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Abstract: Pretherapeutic serological parameters play a predictive role in pathologic risk factors
(PRF), which correlate with treatment and prognosis in cervical cancer (CC). However, the method of
pre-operative prediction to PRF is limited and the clinical availability of machine learning methods
remains unknown in CC. Overall, 1260 early-stage CC patients treated with radical hysterectomy (RH)
were randomly split into training and test cohorts. Six machine learning classifiers, including Gradient
Boosting Machine, Support Vector Machine with Gaussian kernel, Random Forest, Conditional
Random Forest, Naive Bayes, and Elastic Net, were used to derive diagnostic information from
nine clinical factors and 75 parameters readily available from pretreatment peripheral blood tests.
The best results were obtained by RF in deep stromal infiltration prediction with an accuracy of 70.8%
and AUC of 0.767. The highest accuracy and AUC for predicting lymphatic metastasis with Cforest
were 64.3% and 0.620, respectively. The highest accuracy of prediction for lymphavascular space
invasion with EN was 59.7% and the AUC was 0.628. Blood markers, including D-dimer and uric acid,
were associated with PRF. Machine learning methods can provide critical diagnostic prediction on
PRF in CC before surgical intervention. The use of predictive algorithms may facilitate individualized
treatment options through diagnostic stratification.

Keywords: blood biomarker; cervical cancer; deep stromal infiltration; lymph node metastasis;
lymph-vascular space invasion; machine learning methods

1. Introduction

Cervical cancer remains one of the most frequent malignant tumors in women [1].
With the widespread application of human papillomavirus (HPV) vaccination and the
popularity of screening, patients diagnosed at early stages have accounted for the majority.
Radical hysterectomy (RH) is the standard-of-care treatment for these patients [2]. The
unavoidable problem after surgery is whether adjuvant treatment is required, which
is judged in accordance with postoperative pathological risk factors. The likelihood of
risk factors that increase the risk of recurrence is high, especially in stage IB3-IIA2 (the
2018 International Federation of Gynecology and Obstetrics, FIGO) due to large tumor
bulk [2]. Previous studies have illustrated that neoadjuvant chemotherapy (NACT) plus
surgery inhibited micro-metastasis and distant metastasis of tumors, and was associated
with a declined incidence of pathologic risk factors [3]. However, despite the fact that NACT
reduces the rate of adjuvant therapy after surgery, patients treated with NACT cannot be
thoroughly free from radiotherapy and the adverse effects that radiotherapy brings.

In addition, concurrent chemoradiotherapy (CCRT) is also an alternative initial treat-
ment for early-stage cervical cancer, particularly for locally advanced cervical cancer. As for
a patient with several pathologic risk factors, conformed to the adjuvant therapy standard,
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CCRT should be considered as the initial therapy but not RH, which shortens the treatment
process for the same effect and reduces treatment costs [4]. With regard to patients staged
IB-IIA, according to the National Comprehensive Cancer Network (NCCN) guidelines,
concurrent chemoradiation and RH both serve as alternative primary treatment options,
sharing nearly therapeutic equivalence. However, increased morbidity and complications
have been specifically illustrated when surgery and radiotherapy are combined [5,6]. This
multimodal treatment modality has caused them to bear a double treatment burden and
increased medical cost. In addition, the successive therapeutic process also prolongs the
treatment period, aggregates their side effects and affects quality of life in the long run.
Accordingly, it is necessary to construct a model to predict pathologic risk factors before
primary treatment, which will help select those for whom it is more appropriate to receive
direct chemoradiation therapy rather than RH. Additionally, the development of model
to predict postoperative pathologic risk factors is an important element for individual
prognosis stratification and personalized medicine.

Pathologic risk factors in cervical cancer include lymph node metastasis (LNM),
parametria infiltration, positive surgical margins, lymph-vascular space invasion (LVSI),
tumor size >4 cm and deep stromal infiltration (DSI) [2]. Previous studies illustrated that
many clinicopathologic factors were related to pathologic risk factors by common statistical
methods, but these methods were not suited to handle more complex data [7–9]. Machine
learning is a branch of artificial intelligence (AI) technology that allows the computer to con-
clude potential rules from complicated data of retrospective examples. AI technology has
been widely used to analyze clinical material to construct a model to predict clinicopatho-
logical factors and treatment outcome, acquiring a properly higher accuracy compared
with traditional statistical methods [10–12]. Therefore, it is feasible and reasonable to apply
machine learning to the prediction of postoperative pathologic risk factors.

Based on the successful application of AI technology and the discovery of related fac-
tors with pathologic risk factors, we hypothesized that pretreatment of clinicopathological
factors would be effective in the prediction of postoperative pathologic risk factors by ma-
chine learning analysis in FIGO stage IB-IIA cervical cancer. In addition, because of the low
incidence rate of positive margins and parametria infiltration in primary cohorts and pre-
operative confirmation of tumor size via clinical palpation, this study’s outcome contained
a prediction of other pathologic risk factors. Therefore, in the present study, we aimed to
explore the construction of a model for predicting LNM, LVSI and DSI through machine
learning combing of clinicopathological biomarkers and explore unreported significant
parameters associated with these factors.

