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Abstract: Isocitrate dehydrogenase (IDH) mutation status is an important factor for surgical decision-
making: patients with IDH-mutated tumors are more likely to have a good long-term prognosis,
and thus favor aggressive resection with more survival benefit to gain. Patients with IDH wild-type
tumors have generally poorer prognosis and, therefore, conservative resection to avoid neurological
deficit is favored. Current histopathological analysis with frozen sections is unable to identify IDH
mutation status intraoperatively, and more advanced methods are therefore needed. We examined a
novel method suitable for intraoperative IDH mutation identification that is based on the differential
mobility spectrometry (DMS) analysis of the tumor. We prospectively obtained tumor samples
from 22 patients, including 11 IDH-mutated and 11 IDH wild-type tumors. The tumors were
cut in 88 smaller specimens that were analyzed with DMS. With a linear discriminant analysis
(LDA) algorithm, the DMS was able to classify tumor samples with 86% classification accuracy,
86% sensitivity, and 85% specificity. Our results show that DMS is able to differentiate IDH-mutated
and IDH wild-type tumors with good accuracy in a setting suitable for intraoperative use, which
makes it a promising novel solution for neurosurgical practice.

Keywords: differential mobility spectrometry; neuro-oncology; neurosurgery; glioma; classification;
isocitrate dehydrogenase (IDH)

1. Introduction

Gliomas represent the most clinically important group of primary brain tumors. Tra-
ditionally, they have been classified into WHO groups I–IV to evaluate their malignant
potential by analysis of their morphological features. However, the past decades of research
have led to the discovery of many molecular alterations in gliomas that have a great impact
on the tumor’s malignancy and, accordingly, to the patient’s prognosis [1]. Among such
alterations, the mutation of isocitrate dehydrogenase (IDH) enzymes 1 or 2 is highly corre-
lated with the patient’s overall survival, and the effect is present regardless of the tumor’s
histopathological WHO grade [2–5]. IDH mutation also seems to play a pivotal role in the
carcinogenesis of other solid tumors, such as cholangiocarcinoma, where it is also a major
target for medical therapy [6–8].
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Normally, IDH enzymes catalyze the oxidative decarboxylation of isocitrate to form
a-ketoglutarate (aKG) in the Krebs cycle. IDH1 and IDH2 localize differently in the cell
but share the same function; hence, they are hereafter referred to collectively as IDH.
The mutation of IDH confers a neomorphic enzyme activity that catalyzes the reduction of
aKG into the putative oncometabolite D-2-hydroxyglutarate (D2HG) [9]. The accumulation
of D2HG is further associated with the hypermethylation of DNA and chromatin, which is
thought to dysregulate cell epigenetics [10,11].

IDH mutation status is an important factor for surgical decision-making: patients
with IDH-mutated tumors are more likely to have a good long-term prognosis, and thus
favor aggressive gross total resection with more survival benefit to gain. Patients with IDH
wild-type tumors have a generally poorer prognosis and, therefore, conservative resection
to avoid neurological deficit is favored [12–14]. The effect of gross total resection on survival
remains also in recurrent diseases [15,16]. Current histopathological analysis based on
frozen sections is unable to identify molecular characteristics, including IDH mutation,
within the time frame of surgery [17], thus creating an imminent need for new solutions.

We have previously shown that differential mobility spectrometry (DMS) is able
to identify different brain tumors ex vivo [18]. DMS characterizes substances based on
the mobility differences of ionized particles in high-frequency electrical fields, resulting
in a substance-specific dispersion spectrum, or “smell fingerprint” [19]. The simplicity,
quickness and cost-effectiveness of DMS makes it a compelling emerging technology for
clinical applications [18]. In this study, we demonstrate the rapid, preparation-free analysis
of a tumor’s IDH mutation status with DMS.

