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Abstract: Background: Colon adenocarcinoma (COAD) is the most common subtype of colon
cancer, and cuproptosis is a recently newly defined form of cell death that plays an important
role in the development of several malignant cancers. However, studies of cuproptosis-related
lncRNAs (CRLs) involved in regulating colon adenocarcinoma are limited. The purpose of this
study is to develop a new prognostic CRLs signature of colon adenocarcinoma and explore its
underlying biological mechanism. Methods: In this study, we downloaded RNA-seq profiles, clinical
data and tumor mutational burden (TMB) data from the TCGA database, identified cuproptosis-
associated lncRNAs using univariate Cox, lasso regression analysis and multivariate Cox analysis,
and constructed a prognostic model with risk score based on these lncRNAs. COAD patients were
divided into high- and low-risk subgroups based on the risk score. Cox regression was also used
to test whether they were independent prognostic factors. The accuracy of this prognostic model
was further validated by receiver operating characteristic curve (ROC), C-index and Nomogram.
In addition, the lncRNA/miRNA/mRNA competing endogenous RNA (ceRNA) network and
protein–protein interaction (PPI) network were constructed based on the weighted gene co-expression
network analysis (WGCNA). Results: We constructed a prognostic model based on 15 cuproptosis-
associated lncRNAs. The validation results showed that the risk score of the model (HR = 1.003,
95% CI = 1.001–1.004; p < 0.001) could serve as an independent prognostic factor with accurate and
credible predictive power. The risk score had the highest AUC (0.793) among various factors such as
risk score, stage, gender and age, also indicating that the model we constructed to predict patient
survival was better than other clinical characteristics. Meanwhile, the possible biological mechanisms
of colon adenocarcinoma were explored based on the lncRNA/miRNA/mRNA ceRNA network and
PPI network constructed by WGCNA. Conclusion: The prognostic model based on 15 cuproptosis-
related lncRNAs has accurate and reliable predictive power to effectively predict clinical outcomes in
colon adenocarcinoma patients.
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1. Introduction

Colon cancer is one of the most frequently diagnosed malignancies worldwide, with
the fifth highest incidence and mortality rate of all cancers in 2020 [1]. Among them, colon
adenocarcinoma is the most prevalent and aggressive subtype, accounting for approxi-
mately 80–90% of all colon cancer patients [2,3]. Additionally, the 5-year survival rate
for patients with advanced stage is only 12.5%, compared to the higher survival rate for
early-stage colon cancer [4]. Therefore, the development of a promising prognostic model
is of great clinical value for the treatment of colon adenocarcinoma.

Copper is an important cofactor for the survival of prokaryotes and eukaryotes. Recent
studies suggest that copper may play a role in the etiology and progression of cancer, as it
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was found that copper chelators significantly increased the number of natural killer cells and
tumor-infiltrating CD8+ T, and slowed neuroblastoma growth [5]. It is worth mentioning
that the level of copper was significantly different in the serum and tumor tissues of patients
with lung, breast and thyroid cancers [6–8]. Because of its important role, copper may be
a unique vulnerability in cancer progression [9]. Tsvetkov first introduced the concept of
cuproptosis. Unlike known apoptosis, necroptosis, ferroptosis and pyroptosis, it relies on
the accumulation of copper in the cell by binding directly to the lipoylated components of
the tricarboxylic acid cycle, leading to the aggregation of lipoylated proteins and the loss of
Fe-S cluster proteins, and ultimately to cell death through the stress response [10].

LncRNAs are defined as RNA transcripts greater than 200 nucleotides that do not
encode proteins. They play a key role in various cellular processes in the cancer disease
process [11–13]. Numerous studies have shown that lncRNAs can be involved in colon
adenocarcinoma progression and immunotherapy through various pathways, such as
m6A [14], ferroptosis [15], necroptosis [16], and autophagy [17]. In contrast, the value of the
cuproptosis-related lncRNA prognostic model in colon adenocarcinoma has not received
attention.

Therefore, we introduced colon adenocarcinoma-related data in TCGA, screened 15
cuproptosis-related lncRNAs by lasso regression, univariate Cox analysis and multivariate
Cox analysis, and constructed a cuproptosis-related prognostic model based on these
lncRNAs. The accuracy of the prediction model was further validated by various methods.
In addition, immune-related functional analysis was investigated and potential drugs were
screened for the treatment of COAD to provide a new reference for the prognosis of patients
with colon adenocarcinoma.

