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Abstract: Lung squamous cell carcinoma (LUSC) treatment response is poor and treatment alternatives
are limited. Palbociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, has recently been approved
for hormone receptor-positive breast cancer patients and applied in multiple preclinical models, but
its use for LUSC therapy remains elusive. Here, we investigated whether palbociclib induced cell
apoptosis and dissected the underlying mechanism in LUSC. We found that palbociclib induced
LUSC cell apoptosis through inhibition of Src tyrosine kinase/signal transducers and activators of
transcription 3 (STAT3). Interestingly, palbociclib reduced STAT3 signaling in LUSC cells interfered by
retinoblastoma tumor-suppressor gene (RB), suggesting that pro-apoptosis effect of palbociclib was
independent of classic CDK4/6-RB signaling. Furthermore, palbociclib could suppress IL-1β and IL-6
expression, and therefore blocked Src/STAT3 signaling, which were rescued by either recombinant
human IL-1β or IL-6. Moreover, Myc mediated the sensitivity of LUSC cells to palbociclib. Our
discoveries demonstrated that palbociclib induces apoptosis of LUSC cells through the Src/STAT3
axis in an RB-independent manner, and provided a reliable experimental basis of clinical studies in
LUSC patients.

Keywords: lung squamous cell carcinoma; CDK4/6 inhibitor; palbociclib; STAT3; RB; Myc

1. Introduction

Lung cancer remains the leading cause of mortality among various malignant tumors.
Lung squamous cell carcinoma (LUSC) is a common subtype of non-small cell lung cancer
(NSCLC) affecting over 300,000 individuals worldwide annually, and has poor therapeutic
response and prognosis [1]. Unlike lung adenocarcinoma, LUSC is a deadly disease, with
no effective therapies having been approved [2]. Therefore, there is an urgent need to
develop novel targeted therapeutic drugs for LUSC patients.

Cyclin-dependent kinase 4 (CDK4) and the closely related CDK6 are important to
cell cycle entry for promoting the progression of cells into the DNA synthesis phase of
the cell cycle [3]. CDK4/6 interacts with the D-type cyclins (cyclin D), forming functional
complexes that phosphorylate the retinoblastoma (RB) tumor-suppressor gene product [4].
Conversely, p16INK4A (p16) encoded by CDKN2A gene blocks the functioning of the
CDK4/6 complexes with cyclin D by directly binding to CDK4 and CDK6, thereby pre-
venting phosphorylation of RB [5]. RB is an active transcriptional repressor when bound
to transcription factors such as members of the E2F family. Inactivation of RB by phos-
phorylation causes the release of E2F, allowing transcription of genes important for DNA
synthesis [6]. Progression of normal human cells into malignant proliferation involves the
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genetic alteration of this signaling, such as inactivation of either p16 or RB, or amplification
of cyclin D1 or CDK4/6. Especially for LUSC, a comprehensive study of 178 LUSC speci-
mens revealed that significant alteration in CDKN2A and RB1 gene was identified in 72%
of LUSC cases, and CDK4/6 gene was frequently amplified in CDKN2A intact tumor [7,8].
Thus, cyclin D-CDK4/6 axis may be an attractive target for the treatment of LUSC.

Three CDK4/6 inhibitors (palbociclib, ribociclib, and abemaciclib) are currently ap-
proved in clinical practice. They bind to the CDK4/6 ATP pocket, leading to a substantial
inactivation of cyclin D-CDK4/6 complexes. As CDK4/6 inhibitors had potent efficacy
and tolerable adverse effects, they were used to treat various neoplasms [9]. Palbociclib,
the first CDK4/6 inhibitor, was approved by the US Food and Drug Administration (FDA)
as a therapeutic for estrogen receptor (ER)-positive metastatic breast cancer [10], and also
exhibits pre-clinical efficacy in multiple cancers including NSCLC. Phase II clinical trial
studies indicated that palbociclib monotherapy demonstrated evidence of modest antitu-
mor activity in patients with NSCLC with CDKN2A loss or mutation [11]. However, the
mechanism of palbociclib in LUSC remains unclear, which may limit its wider clinical use.