2. Materials and Methods

We prospectively obtained tumor samples from 22 patients who had neurosurgical op-
erations at Tampere University Hospital between the years 2018 and 2021, and at Helsinki
University Hospital in 2020. Patient recruitment was continued until we had a sufficient
number of IDH-mutated tumors, which are rarer. To make balanced classes, an equal num-
ber of IDH wild-type tumors were randomly selected for the experiment. Eventually, we
had 11 IDH-mutated tumors and 11 IDH wild-type tumors. IDH-mutated tumors included
5 WHO gr. II–III astrocytomas, 3 gr. II–III oligodendrogliomas, and 3 gr. IV glioblastomas
(GBM). IDH wild-type tumors included 1 gr. III astrocytoma and 10 GBMs. Diagnoses
were made by an experienced neuropathologist and IDH mutation was identified with
immunohistochemistry. The study was approved by the ethics review board of Pirkanmaa
Hospital District, Finland. The patients gave their written consent for the study.

All samples were stored in a freezer at −70 ◦C. The samples were carefully cut into 88
(44 IDH-mutated and 44 IDH wild-type) smaller specimens of macroscopically equal sizes.
Blood, if macroscopically visible, was carefully rinsed from the samples before the analysis.
The samples were randomly placed in a plastic well plate with each well containing 0.18 mL
of agar in the bottom. Each sample was incised with a custom-built, computer-controlled,
40 W, 10.6 µm CO2 laser evaporator four times in a quadratic manner, with 1 mm gaps
between the incisions. The total number of incisions was 352. The laser sampling was
controlled by a graphical user interface. To provide a clean and controlled supply of carrier
gas for the analyte gas, purified and humidified pressurized air was introduced to the
sampling stage via a sampling nozzle. The sampling nozzle provided a protective stream
of carrier gas around the sampling area and, after sample vaporization, transported the
sample gas to the DMS inlet. The DMS used in the study was a commercial IonVision
instrument (Olfactomics Oy, Finland). The measurement parameters for the DMS spectrum
were: separation voltage (Usv), 200–1000 V with 20 increments; compensation voltage
(Ucv), −2–10 V with 60 increments; separation field frequency, 1 MHz; and duty cycle of
the field, 22%. With these parameters, the DMS measurement produced a total of 1200 data
points and the duration of the measurement was approximately 13 s, during which 250
2 ms laser pulses were used to provide a sample stream of vaporized tissue to the DMS.
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A gross appearance of the setup (A–D) and examples of the dispersion spectra (G) are
presented in Figure 1.
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Figure 1. The setup: (A) humidifier; (B) sampling unit; (C) DMS analyzer (D); graphical user interface;
(E) computing unit for data analytics; (F) workflow of the algorithm; (G) examples of IDH−positive
and −negative dispersion spectra. Vc = compensation voltage; Vrf = peak-to-peak amplitude of the
radiofrequency waveform voltage.

We evaluated the accuracy of several machine learning algorithms for the detection
of differences in dispersion spectra and the classification of the analyzed samples. Linear
discriminant analysis (LDA) was found to be the best performing algorithm. The main idea
of training an LDA algorithm is the projection of data points to a lower dimensional space so
that the between-class distance of class centers is maximized, and the within-class distance
of data points is minimized, defining a decision boundary between the classes that is used
to classify new samples. The other algorithms tested were K-nearest neighbors (KNN),
random forest (RF), decision tree (DT), support vector machines (SVM) and XGBoost (XGB).

3. Results

The data set revealed a temperature rise, which caused baseline drift during the
measurement of one well plate, making the data biased. Thus, a necessary preprocessing
method was to remove the dimension-wise linear trend which belonged the well plate
from each part of the data set. This preprocessing step improved the classification results
compared to the classification of the raw data. The data set contained 352 samples taken
from 22 patients. Group cross-validation was utilised to estimate the classification perfor-
mance. Group cross-validation is implemented so that, at every iteration, it leaves one
group of samples only for testing. The other groups are used for training. In this case,
the nested group cross-validation technique was used. This algorithm leaves one group for
testing and the other groups are used for training and validating. For the next iteration,
the second group is used for testing and the others for training and validating, and so on.
This approach ensures that there are no data leakages into the training phase. With the
nested group cross-validation training, the LDA algorithm reached a classification accuracy
of 86%, with 86% sensitivity and 85% specificity (Table 1). The workflow of the LDA
algorithm is presented in Figure 1F. Further details of the cross-validation and classification
results reached with other algorithms are presented in the Supplementary File.