2. Materials and Methods
2.1. Data Collection and Preparation

Colon adenocarcinoma (COAD)-related RNA sequence profiles, clinical data and
tumor mutational burden data were downloaded from TCGA GDC (https://portal.gdc.
cancer.gov/, accessed on 22 April 2022). RNA sequence profiles included 473 colon ade-
nocarcinomas (COAD) and 41 adjacent normal healthy tissues. The Ensembl database
(http://asia.ensembl.org/index.html, accessed on 23 April 2022) was used to distinguish
between mRNAs and lncRNAs associated with these RNA sequence profiles.

2.2. Identification of Cuproptosis-Related lncRNAs

RNA sequence profiles were analyzed in combination with 10 cuproptosis-related
genes identified by Tsvetkov et al. (FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1,
GLS, CDKN2A) to extract the expression files of cuproptosis-related genes [10] (Supple-
mentary File S1). This file was further used with the lncRNAs of colon adenocarcinoma
for co-expression analysis to obtain the expression file of cuproptosis-related lncRNAs
(Supplementary File S2) and the filtering criteria (Pearson correlation coefficient > 0.4 and
p < 0.001) [18].

2.3. Construction of Cuproptosis-Related Prognostic Signature

The expression files of cuproptosis-related lncRNAs and clinical data were combined
and then univariate Cox analysis was performed with p < 0.05 (Supplementary File S3).
Then, the lncRNAs obtained from the intersection of univariate Cox regression analysis and
lasso regression were used in the multivariate Cox regression analysis [19]. The prognostic
risk score for cuproptosis-related lncRNAs was calculated based on the linear combination
of the regression coefficient (β) of the multivariate Cox regression model and its expression
level [20]. The risk score was calculated by the following formula:

Risk score =
N

∑
i=1

Coe fi × xi

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://asia.ensembl.org/index.html
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where Coefi is the corresponding coefficient and xi is the expression level of lncRNA. Patients
in the training and validation groups were divided into high/low-risk subgroups based on
the median risk score. KM plotter survival curves were generated by using the R packages
(survival and survminer) to compare overall survival (OS) between the high- and low-risk
subgroups. Furthermore, to assess whether risk score could be regarded as an independent
predictor of overall survival of COAD patients, univariate Cox and multivariate Cox
regression analyses were performed with risk score, gender, age and metastasis status
as variables using the R package (survival). The receiver operating characteristic curve
(ROC) [21] was used to assess the predictive accuracy of the model, and all validations
were performed simultaneously in the training and validation cohorts.

2.4. Construction of Nomogram

A nomogram is a graphical tool that is designed to approximate complicated cal-
culation quickly [22]. It is a commonly used tool to estimate prognosis in oncology and
medicine. Clinicians can look at the sum of all predictors for a given patient and predict the
probability of survival at 1, 3 and 5 years. Nomogram was created by applying the R pack-
ages (survival, regplot, rms) and independent prognostic factors based on the downloaded
COAD cohort, whose availability was assessed by the C-index [23].

2.5. Functional Enrichment Analysis and Immune-Related Functional Analysis

We explored differentially expressed genes in high- and low-risk groups using the R
package (limma) with |log2FC| ≥ 1 and FDR < 0.05 as filters [24]. Then, the enrichment of
differential genes was explored using Gene Ontology (GO) and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) with a filter condition of p < 0.05. Through GO analysis, we
can obtain the cellular components (CCs), molecular function (MF) and biological processes
(BPs) of differential genes. KEGG enrichment analysis was performed to observe in which
pathways the differential genes were enriched. These processes are executed using the R
packages ggplot2, enrichplot, circlize, org.Hs.eg.db, and clusterProfiler. Furthermore, to
explore the immune infiltration in the COAD samples stratified by the signature, immune-
related functional analysis was performed on expression data files and risk files using
SSGSEA [25], and the results were visualized by heatmap visualization.

2.6. Tumor Mutational Burden Analysis and Sensitivity Assessment of Potential Drugs

Tumor mutational burden (TMB) data were downloaded from the TCGA database
(https://portal.gdc.cancer.gov/, accessed on 22 April 2022). Additionally, the accuracy of
the prognostic model was explored by TMB difference analysis and TMB survival analysis
to see whether TMB affected the accuracy of the prognostic model. In addition, we used the
R package (pRRophetic) to predict the IC50 of potential drugs in the high-risk and low-risk
groups of COAD [26]. Additionally, the correlation between risk score and drug sensitivity
was assessed by using a filter of p < 0.01 [27].