This study was designed to explore the action of palbociclib and the underlying
mechanisms in LUSC. Here, we reported that palbociclib conferred apoptosis on LUSC cells
via inhibition of Src/signal transducers and activators of transcription (STAT) 3 signaling.
These findings suggest that palbociclib is a potential drug for LUSC treatment and provides
a novel mechanism beyond canonical targets. Our studies can provide a powerful reference
for the individualized treatment of LUSC patients.

2. Materials and Methods
2.1. Materials

Palbociclib (S1116), stattic (S7024), and dasatinib (S1021) were purchased from Selleck
Chemicals (Shanghai, China). Recombinant human IL-6 (rhIL-6, Cat. No 206-IL) and IL-1β
(rhIL-1β, Cat. No 269-1R) were purchased from R&D Systems (Minneapolis, MN, USA).

2.2. Cell Lines and Culture

The human LUSC H226 and H520 cell lines were purchased from the Cell Bank of
the Chinese Academy of Sciences (Shanghai, China) and Procell (Wuhan, China). All cells
were cultured in RPMI-1640 (GIBCO, Invitrogen, Waltham, MA, USA), supplemented with
10% FBS (GIBCO, Invitrogen, Waltham, MA, USA) at 37 ◦C in a humidified 5% CO2
atmosphere (Thermo Fisher Scientific, Waltham, MA, USA).

2.3. Cell Viability Assay

Cells were seeded in 96-well plates at 5000 cells per well in 100 µL of culture medium.
Following adhesion of cells to the well, about 100 µL of fresh media and 20 µL of dimethyl
thiazolyl diphenyl tetrazolium salt (MTT, Sigma-Aldrich, St. Louis, MO, USA) solution were
added to each well. Then, the cells were cultured for 4 h at 37 ◦C in a humidified 5% CO2
atmosphere. The supernatants were then removed and formazan crystals were dissolved
in 150 µL of DMSO. The plates were incubated for 10 min with gentle shaking before
measuring the absorbance at 570 nm using a microplate reader (Thermo Fisher Scientific,
Multiskan™ FC, Waltham, MA, USA). IC50 values were calculated using GraphPad Prism
v. 8.01 (GraphPad Software, San Diego, CA, USA).

2.4. Flow Cytometry Analysis

Cells were harvested and apoptosis was detected by a FITC Annexin V Apoptosis
Detection Kit (BB-4101-3, BestBio, Nanjing, China). According to the manufacturer’s
protocols, cells were suspended in 400 µL 1× binding buffer with 5 µL Annexin V-FITC
and 10 µL propidium iodide (PI) followed by incubation for 15 min at 4 ◦C in the dark.
Finally, apoptosis was analyzed by flow cytometry (Thermo Fisher Scientific, Attune NxT,
Waltham, MA, USA).
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2.5. Western Blotting

The cell was collected and lysed after treatment, and membranes were incubated with
primary antibodies as follows: anti-p-STAT3, p-Src, 3 hosphor-JAK2, p-RB, p-Smad1/5/9,
STAT3, Src, JAK2, RB, Smad1/5/9, Survivin, Myc, IL-1β, IL-6, and β-tubulin were pur-
chased from Cell Signaling Technology (Beverly, MA, USA). Membranes were probed with
horseradish peroxidase (HRP)-labeled anti-rabbit secondary antibody from Cell Signaling
Technology. Protein bands were analyzed by a ChemiScope 6000Exp (CliNX, Shanghai,
China). Quantification of band intensity was carried out using Image J software (NIH,
Bethesda, Rockville, MD, USA).