In terms of the samples, out of the original 22 tumor samples (352 incisions), 8 samples
had all their incisions correctly classified. In five samples, less than 10% of incisions were
erroneous. In four samples, 10–20% were wrong. In five samples, 20–50% of the incisions
were incorrectly classified. The tumors that had incorrectly clustered incisions included
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eight IDH wild-type tumors and six IDH-mutated tumors. The most difficult tumor type
for the classifier was gr. IV GBM.

Table 1. Cross tabulation of the classification results (LDA).

IDH Mutation
− 150 26

+ 25 151

− +
Classification result

Sens. 0.85 Spec. 0.85

4. Discussion

Our results show that the smoke generated from the IDH-mutated and IDH wild-
type gliomas had distinct DMS profiles, and the DMS could differentiate them with good
sensitivity and specificity. The laser evaporator platform is compact enough to be placed in
the operating room and used for intermittent analysis of the tumor samples during surgery.
The duration of measurement was approximately 13 s, so the DMS operates in almost real
time. The DMS is also simpler and more economical than conventional mass spectrometer-
based solutions. Conventional frozen section analysis is unable to identify molecular
alterations in tumors, such as IDH mutation. In the latest WHO tumor classification, these
alterations have become ever more prominent. This creates an increasing need for novel
tumor identification methods in neurosurgical departments worldwide.

Recently, Raman spectroscopy has also been used for genotyping unprocessed glioma
samples [20]. Raman spectroscopy is a modality that gives spectral tissue characteristics
based on molecular signatures resulting from the inelastic scattering of incident light. Our
results equal those achieved with Raman spectroscopy, and the workflow in DMS is at least
as fast and straightforward.

Our tumor sample set included both IDH-mutated and IDH wild-type gr. IV GBMs
and gr. III malignant astrocytomas. Out of the tumors with an unusual IDH mutation
status given their histology, one GBM had 25% (9 out of 36) of the incisions erroneously
classified, but all the other tumors (two IDH-mutated gr. IV GBMs and one IDH wild-type
gr. III astrocytoma) had all their incisions correct classified, even though the opposite
cluster had multiple histologically similar tumors. This indirectly indicates that the divisive
features in the classification process were actually due to the cellular metabolic changes
driven by an IDH mutation. The phospholipid content of tissue has previously been
identified as a key distinguishing factor in DMS analysis [18]. The metabolic changes
associated with an IDH mutation include aberrations in phospholipid composition [10],
which constitutes a plausible theoretical basis for the detection of IDH mutation by DMS.

A potential source of error in DMS analysis is intratumoral heterogeneity. This is
especially true in GBMs, which vary in terms of cellular density, nuclear pleomorphism,
necrosis, histologic architecture, vasculature, mitoses, and multifaceted microenviron-
ments [21,22]. This can cause variance in tissue impedance and disturb the classifier [23].
An additional confounding factor in our study was 5-ALA, which was used only in the
resections of tumors that radiologically appeared as malignant. However, all three IDH-
mutated GBMs were resected with 5-ALA guidance, and still the classifier was able to
classify them correctly.

Our study was limited by a relatively small number of samples that we multiplied into
smaller specimens. In order to achieve a setup resembling actual intraoperative use, we
only minimally prepared the tumor samples for the analysis. This inevitably caused spatial
variance in the specimens that affected the DMS signal strength, thus creating an additional
confounding factor to the classifier. This issue could be addressed in future studies by
processing the samples into a more homogeneous cell suspension by a centrifuge before
the analysis. The suspension could then be pipetted into the well plate to obtain precisely
equal sample sizes. We also used frozen samples instead of fresh tumors. In our earlier
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unpublished experiments, freezing of the samples was not found to affect the classification
results. However, this should be verified in peer-reviewed studies in the future.

5. Conclusions

Our results show that the DMS is able to differentiate IDH-mutated and IDH wild-
type tumors with good accuracy in a setting suitable for intraoperative use. The role
of molecular alterations in classifying brain tumors and evaluating their prognosis is
increasing. Additionally, the degree of survival benefit achieved with a gross-total resection
varies even in histologically similar tumors based on their IDH mutation status, which is
impossible to identify with conventional frozen section analysis. This makes the DMS a
promising novel tool for neurosurgical practice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/curroncol29050265/s1. The work includes a supplementary
file; detailed description of data analysis and classification results achieved with other algorithms.
Figure S1: Nested cross-validation.
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