2.7. Construction of Competing Endogenous RNA (ceRNA) Networks and Protein–Protein
Interaction Network (PPI) Based on Weighted Gene Co-Expression Network Analysis (WGCNA)

The lncRNAs and mRNA modules with the highest correlation coefficients were first
screened by WGCNA. The lncRNAs in the MEblue module with the highest correlation
coefficient were intersected with the differentially expressed lncRNAs in the TCGA data
of colon adenocarcinoma, and then the miRcode database (http://www.mircode.org/,
accessed on 25 August 2022) was used to predict the miRNAs interacting with these
lncRNAs [28], and 28 pairs of interactions between 6 lncRNAs and 18 miRNAs were
obtained. Databases such as miRNA (http://www.mirdb.org/miRDB/, accessed on 25
August 2022), miRTarBase (http://mirtarbase.mbc.nctu.edu.tw, accessed on 25 August
2022) and TargetScan (http://www.targetscan.org/, accessed 25 August 2022) were used to
predict miRNA–mRNA relationships, and 325 mRNAs were identified. Cytoscape software
(Version 3.8.0; Cytoscape Team, San Diego, CA, USA) was used to visualize the ceRNA

https://portal.gdc.cancer.gov/
http://www.mircode.org/
http://www.mirdb.org/miRDB/
http://mirtarbase.mbc.nctu.edu.tw
http://www.targetscan.org/
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network of lncRNA/miRNA/mRNA. Our obtained mRNAs were also used to construct
PPI networks with STRING (https://string-db.org/, accessed on 25 August 2022) (high
confidence level > 0.7 is considered significant) [29]. Meanwhile, Cytoscape’s MCODE
plugin was used to extract the central genes from the PPI network. The potential signaling
pathways of 325 target mRNAs were further probed by gene set enrichment analysis (GSEA)
software (Version 4.2.3; Broad Institute, San Diego, CA, USA).

2.8. Statistical Analysis

All analyses were performed by Perl v5.30 (https://www.perl.org/, accessed on
19 April 2022) and R software v4.1 (https://www.r-project.org/, accessed on 19 April
2022). The differences between the two groups were assessed using t-tests (for normally
distributed data) or Mann–Whitney tests (for non-normal distribution), and p < 0.05 was
considered statistically significant. The relationships between risk score and drug sensitivity
were determined by the Spearman’s correlation analysis [14]. p values were two-sided and
all data with p < 0.05 were recognized as statistically significant.

The analytical procedure is shown in Figure 1.
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Figure 1. The flow chart diagram of the study.

3. Results
3.1. Derivation of lncRNA Prognostic Model

The lncRNAs associated with cuproptosis-related genes were further extracted by
co-expression analysis, and the co-expression results were further visualized (Figure 2a). A
total of lncRNAs associated with CDKN2A, DLAT, DLD, FDX1, GLS, LIAS, LIPT1, MTF1,
PDHA1 and PDHB were screened. lncRNAs were merged with the Colon adenocarcinoma
survival data files in the TCGA database. Combining the survival data of the samples,
we performed univariate Cox regression analysis to investigate the correlation between
differentially expressed lncRNAs and OS of COAD patients. 99 lncRNAs that were strongly
associated with OS (p < 0.05) were screened, and the best prognostic lncRNAs with signifi-
cant eigenvalues were further validated and selected into high- and low-risk groups. 27

https://string-db.org/
https://www.perl.org/
https://www.r-project.org/
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associated significant lncRNAs stood out in the lasso regression (Figure 2b,c), and based on
the preliminary results of the lasso regression analysis screening we obtained 15 lncRNAs.
The prediction model was constructed using multivariate Cox regression analysis (Table 1),
containing AP003119.3, RNF216P1, AC156455.1, AL360270.1, AC073896.3, AC139720.2,
AC092614.1, LINC00511, LRP4-AS1, AC026979.4, AC103703.1, AP003555.1, AL513550.1,
LRP1-AS, AL512306.2. Among them, ten lncRNAs (AP003119.3, RNF216P1, AC156455.1,
AL360270.1, AC139720.2, AC092614.1, LRP4-AS1, AP003555.1, AL513550.1 and AL512306.2)
were harmful prognostic factors, and the others (AC073896.3, LINC00511, AC026979.4,
AC103703.1 and LRP1-AS) were favorable prognostic factors. The correlation of the 10
cuproptosis-related genes with the 15 lncRNAs was analyzed by correlation heat map
(Figure 2d), MTF1, LIPT1, LIAS, GLS showed positive correlations with most lncRNAs,
and notably, MTF1, GLS showed positive correlations with all 15 lncRNAs (*** p < 0.001,
** p < 0.01, * p < 0.05).
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sociated with cuproptosis-related genes in COAD. (b,c) The least absolute shrinkage and selection
operator (LASSO) regression was performed with the minimum criteria. (d) Correlation analysis of 15
signature lncRNAs with 10 cuproptosis-related genes (horizontal coordinates are lncRNAs involved
in model construction, blue represents negative correlation, red represents positive correlation).
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Table 1. 15 prognosis-related lncRNAs obtained based on multivariate Cox regression analysis.