2.6. Real-Time PCR

Total RNA was extracted with Trizol reagent (Invitrogen) from cells and reverse tran-
scribed to cDNA using a ReverTra Ace reverse transcriptase (TOYOBO, FSQ-301, Osaka, Japan)
according to the manufacturer’s protocol. Real-time RT-PCR was performed with the SYBR
Green Realtime PCR Master Mix (TOYOBO, Osaka, Japan, QPK-201) on an iCycler (Bio-Rad,
OSA, Japan) following the manufacturer’s instructions. The primer sequences were as fol-
lows: IL-1β forward primer: 5’-GCCAGTGAAATGATGGCTTAT-3’; IL-1β reverse primer: 5’-
GGTCCTGGAAGGAGCAC-3’; GAPDH forward primer: 5’-GGCACCGTCAAGGCTGAGAAC-
3’; GAPDH reverse primer: 5’-CATGGTGGTGAAGACGCCAGTG-3’; IL-6 forward primer: 5’-
TAGCCGCCCCACACAGACAG-3’; IL-6 reverse primer: 5’-GGCTGGCATTTGTGGTTGGG-3’;
IL-8 forward primer: 5’-CACCATGACTTCCAAGCTGGCTGTTGC-3’; IL-8 reverse primer: 5’-
TCATGGATCTTGCTTCTCAGCTCTC-3’; IL-10 forward primer:
5’- ATGCCCCAAGCTGAGAACCAAGACCCA-3’; IL-10 reverse primer:
5’- TCTCAAGGGGCTGGGTCAGCTATCCCA-3’; the gene expression levels for each am-
plification were calculated by using the ∆∆CT method and normalized against GAPDH mRNA.

2.7. ELISA

Levels of IL-6 and IL-1β in the culture supernatant of drug-treated cells were deter-
mined by ELISA. Each cytokine was detected according to the manufacturer’s protocol
using Human Quantikine ELISA Kits (R&D Systems, Minneapolis, MN, USA).

2.8. SiRNA Transfection

SiRNAs against RB, Myc, and a non-target control were from Shanghai GeneChem Co.,
Ltd. (Shanghai, China). The siRNAs were transfected with Lipofectamine 3000 (Invitrogen,
L3000015) for 48 h according to the manufacturer’s instruction.

2.9. Myc Plasmid Transfection

For transfection of Myc overexpressing plasmid, the plasmid (Addgene; Plasmid
number: 16011) was transfected into H520 and H226 cells together with lipofectamine 3000
(Invitrogen, L3000015) for 48 h according to the manufacturer’s instructions.

2.10. Statistical Analysis

Results are expressed as mean ± SD. All experiments were performed at least three
times. Differences between means from two different groups were subjected to Student’s
t-tests, whereas one-way analysis of variance (ANOVA) was used to test for significant
differences between three or more groups. Statistical analysis was done using GraphPad
Prism v. 7.01 (GraphPad Software, San Diego, CA, USA) and Image J software. p < 0.05
was considered statistically significant.

3. Results
3.1. Palbociclib Exhibits a Pro-Apoptotic Activity for LUSC Cells

To evaluate the inhibitory effect of palbociclib on LUSC cells, we first determined its
influence on cell viability in two LUSC cell lines (H520 and H226) by MTT assay. Palbociclib
markedly decreased the viability of H520 and H226 cells in a dose-dependent manner with
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the half-maximal inhibitory concentration (IC50) of 8.88 ± 0.67 µM and 9.61 ± 0.72 µM,
respectively (Figure 1A). Action of apoptosis was confirmed by flow cytometry analysis in
palbociclib-treated cells (Figure 1B,C). These results indicate that palbociclib can suppress
LUSC cell viability.
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Figure 1. Palbociclib inhibits cell viability and induces apoptosis in LUSC. (A) The effect of palbociclib
on the viability of H520 and H226 cells, determined by MTT after 48 h incubation. (B,C) The effect of
palbociclib (0 to 20 µM) treatment for 24 h on apoptosis of H520 and H226 cells. Results represent
mean ± SD of three independent experiments repeated in triplicate. Significantly different from
0 µM group, **** p < 0.0001.

