefited from immunotherapy, including some 

with metastatic cancers such as melanomas, lung cancer, and renal cell carcinoma. To 

compensate for the insufficiency of surgery and radiotherapy, immunotherapy was de-

veloped to try to alter the tumor immune-related microenvironment to treat PRAD [30]. 

However, only a minority of prostate cancer patients show positive responses to immu-

notherapy [30]. The tF-2 subtype has a higher TMB and more genomic alterations than the 

other subtypes and therefore may respond better to immunotherapy. 

Furthermore, the tF-1 tumor subtype has more frequent ETS family gene fusions 

(such as ERG and ETV1) than the tF-2 tumor subtype. Therefore, the tRF-1 subtype may 

be more sensitive to, and therefore preferential for, androgen deprivation therapy than 

the tRF-2 subtype [31]. Recent preclinical studies have demonstrated an association be-

tween ETS gene fusions and components of the DNA damage response pathway [32]. Tar-

geting DNA damage response pathways with inhibitors of PARP1, DNAPK, and HDAC1 

may also be an alternative therapeutic option for the tRF-1 subtype with frequent EST 

gene fusions. HRD scores quantify the extent to which double-strand breaks in DNA in 

tumor cells cannot be repaired. Clinical trials have also shown that high levels of these 
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HRD scores are associated with better responses to PARP inhibitor- or platinum-based 

therapy in ovarian and breast cancer [33,34]. Therefore, the tRF-2 subtype may respond 

better to PARP inhibitor- or platinum-based therapy than the other tRF subtypes in PRAD 

patients. A recent study showed that tRF-30-JZOYJE22RR33 and tRF-27-ZDXPHO53KSN 

are associated with trastuzumab resistance in breast cancer [35]. Whether these individual 

5′-tRFs also play a role in resistance to PRAD treatments, such as androgen deprivation 

therapy, and whether they may be potential clinical biomarkers of drug sensitivity, re-

mains to be further investigated. 

Several caveats about our study should be acknowledged. Firstly, our tRF classifiers, 

survival prediction models, and tRF molecular subtypes were established based on the 

PRAD data from TCGA. These new findings require further validation from independent 

large clinical cohorts before they can be used clinically as diagnostic, prognostic, or sub-

typing biomarkers for PRAD. Although 5′-tRFs may provide additional and improved 

prognostic information for PRAD patients independent of the Gleason score, identifying 

which group of patients may benefit from the biopsy analysis of these biomarkers requires 

further study. In addition, developing clinically applicable PCR assays for these bi-

omarkers is not trivial. Secondly, in this study we focused only on 5′-tRFs; other types of 

tRFs, including 3′-tRFs, should be further integrated into future investigations. Thirdly, 

tRFs are abundant and can be detected in bodily fluids such as blood samples, urine, sa-

liva, and exosomes, making them promising non-invasive biomarkers for complex dis-

eases such as cancer [9]. Therefore, the clinical value of these 5′-tRFs in the peripheral 

blood or urine of PRAD patients deserves further evaluation. Fourth, functional investi-

gation of these dysregulated tRFs may help reveal novel mechanisms that underlie the 

development and progression of PRAD, and these warrant further research. 

5. Conclusions 

In summary, our study established a novel class of small ncRNAs-tRFs as potential 

clinical biomarkers for the diagnosis, prognosis, and classification of tumors in PRAD pa-

tients. These findings may not only provide clinicians with valuable diagnostic and prog-

nostic information independent of the Gleason score but may also help clinicians formu-

late better treatment plans. Functional investigation of these dysregulated tRFs will help 

reveal novel mechanisms of PRAD development and progression. 

Supplementary Materials: The following supporting information can be downloaded at 

https://www.mdpi.com/article/10.3390/curroncol30010075/s1, Table S1: 5'-tRFs are differentially ex-

pressed between PRAD tumor and adjacent normal tissues. Table S2: univariate Cox regression 

analysis confirms 5′-tRF association with PRAD prognosis. Table S3: multivariate Cox regression 

analysis reveals eight 5′-tRFs showing significant association with PRAD prognosis. Figure S1: GO 

terms enriched for mRNA genes that were co-expressed with significantly dysregulated 5'-tRFs. 

Figure S2: hierarchical cluster analyses of PRAD specimens using 5'-tRF expression profiles. Figure 

S3: 5'-tRFs are associated with the prognosis of PRAD. Figure S4: prognostic performance of the 

Gleason score, tRF score, PSA, and age. Figure S5: determining an optimal number of tRF subtypes 

in PRAD. Figure S6: copy number gain and loss in 5'-tRFs tumor subtypes. 

Author Contributions: S.D., P.L. and Y.L. considered and designed the study. W.L. performed the 

data analysis. M.Y., S.C., and J.L. performed quality control and secondary data analysis. Y.L. and 

P.L. supervised the study. W.L., S.D., and P.L. wrote the manuscript. All the authors commented 

and approved the study. All authors have read and agreed to the published version of the manu-

script. 

Funding: This work has been supported in part by the Key Program of Zhejiang Provincial Natural Sci-

ence Foundation of China: LZ20H160001; Key R&D Program of Zhejiang Province of China: 2021C03126; 

Medical Health Science and Technology Key Project of Zhejiang Provincial Health Commission of China: 

WKJ-ZJ-2007; the National Natural Science Foundation of China (82072857 and 81871864).  

Institutional Review Board Statement: This study (No. 20210210-27) was reviewed and approved 

by the Ethnics Committees of Sir Run Run Shaw Hospital of Zhejiang University School of Medicine 

(Hangzhou, China). 



Curr. Oncol. 2023, 30, 981–999 997 of 999 
 

 

Informed Consent Statement: Patient consent was waived because of the retrospective nature of 

the study and the analysis used anonymous clinical data. 

Data Availability Statement: The authors declare that all the data supporting the findings of this 

study are available within the Article. 

Acknowledgments: We thank TCGA for providing access to RNA-seq datasets. We thank Ms. Chao 

Bi at the Core Facility of Zhejiang University School of Medicine for providing technical support, 

and Christopher Wood and anonymous reviewers for reading and commenting on the manuscript. 

Conflicts of Interest: The authors disclose no potential conflict of interest. 

Abbreviations 

tRFs tRNA-derived RNA fragments 

PRAD prostate adenocarcinoma 

PSA serum prostate-specific antigen 

ncRNAssmall noncoding RNAs 

ANG angiogenin 

TCGA The Cancer Genome Atlas 

ICGC International Cancer Genome Consortium 

BWA burrows-wheeler transform 

RPM reads per million 

RPKM read per kilobase per million 

FDR false discovery rate 

RF random forest 

SVM support vector machine 

GLM generalized linear model 

PLS partial least squares 

ROC receiver operation characteristic 

GBA guilt by association 

GO gene ontology 

KEGG Kyoto encyclopedia of genes and genomes 

PFS progression-free survival 

HR hazard ratio 

CI confidence interval 

LASSOl east absolute shrinkage and selection operator

NMF non-negative matrix factorization 

IQRs interquartile ranges 

SNP single nucleotide polymorphism 

INS small insertions 

DEL deletions 

TMB tumor mutational burden 

HRD homologous recombination deficiency 

AS aneuploidy score 

SD standard deviation 

TS tRF score 

GS Gleason score 

DFS disease-free survival 
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