lncRNA
Name Coefficient HR HR.95L HR.95H p Value

AP003119.3 2.443247512 4.291960 1.570556 11.728919 0.004510
RNF216P1 1.367425711 3.088040 1.200965 7.940272 0.019283

AC156455.1 0.733807815 1.681309 1.150079 2.457917 0.007326
AL360270.1 1.773933174 2.986836 1.163762 7.665821 0.022887
AC073896.3 −2.343500132 0.356807 0.151339 0.841232 0.018520
AC139720.2 1.047691955 1.814512 1.159697 2.839062 0.009090
AC092614.1 1.213541229 2.343952 1.077011 5.101259 0.031797
LINC00511 −1.445411714 0.150115 0.062617 0.359881 0.000021
LRP4-AS1 1.80630443 1.799438 1.119335 2.892770 0.015292

AC026979.4 −3.402432218 0.029192 0.001764 0.483129 0.013586
AC103703.1 −4.616328154 0.016495 0.000326 0.833521 0.040272
AP003555.1 0.58763672 2.636331 1.595781 4.355387 0.000154
AL513550.1 1.525410885 2.399151 1.194502 4.818681 0.013914

LRP1-AS −7.45422088 0.083526 0.007523 0.927419 0.043247
AL512306.2 2.464575716 4.895259 1.643549 14.580379 0.004341

3.2. Constructing a 15-lncRNA Prediction Signature of COAD

15 lncRNAs were identified by multivariate Cox regression analysis, and the prognostic
risk score formula was obtained by constructing a model with the training group, and then
the accuracy of the model was verified with the validation group. The risk score formula
was constructed using the coefficients obtained from multivariate Cox regression, the risk
score of each patient in the training group was calculated by the risk score formula, and
the patients were classified according to the median value of the risk score into high-risk
subgroup and low-risk subgroup, and similarly the patients in the validation group were
divided into two subgroups of high and low risk. In the clinical data, a total of 446 COAD
patients were selected after excluding samples with incomplete prognostic information.
The clinical statistical analysis of the three groups (overall, training and validation) are
shown in Table 2, the results showed that the p values for all clinical traits were greater than
0.05, indicating that there was no difference between the training and validation groups,
proving that there was no bias in the sample grouping for the traits.
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Table 2. Specific baseline clinical characteristic of 446 COAD patients.

Covariates Type 446 Patients Validation Group Training Group p Value

Age <60 years 121 56 65
0.1236≥60 years 325 167 158

gender FEMALE 212 101 111
0.3935MALE 234 122 112

stage

Stage I 75 35 40

0.6808
Stage II 175 93 82
Stage III 124 64 60
Stage IV 61 28 33

unknown 11 3 8

Pathologic T stage

T1 10 3 7

0.6372
T2 76 38 38
T3 303 153 150
T4 56 29 27

unknown 1 0 1

Pathologic M stage
M0 329 169 160

0.519M1 61 28 33
unknown 56 26 30

Pathologic N stage
N0 265 135 130

0.8764N1 102 49 53
N2 79 39 40

Further analysis revealed that the survival curves obtained from the overall, training
and validation groups based on the prognostic risk model constructed with 15 lncRNAs
showed that the overall survival (OS) was lower in the high-risk subgroup compared
with the low-risk subgroup, and the difference between the two groups was statistically
significant (p < 0.05, Figure 3a–c), which also indicated that our constructed model could
distinguish patients in the high-risk and low-risk subgroups. Furthermore, progression-
free survival (PFS) in the overall group revealed that PFS appeared lower in the high-risk
subgroup compared with the low-risk subgroup, with a significant difference between them
(p < 0.001, Figure 3d). The distribution of risk scores and survival status also showed that the
higher risk scores were associated with more deaths among COAD patients in the overall,
training and validation groups (Figure 3e–j). Meanwhile, we found that high expression of
lncRNAs (AP003119.3, RNF216P1, AC156455.1, AL360270.1, AP003555.1, AL513550.1) was
associated with increased risk in COAD patients, indicating that these lncRNAs are high-
risk lncRNAs. Additionally, their high expression corresponds to shorter OS. In addition,
with increasing patient risk, AC073896.3, LINC00511, AC026979.4, AC103703.1, LRP1-AS
was down-regulated in expression, indicating that it is a low-risk lncRNA (Figure 3k–m).
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3.3. Independent Prognostic Analysis of Predictive Model and Stratified Analysis of
Clinicopathological Features

To assess the independent prognostic ability of the constructed prognostic model, we
performed univariate and multivariate Cox regression analyses on TCGA data, including
age, gender, tumor stage and risk score, to verify whether the risk score of COAD-related
lncRNA prognostic features could be used independently as an indicator of overall survival.
The results of univariate Cox regression analysis showed that risk score (p < 0.001), stage
(p < 0.001) and age (p < 0.007) were significantly associated with prognosis (Figure 4a).
Multiple factors such as age, gender, stage and risk score were included in the multivariate
Cox regression analysis, and risk score was found to be an independent predictor of
prognosis in COAD patients (p < 0.001, Figure 4b). The above results suggest that the
constructed model can be distinguished from the influence of other clinical features as an
independent prognostic factor.