3.2. Inhibition of STAT3 Signaling Decreases Palbociclib-Induced LUSC Apoptosis

To investigate the potential mechanism underlying palbociclib-induced apoptosis in
LUSC cells, we examined the STAT3 signaling, which was constitutively activated in LUSC
progression [12] and closely associated with apoptosis in various cancers [13]. Palboci-
clib dose-dependently suppressed STAT3 activity in H520 and H226 cells, as reflected by
decreased STAT3 phosphorylation (Figures 2A and S1). Besides, palbociclib significantly
inhibited the expression of survivin, a well-known target of STAT3. Next, we sought to
clarify whether STAT3 inhibition induced by palbociclib sensitizes LUSC cells to apoptosis.
Stattic (10 µM), a selective STAT3 inhibitor, had a similar effect on pro-apoptosis as palboci-
clib, which was determined by flow cytometry. When STAT3 activity was suppressed by
stattic, palbociclib (15 µM) could not induce additional pro-apoptotic effect in H520 and
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H226 cells (Figures 2B–D and S2). These results strongly support that palbociclib induces
apoptosis via STAT3 inhibition in LUSC cells.
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3.3. Palbociclib Inhibits STAT3 Phosphorylation via Src Inhibition in RB-Independent Manner

Given the RB is the critical downstream effector of CDK4/6, we examined whether
RB mediated palbociclib-inhibited STAT3 phosphorylation in LUSC cells. Palbociclib
could efficiently suppress RB phosphorylation in a dose-dependent manner in H520
and H226 cells (Figures 3A and S3). Then, RNA interference was used to knockdown
STAT3 expression, and knockdown efficiency of RB was assayed by Western blots in LUSC
(Figures 3B and S4). Figure 3C (Figure S5) showed that RB knockdown had little or no effect
on STAT3 phosphorylation. Specifically, palbociclib could reduce STAT3 phosphorylation
even in RB-deficient cells. Therefore, the above data indicate that palbociclib inhibits STAT3
activity irrespective of RB status in LUSC cells.
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Figure 3. Palbociclib inhibits STAT3 phosphorylation via independence of RB. (A) Palbociclib
(0–20 µM) suppressed RB phosphorylation in H520 and H226 cells. (B) RB siRNA was used to con-
struct RB-deficient H520 and H226 cells. (C) H520 and H226 cells were transiently transfected with the
siRNA against RB, and then treated with palbociclib. Results represent mean ± SD of three indepen-
dent experiments repeated in triplicate. Significantly different from control or 0 µM group, ** p < 0.01,
*** p < 0.001, **** p < 0.0001. NS, not significantly, p > 0.05.

A previous study showed that CDK4 inhibition directly inactivated Smad1/5/9 and
subsequently dephosphorylated STAT3 in human mesenchymal stem cells [14]. However,
our study found that palbociclib had no influence on Smad1/5/9 phosphorylation in
H520 and H226 cells (Figures 4A and S6). Janus kinase 2 (JAK2) and Src family kinases
are the well-known upstream activating kinases of STAT3 [15]. Thus, we next explored
whether JAK2 and Src mediated effects of palbociclib on STAT3 inactivation. Figure 4B
(Figure S7) showed that palbociclib dose-dependently reduced Src phosphorylation, while
it had none or little effect on JAK2. To further elucidate the role of Src in palbociclib-
mediated STAT3 activity, we used dasatinib to inhibit Src activity in H520 and H226 cells.
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As shown in Figure 4C (Figure S8), dasatinib (50 nM) produced a similar inhibition of
Src phosphorylation compared with palbociclib (15 µM). Furthermore, palbociclib plus
dasatinib treatments could not induce an additional decrease in Src phosphorylation
compared with dasatinib alone (Figures 4C and S8). Taken together, these findings reveal
that palbociclib suppresses STAT3 activity in an RB-independent manner, but through Src
inactivation in LUSC cells.
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Figure 4. Palbociclib inhibits STAT3 phosphorylation via Src kinase. (A) Palbociclib had no influence
on the Smad1/5/9 phosphorylation. (B) Palbociclib dose-dependently reduced Src phosphorylation
and had no effect on phosphorylation and expression of JAK2 in H520 and H226 cells. (C) After the
administration of dasatinib or dasatinib plus palbociclib, the phosphorylation of Src was analyzed
by Western blotting. Results represent mean ± SD of three independent experiments repeated in
triplicate. Significantly different from control or 0 µM group, * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001. NS, not significantly, p > 0.05.

3.4. Palbociclib Inhibits Src/STAT3 Signaling via Suppressing IL-1β and IL-6 Expression in
LUSC Cells

Many inflammatory cytokines have been reported to activate Src kinase and STAT3
signaling in cancers [16]. Therefore, we sought to detect four important pro-inflammatory
cytokines interleukins: (IL)-10, IL-1β and IL-6, as well as IL-8. Palbociclib dose-dependently
reduced IL-1β and IL-6 expression at the transcriptional level, whereas it exerted no effects
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on IL-10 and IL-8 in H520 and H226 cells (Figure 5A). Next, we performed ELISA to
investigate the effect of palbociclib on the secretion of IL-1β and IL-6. Palbociclib significantly
suppressed IL-1β and IL-6 production in H520 and H226 cells (Figure 5B). To further explore
the potential role of IL-1β and IL-6, we incubated the palbociclib-treated H520 and H226
cells with the recombinant human IL-1β (rhIL-1β) or IL-6 (rhIL-6). These results showed
that either rhIL-1β or rhIL-6 could substantially rescue the inhibitory effect of palbociclib
(15 µM) on Src and STAT3 phosphorylation (Figures 5C,D and S9). These data suggest that
palbociclib inhibits Src/STAT3 signaling via decreasing the production of IL-1β or IL-6 in
LUSC cells.
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Figure 5. Palbociclib inhibits Src/STAT3 signaling via IL-1β and IL-6 production. (A) The effect of
palbociclib on the mRNA expression of inflammatory cytokine (IL-1β, IL-6, IL-8, and IL-10) in H520
and H226 cells. (B) After administration of palbociclib, the contents of IL-1β and IL-6 in H520 and
H226 cells were measured using ELISA kit, respectively. (C,D) Western blotting analyzed STAT3
and Src expression in palbociclib-treated H520 and H226 cells with the recombinant human IL-1β
(rhIL-1β) or IL-6 (rhIL-6). Results represent mean ± SD of three independent experiments repeated in
triplicate. Significantly different from control or 0 µM group, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
NS, not significantly, p > 0.05.
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3.5. Myc Mediates the Sensitivity of LUSC Cells to Palbociclib

Myc is an oncogene and is frequently overexpressed in LUSC [17]. Moreover, survivin
is required for the survival of cells overexpressing Myc [18]. Our finding that palbociclib
significantly reduced survivin expression implies that palbociclib may be more sensitive in
Myc-overexpressed LUSC cells. To confirm this hypothesis, we first constructed Myc knock-
downed H520 and H226 cells via Myc siRNA transfection (Figures 6A and S10). Figure 6B
showed that palbociclib elicited weaker inhibition of cell viability in Myc knock-downed cells
with the IC50 of 14.89 ± 1.44 µM and 16.14 ± 1.41 µM, than in control siRNA-transfected H520
and H226 cells with the IC50 of 8.70 ± 0.88 µM and 9.27 ± 0.64 µM, respectively.
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Next, we transfected H520 and H226 cells with Myc plasmid to overexpress Myc
(Figures 6C and S11). As expected, the results showed that cells transfected with Myc
plasmid with the IC50 of 6.88 ± 0.61 µM and 7.76 ± 0.64 µM were more sensitive to
palbociclib than transfected with empty vector plasmid with the IC50 of 8.81 ± 0.76 µM and
9.74 ± 0.70 µM, respectively (Figure 6D). Furthermore, cells transfected with Myc plasmid
showed that significant increments in apoptosis compare with cells transfected with empty
plasmid after palbociclib (15 µM) treatment (Figure 6E). These findings suggest that Myc
overexpression enhances the sensitivity of LUSC cells to palbociclib.