To determine whether the risk score model could be used as the best predictor of
survival, age, gender, and stage were considered as candidate predictors. ROC curves were
introduced to analyze the AUC for 1-, 3-, and 5-year prognosis, and it was found that the
AUC was larger for 1 year (0.793), 3 years (0.749), and 5 years (0.789), indicating that the
constructed model was more accurate in predicting patients (Figure 4c). Further, the ROC
curves of the constructed model were plotted jointly with other traits, and it was found
that risk score (0.793), and stage (0.705) had higher AUC among these factors, especially
risk score had the largest AUC, indicating that our constructed model to predict patient
survival was better than other clinical traits (Figure 4d).

To develop a clinically applicable method that can predict the survival probability
of a patient, we used nomogram to construct a prediction model. Score is calculated by
calculating the nomogram score based on the scores of each prognostic factor included in
the nomogram to accurately predict the survival time of patients. We constructed an OS-
based nomogram with gender, age, stage and calculated risk scores to accurately estimate
the probability of patient survival at 1, 3, and 5 years, and the results showed a combined
score of 446 for all clinical traits and survival rates of 0.722, 0.472 and 0.295 at 1, 3, and
5 years, respectively (Figure 4e). The criterion of p < 0.001 was met in risk score. In the
C-index curves, the values were risk score, stage, age and gender in descending order,
where risk score was more accurate and predicted the survival of COAD with greater
accuracy (Figure 4f). To better assess the predictive power of the 15 cuproptosis -related
lncRNA prognostic model, we performed a stratified analysis by stage, gender and age.
The results showed that the p values of Kaplan–Meier survival curves for stage (stage I–II
versus stage III–IV, Figure 4g,h), gender (female versus male, Figure 4i,j), age (≤60 years
old versus >60 years old, Figure 4k,l) were less than 0.001, and the overall survival of the
high-risk subgroup was significantly lower than that of the low-risk subgroup, indicating
that our model is applicable to patients with early and advanced colon adenocarcinoma, as
well as to patients of different genders and stages. These results suggest that the model
constructed to predict patient survival is reliable and accurate.
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of receiver operating characteristic (ROC) curves for risk score models to predict 1-, 3-, and 5-year
overall survival (OS). (The horizontal coordinate is the false-positive rate and the vertical coordinate
represents the true-positive rate. The larger the area under the curve of the ROC curve, the higher the
accuracy of the model’s prediction). (d) Comparison of ROC curves for risk score and other clinical
factors (the risk score had the largest area under the curve, indicating that the constructed model was
a better predictor of prognosis than other clinical characteristics in COAD patients). (e) Nomogram
with risk score model and clinicopathological features (“***” indicates p < 0.001). (f) C-index curve
combining risk score, stage, age and gender (The consistency index of the risk score was much greater
than other clinical factors, and the risk score was more accurate in predicting survival in patients with
COAD). (g,h) Different clinical stages of COAD were introduced for model validation (significant
differences between high and low risk subgroups for stages I–II and III–IV of COAD, p < 0.001). (i,j)
Kaplan–Meier survival curve with gender as an indicator (female vs. male). (k,l) Kaplan–Meier
survival curve with age as an indicator (>60 years old vs. ≤60 years old).

3.4. Pathway Enrichment Analysis and Immune-Related Functional Analysis

Through difference analysis, we identified differential risk genes between the high-
risk and low-risk groups. The results of GO analysis mainly included biological process
(BP), molecular function (MF) and cellular component (CC) (Figure 5a,b). The results of
BP were enriched in humoral immune-related pathways and Signal recognition particle
(SRP)-associated proteins. The results of Ahmadi et al. also suggest a strong relationship
between colon adenocarcinoma and immunity [30]. CC processes focused nucleosome,
DNA complexes and other processes that are closely related to tumor cell growth and
proliferation [31,32]. MF enrichment in polysaccharide-binding components, activity of
receptor ligands. Additionally, KEGG results showed that differential risk genes were
associated with pathways such as malaria and Necroptosis (Figure 5c). Interestingly, some
studies have shown a negative correlation between the incidence of malaria and mortality
from colon and anal cancers in humans [33], which has been confirmed in several studies
examining animal models. For example, the antitumor effect of a mouse model of lung
cancer infected with malaria parasite is mediated by innate and adaptive immunity [34].
Necroptosis is a new form of programmed death that is closely associated with various
cancers, including colon cancer [16]. The above findings suggest a potential relevance of
these pathways to the mechanism of COAD.
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Figure 5. KEGG analysis and immune-related functional analysis. (a,b) GO enrichment analysis of
risk differential genes. (c) KEGG analysis of risk differential genes. (d) Analysis of immune-related
functions in high-risk and low-risk subgroups (* p < 0.05).