4. Discussion

Recently, in the context of lung cancer, palbociclib has been reported to induce an
apoptotic response in lung adenocarcinoma cell line [19]. Another study reported that dual
CDK4/6 inhibition by palbociclib induced apoptosis and senescence in esophageal squa-
mous cell carcinoma cells [20]. In our study, we found that palbociclib dose-dependently
induced apoptosis of LUSC cells. These works suggest that palbociclib has anti-cancer
effects by inducing cell apoptosis and not restricting to growth arrest. Given the current
inefficiency in therapy of LUSC, palbociclib might be an effective potential therapeutic
strategy for LUSC patients, at least in part, by inducing cell apoptosis.

STAT is a highly conserved family of transcription factors that are activated by phos-
phorylation to regulate gene expression [21]. Among the seven STATs, STAT3 signaling
activation contributes to the progression of cancers [21], while inhibition of STAT3 signaling
leads to apoptosis of various cancer cells including lung cancer [22]. To our knowledge,
we, for the first time, found that palbociclib effectively inhibited the STAT3 activity, which
was further confirmed by decreased expression of its downstream, survivin. Further ex-
periments showed that STAT3 inhibitor did not induce an additional increase in apoptosis
compared with palbociclib alone, suggesting that STAT3 inactivation played important
roles in palbociclib-induced apoptosis in LUSC cells. A previous study indicated that RB
is a direct downstream protein of CDK4/6 complex and its action determined anti-cancer
activity of palbociclib [23]. Our results indicate that when RB expression was silenced,
palbociclib treatment also exerted inhibition of STAT3 phosphorylation in LUSC cells. These
data strongly support that palbociclib mediated LUSC cells apoptosis via inhibition of
STAT3 phosphorylation but not classic RB signaling. This finding is in keeping with previ-
ous work, which reported that palbociclib consistently suppresses tumor growth under
RB-deficient conditions [24]. These results together suggested that RB dependence was not
general for CDK4/6 inhibitor treatment, and palbociclib exerted its cytotoxic effects at least
partly by targeting STAT3 signaling beyond canonical CDK4/6-RB signaling. Our findings
suggested that palbociclib treatments might benefit LUSC patients with hyperactive STAT3
signaling and provide useful information for ongoing and future clinical studies.

A previous study showed that CDK4 inhibition directly inactivated Smad1/5/9 and
subsequently dephosphorylated STAT3 in human mesenchymal stem cells [14]. In this
study, palbociclib had no influence on Smad1/5/9 phosphorylation in LUSC cells. This
may be cell-context-dependent, perhaps reliant on the necessity of CDK4 versus CDK6
function for different cell types. STAT3 is mainly activated by phosphorylation of tyrosine,
which can be mediated by many tyrosine kinases including the Src and JAK families [25,26].
Our study found that palbociclib could reduce Src phosphorylation while having no effects
on JAK2 phosphorylation in H520 and H226 cells. A further study showed that palbociclib
could not induce an additional decrease in STAT3 phosphorylation in cells treated with an
Src inhibitor. To sum up, these findings reveal that palbociclib suppresses STAT3 activity
via Src/STAT3 axis in an RB-independent manner.

Human lung cancer cell-related inflammatory signaling can promote cell proliferation
and survival [27,28]. Some inflammatory cytokine signature predicted the effectiveness
of the anti-cancer medication, for example, IL-6 level is a prognostic marker for survival
in advanced NSCLC patients or those treated with chemotherapy [29]. In the current
study, palbociclib treatment dose-dependently reduced expression and secretion of IL-1β
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and IL-6, while having no effects on IL-8 and IL-10, indicating that the decrease of IL-6
or IL-1β, but not IL-8 and IL-10, may serve as a potential biomarker to predict clinical
response to palbociclib for LUSC patients. A previous study indicated that palbociclib
improved cardiac dysfunction in diabetic cardiomyopathy by preventing inflammatory
cytokine release [30]. These studies suggested that palbociclib resulted in not only cell cycle
arrest but also decreased inflammatory response, which hinted that palbociclib might be
beneficial to not only cancers but also inflammatory diseases. Future studies are warranted
to test this hypothesis. Most importantly, recombinant human IL-1β or IL-6 could rescue
the inhibitory effects on Src and STAT3 activity in palbociclib-treated LUSC cells. These
observations strongly demonstrated that palbociclib inhibited Src/STAT3 signaling in
LUSC cells by the probable suppression of IL-1β and IL-6 production, and further indicated
that inflammatory signaling is of importance on palbociclib-induced apoptosis in LUSC.