Therefore, further analysis of immune-related functions was performed using ssGSEA
(Figure 5d). We observed that there were significant differences between high-risk and low-
risk groups in APC co inhibition (p < 0.05), Cytolytic activity (p < 0.05), Parainflammation
(p < 0.05) among which APC co inhibition, Cytolytic activity and Parainflammation were
actively expressed in low-risk group. The above results suggest that significant differences
in prognosis between high- and low-risk subgroups may be related to immune-related
functions.
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3.5. Correlation between Risk Score Models and Somatic Cell Variants

In view of the prognostic value of TMB, we tried to investigate the relationship between
tumor mutational burden and risk score model, and the results showed no significant
difference in TMB levels between high and low risk subgroups (Figure 6a), and also found
no significant relationship between high and low TMB and survival of COAD patients
(Figure 6b), next we evaluated the predictive ability of the risk model in high and low TMB
groups. The results showed that the prognostic model had good predictive power in both
the high and low TMB groups, indicating that the predictive model we constructed was
not confounded by TMB status (Figure 6c).

Curr. Oncol. 2022, 29, FOR PEER REVIEW  14 
 

 

In addition, we explored the mutation rates of prognosis-related genes in the high 
and low risk subgroups by waterfall plots, and APC, TP53 mutations were more frequent 
in the high-risk group, and TTN, KRAS, MUC16, FAT4, ZFHX4, RYR2, OBSCN, CSMD3, 
LRP1B, PCLO mutations were more frequent in the low-risk group (Figure 6d,e). 

 
Figure 6. Correlations between the risk score model and somatic variants. (a) Differential analysis 
of tumor mutational burden (TMB) between high and low risk subgroups for colon adenocarci-
noma. (b) Correlation between the prognosis and TMB in COAD patients. (c) Predictive power of 
risk model in high and low TMB groups. (d,e) Compare the mutation rates of reported prognosis-
associated genes in low- and high-risk groups. 

3.6. Screening of Potential Drugs for COAD 
Further screening of potential drugs for COAD identified nine compounds that may 

be effective in COAD, namely ATRA, Axitinib, EHT1864, JW-7-24-1, OSI-930, Linifanib, 
PF-4708671, WZ3105, and Phenformin (Figure S1). The results of the bar graphs showed 
that the sensitivity of the nine compounds differed between the high- and low-risk groups, 
with the IC50 being significantly lower in all high-risk groups than in the low-risk group 
(p < 0.01). The correlation between risk scores and the sensitivity of these drugs was fur-
ther investigated (Figure S2), and it was found that higher risk scores corresponded to 
lower IC50 values. These results suggest that patients in the high-risk group were more 
sensitive to the drugs, that patients in the high-risk group would benefit more from the 
potential drugs, and that there was also a negative correlation between the risk score and 
the sensitivity of the drugs. 

It has been shown that down-regulation of sphingosine kinase 2 increases ATRA-
induced RARβ expression, arrests the cell cycle in G1 phase, and induces apoptosis in 
colon cancer cells [35]. The combination of Axitinib and ABT263 exerted a synergistic ef-
fect on KRAS-mutant colon cancer cells by enhancing apoptosis [36]. Moreover, the com-
bination of PF-4708671 and OSI-906 effectively inhibited the growth of OSI-906-resistant 

Figure 6. Correlations between the risk score model and somatic variants. (a) Differential analysis of
tumor mutational burden (TMB) between high and low risk subgroups for colon adenocarcinoma. (b)
Correlation between the prognosis and TMB in COAD patients. (c) Predictive power of risk model in
high and low TMB groups. (d,e) Compare the mutation rates of reported prognosis-associated genes
in low- and high-risk groups.