Myc is amplified in up to 33% of NSCLC patients and a prognostic marker of early-
stage tumors [31]. Our discovery that Myc mediated the sensitivity of LUSC cells to
apoptosis in response to palbociclib suggested that CDK inhibitors can selectively target
tumor cells with specific genetic alterations. Previous works also identified that a form of
synthetic-lethal interaction between Myc overexpression and CDK1 inhibition in engineered
breast cancer cell lines [32]. Our research into the effects of CDK4/6 inhibitor on LUSC
identified high Myc expression as a potential marker of sensitivity, which indicated that
palbociclib had value in the treatment of human LUSC malignancies that over-express Myc.

Our work demonstrated that palbociclib promoted apoptosis in LUSC cell lines and
might be an effective therapeutic strategy for LUSC patients. Specifically, we disclosed for
the first time that palbociclib induced cell apoptosis via inhibition of Src/STAT3 signaling
but independent of canonical CDK4/6-RB signaling. Furthermore, blockage of IL-1β or
IL-6 mediated palbociclib-inhibited Src/STAT3 signaling. Moreover, Myc can regulate
LUSC cells apoptosis in response to palbociclib. Taken together, palbociclib can exert its
anti-LUSC activities beyond simply enforcing cytostatic growth arrest, which might be
useful in the treatment of human malignant progression of LUSC that over-express STAT3
(Figure 7). Limitations of our study included the use of an in-vitro experiment to explore
the role of palbociclib. It is necessary to investigate these effects in an in-vivo tumor model
to support our conclusions.Curr. Oncol. 2022, 29, FOR PEER REVIEW  14 

 

 

 
Figure 7. Model: palbociclib induced cell apoptosis via inhibition of Src/STAT3 signaling but inde-
pendent of canonical CDK4/6-RB signaling. Furthermore, blockage of IL-1β or IL-6 mediated palbo-
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5. Conclusions

This is the first study showing that palbociclib induced apoptosis of LUSC cells via
IL-1β and IL-6-mediated Src/STAT3 signaling in an RB-independent model. Moreover,
Myc can sensitize LUSC cells to apoptosis in response to palbociclib.
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.3390/curroncol29080462/s1, Figure S1: The original image Western blotting of Figure 2A;
Figure S2: The original image Western blotting of Figure 2B; Figure S3: The original image Western
blotting of Figure 3A; Figure S4: The original image Western blotting of Figure 3B; Figure S5: The
original image Western blotting of Figure 3C; Figure S6: The original image Western blotting of
Figure 4A; Figure S7: The original image Western blotting of Figure 4B; Figure S8: The original
image Western blotting of Figure 4C; Figure S9: The original image Western blotting of Figure 5C;
Figure S10: The original image Western blotting of Figure 6A; Figure S11: The original image Western
blotting of Figure 6C.
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Cyclin D D-type cyclins
CDK4/6 Cyclin-dependent kinase 4/6
DMSO Dimethyl Sulfoxide
ER estrogen receptor
ELISA Enzyme-linked immunosorbent assay
FBS Fetal bovine serum
IL interleukin
JAK2 Janus kinase 2
LUSC Lung squamous cell carcinoma
MTT 3-(4:5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide,

Thiazolyl Blue Tetrazolium Bromide
NSCLC Non-small cell lung cancer
PBS Phosphate buffered solution
PI Propidium iodide
(RPMI)-1640 Roswellpark memorial institute
STAT3 Signal transducers and activators of transcription 3
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