In addition, we explored the mutation rates of prognosis-related genes in the high and
low risk subgroups by waterfall plots, and APC, TP53 mutations were more frequent in the
high-risk group, and TTN, KRAS, MUC16, FAT4, ZFHX4, RYR2, OBSCN, CSMD3, LRP1B,
PCLO mutations were more frequent in the low-risk group (Figure 6d,e).
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3.6. Screening of Potential Drugs for COAD

Further screening of potential drugs for COAD identified nine compounds that may
be effective in COAD, namely ATRA, Axitinib, EHT1864, JW-7-24-1, OSI-930, Linifanib,
PF-4708671, WZ3105, and Phenformin (Figure S1). The results of the bar graphs showed
that the sensitivity of the nine compounds differed between the high- and low-risk groups,
with the IC50 being significantly lower in all high-risk groups than in the low-risk group
(p < 0.01). The correlation between risk scores and the sensitivity of these drugs was
further investigated (Figure S2), and it was found that higher risk scores corresponded to
lower IC50 values. These results suggest that patients in the high-risk group were more
sensitive to the drugs, that patients in the high-risk group would benefit more from the
potential drugs, and that there was also a negative correlation between the risk score and
the sensitivity of the drugs.

It has been shown that down-regulation of sphingosine kinase 2 increases ATRA-
induced RARβ expression, arrests the cell cycle in G1 phase, and induces apoptosis in colon
cancer cells [35]. The combination of Axitinib and ABT263 exerted a synergistic effect on
KRAS-mutant colon cancer cells by enhancing apoptosis [36]. Moreover, the combination
of PF-4708671 and OSI-906 effectively inhibited the growth of OSI-906-resistant colon
carcinoma Cells [37]. In conclusion, the above studies provide a basis for further research
into potential drugs screened for the treatment of COAD.

3.7. Construction of ceRNA Network and PPI Network and Gene Set Enrichment Analysis

In colon adenocarcinoma, we further explored how cuproptosis-related lncRNAs
regulate mRNA expression through miRNA targeting. First, the lncRNAs in the modules
associated with the clinical features of colon adenocarcinoma were screened by WGCNA,
and the results showed that Meblue had the highest correlation coefficient, so the Meblue
module was selected (Figure 7a,b). Similarly, when probing the mRNAs of the related
modules, MEpurple was also selected due to the highest correlation coefficient (Figure 7c,d).
The 6 lncRNAs, 18 miRNAs and 325 mRNAs obtained from the screening were then used to
construct a lncRNA-miRNA-mRNA ceRNA network (Figure 8). The 325 targeted mRNAs
were used to construct a PPI network (Figure 9a), and the sub-network of PPI network was
further constructed using the Mcode plugin in Cytoscape, from which three core genes
YWHAG, KRAS, MAP2K4 were screened out (Figure 9b). To investigate the potential
biological pathways involved in mRNA, we performed a gene set enrichment analysis
(GSEA). p values < 0.05 were considered statistically significant. The results showed that
the intestinal immune network pathway for iga production, the gnrh signaling pathway,
the drug metabolism cytochrome p450, valine leucine and isoleucine degradation, as well
as the starch and sucrose metabolism were active in the normal group. The p53 signaling
pathway was active in the tumor group (Figure 9c,d). The above results provide us with
new avenues to search for the potential functions of cuproptosis-related lncRNAs in colon
adenocarcinoma.
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Figure 7. Screening for modules significantly associated with colon adenocarcinoma by WGCNA.
(a) Hierarchical cluster analysis of the identified lncRNAs was performed to detect co-expression
clusters with corresponding color assignments. (b) Correlation analysis of clinical features of colon
adenocarcinoma with Eigengene of lncRNAs, where MEblue had the highest correlation coefficient.
(c) Hierarchical clustering analysis of the identified mRNAs. (d) Correlation analysis of clinical
features of colon adenocarcinoma with Eigengene of mRNAs, where MEpurple had the highest
correlation coefficient.
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Figure 8. Construction of lncRNA–miRNA–mRNA ceRNA network.
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Figure 9. Construction of protein–protein interaction (PPI) network and gene set enrichment analysis.
(a) PPI network was constructed with 325 targeting mRNAs. (b) PPI network of 13 genes were
obtained by Cytoscape, among which YWHAG, KRAS, MAP2K4 were core genes. (c,d) Potential
signaling pathways for targeting mRNAs revealed by GSEA analysis.
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4. Discussion

Cuproptosis is a regulated form of cell death that is distinct from other forms of cell
death. It has been shown that genes associated with cuproptosis are favorable predictors of
prognosis in related cancers [38]. However, lncRNAs have received less attention compared
to genes involved in the regulation of cuproptosis. Study results show that lncRNAs play
an important role in cancer development [15,39,40]. Considering the high heterogeneity
among different types of colorectal cancer, coupled with the fact that colon adenocarcinoma
is the predominant type, there is a need for a comprehensive assessment of the prognostic
value of cuproptosis-related lncRNAs in colon adenocarcinoma. In addition, inconsistent
treatment and prognosis at different stages of colon adenocarcinoma, as well as the influence
of factors such as tumor mutation burden, interfere with the applicability of the prognostic
model. Additionally, there is an urgent need for a predictive model that is highly accurate
for different stages of colon adenocarcinoma.

In this study, we screened 15 lncRNAs closely associated with cuproptosis by various
methods, including lasso regression analysis, and univariate and multivariate Cox analysis
(Figure 1). Using these characteristic lncRNAs to construct a prognostic model of COAD
(Figure 2), patients were divided into two subgroups of high and low risk, and the model
was found to have high predictive accuracy by independent prognostic analysis and ROC
curves. The model was further combined with independent prognostic factors (gender,
age, and stage) to form a nomogram with better predictive power for overall survival.
Meanwhile, the survival curve results showed that the model is applicable to multiple
pathological features of COAD patients (Figure 3). Enrichment analysis identifies biological
processes and pathways associated with immunity, leading to an in-depth comparison of
immune-related functions between the high- and low-risk groups (Figure 4). Since TMB
can be used as a prognostic predictor [41], we explored whether there were significant
differences in TMB levels between the high-risk and low-risk groups and the implications
for this model (Figure 5). Then, we constructed the lncRNA/miRNA/mRNA ceRNA
network and PPI network to explore the potential biological mechanism of cuproptosis-
related lncRNAs (Figures 6–8).

In recent years, lncRNAs have received increasing attention. Several studies have
found that lncRNAs play an important role in tumor progression, such as the down-
regulation of linc01140, which inhibits proliferation and the invasion of osteosarcoma
by targeting the miR-139-5p/HOXA9 axis [40]. Additionally, HOXA-AS2 is aberrantly
expressed in malignant tumors such as gastric cancer, cholecystitis, hepatocellular carci-
noma and breast cancer [42]. Among the 15 lncRNAs involved in this study, there were
10 unfavorable factors (AP003119.3, RNF216P1, AC156455.1, AL360270.1, AC139720. 2,
AC092614.1, LRP4-AS1, AP003555.1, AL513550.1, AL512306.2) and 5 favorable factors
(AC073896.3, LINC00511, AC026979.4, AC103703.1, LRP1-AS). In colon adenocarcinoma,
AC073896.3 as a favorable factor [17], and AC156455.1 [14] and AP003555.1 [43] as un-
favorable factors have been confirmed by other studies. Moreover, down-regulated
LINC00511 obstructs the tumorigenesis of COAD through restoring miR-625-5p and
silencing WEE1 [44]. LRP1-AS is associated with cancer development through the
regulation of the pepsin receptor LRP1 [45].

Tumor mutational burden (TMB) represents the number of mutations per megabase
(Mut/Mb) of DNA that were sequenced in a specific cancer. TMB has been shown to be
a biomarker for immune checkpoint inhibitors (ICIs) in melanoma [46], and high TMB
acts via anti-CTLA-4 and anti-PD-1 in melanoma and non-small cell lung cancer [41]. In
cancers such as head and neck squamous cell carcinoma, prostate adenocarcinoma, bladder
urothelial carcinoma and colorectal cancer, lower TMB has longer OS [47,48]. For example,
among colorectal cancer patients treated with oxaliplatin chemotherapy and those treated
with irinotecan chemotherapy, progression-free survival was significantly better in the
low-TMB group (11.9 months vs. 6.5 months, p < 0.001), whereas there was no difference in
PFS for high-TMB [49]. However, other studies have shown that high TMB is associated
with better prognosis in colorectal cancer patients receiving adjuvant chemotherapy with
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fluoropyrimidine and oxaliplatin after curative surgery [50]. Despite the promising results,
the predictive role of TMB is controversial due to the poor reproducibility of TMB results,
the lack of routine testing in clinical practice, and the lack of extensive experimental
validation support [51]. It is worth mentioning that, in the study, we also found no
difference in TMB between the high-risk and low-risk groups, and the degree of TMB did
not interfere with the prediction of the high-risk and low-risk groups. The above results
show that the constructed model was not confounded by TMB status.

This study established a new prognostic model of cuproptosis-related lncRNA, which
provides some reference for the treatment of COAD patients, but there are still some
problems. Firstly, the constructed prognostic model, despite having high accuracy, lacked
data support for further in vivo and in vitro experiments. Finally, the intrinsic mechanism
of how these lncRNAs affect cuproptosis is still unknown.

5. Conclusions

This prognostic model constructed based on 15 cuproptosis-related lncRNAs is a
reliable method for predicting clinical outcomes in patients with colon adenocarcinoma.
Additionally, our study helps to explore the potential mechanism of cuproptosis-related
lncRNA interaction with colon adenocarcinoma. It deserves further study.
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