2. Materials and Methods
2.1. Patients and Considered Features

This was a retrospective cohort study of 1260 patients with FIGO stage (2003) IB
and IIA cervical cancer who were treated with RH with retroperitoneal lymphadenectomy
between 2003 and 2017 in our institution (National Cancer Center/Cancer Hospital, Chinese
Academy of Medical Sciences; CICAMS). We retrospectively collected clinicopathological
parameters, including age at diagnosis, body mass index (BMI), menopausal status, clinical
FIGO stage, gross type, histologic grade, clinical tumor diameter, 75 preoperative peripheral
blood biomarkers, etc. (Table 1 and Table S1). Tumor diameter was obtained via clinical
palpation before surgical intervention.
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Table 1. Clinical and pathologic characteristics of 1260 patients with cervical cancer.

Variables
All

Patients
(n = 1260)

Training
Cohort

(n = 630)

Test
Cohort

(n = 630)
p Value

Age (years) 45 (18–74) 45 (18–74) 45 (21–73) 0.777
BMI (kg/m2) 23.6 (16.0–42.7) 23.6 (16.0–47.5) 23.7 (16.5–42.7) 0.453
Menopausal

status
Yes 353 (28.0%) 446 (70.8%) 461 (73.2%) 0.347
No 907 (72.0%) 184 (29.2%) 169 (26.8%)

Clinical tumor
diameter (cm) 3.5 (0.5–8.0) 3.5 (0.5–10.0) 3.5 (0.5–8.0) 0.211

Histology
Squamous
carcinoma 1053 (83.6%) 525 (83.3%) 528 (83.8%) 0.82

Adenocarcinoma 133 (10.6%) 69 (11.0%) 64 (10.2%) 0.647
Others 74 (5.8%) 36 (5.7%) 38 (6.0%) 0.811

FIGO stage
(2003)

IB1 707 (56.1%) 361 (57.3%) 346 (54.9%) 0.394
IB2 289 (22.9%) 142 (22.5%) 147 (23.3%) 0.738

IIA1 135 (10.7%) 60 (9.5%) 75 (11.9%) 0.172
IIA2 129 (10.3%) 67 (10.6%) 62 (9.8%) 0.642

Gross type
Exophytic 1163 (92.3%) 587 (93.2%) 576 (91.4%) 0.245

Endophytic 97 (7.7%) 43 (6.8%) 54 (8.6%)
Previous

abdominal
surgery

Yes 255 (20.2%) 133 (21.1%) 122 (19.4%) 0.441
No 1005 (79.8%) 497 (78.9%) 508 (80.6%)

Histologic grade
Good 87 (6.9%) 43 (6.8%) 44 (7.0%) 0.912

Moderate 506 (40.2%) 256 (40.6%) 250 (39.7%) 0.73
Poor 667 (52.9%) 331 (52.5%) 336 (53.3%) 0.778

Deep stromal
infiltration
Negative 653 (51.8%) 335 (53.2%) 318 (50.5%) 0.338
Positive 607 (48.2%) 295 (46.8%) 312 (49.5%)

Lymph-vascular
space invasion

Negative 829 (65.8%) 415 (65.9%) 414 (65.7%) 0.953
Positive 431 (34.2%) 215 (34.1%) 216 (34.3%)

Lymph node
metastasis
Negative 1017 (80.7%) 496 (78.7%) 521 (82.7%) 0.074
Positive 243 (19.3%) 134 (21.3%) 109 (17.3%)

2.2. Data Splitting

We obtained 1260 samples after preliminary preprocessing: removing medically im-
possible data (containing obvious record error), removing the features with 10% missing
values and the samples with missing values. Variables of age, BMI, menopausal status,
clinical tumor diameter, histology, FIGO stage, gross type, previous abdominal surgery, his-
tologic grade (obtained via cervical biopsy preoperatively) and 75 pretreatment peripheral
blood markers were all incorporated into the model construction. We started to handle the
features: the continuous features were normalized and categorical features were one-hot
coded, and LinearSVC method with L1 penalty was used to choose features.

The dataset was split into training and test cohorts according to a ratio of 1:1 by
repeated random sampling until there was no significant difference (p value > 0.05) between
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the two cohorts with respect to the three tasks (Table 1). The p values were calculated
using Chi-square or Fisher exact test for categorical variables, and the student’s t-test or the
Mann–Whitney U test were conducted for analyzing normally distributed or non-normally
distributed continuous variables. This resulted in the training cohort and the test cohort
both having 630 patients.

2.3. Supervised Machine Learning Classifiers

In this study, we evaluated six types of supervised machine learning classifiers, in-
cluding GBM (Gradient Boosting Machine) [13,14], SVMRadial (Support Vector Machine
with Gaussian kernel) [15], RF (Random Forest) [16], Cforest (Conditional Random For-
est) [17], NB (Naive Bayes) [18] and EN (Elastic Net) [19]. In addition, a logistic regression
classifier was used as a baseline. R software version 4.2.1 with R package caret was used to
implement all classifiers. One hundred independent training sets were conducted using
different random seeds in order to calculate variable importance for prediction. We used the
median of variable importance acquired from each training as a representative value. The
importance of each variable was calculated using the varImp function of the caret package.
A RF classifier combines two machine learning techniques: bagging and random feature
selection consisting of a group of decision trees. Cforest is an algorithm using conditional
inference trees as base learners, implementing both the random forest and the bagging
ensemble algorithm. EN is a logistic regression classifier trained by using a regularized
method that linearly combines the L1 and L2 penalties of the lasso and ridge methods.

2.4. Model Assessment

To assess the performance of different models, we computed the accuracy (ACC)
and the area under the ROC curve (AUC) on the test cohort as our evaluation metrics.
Here, ACC was obtained by setting the threshold corresponding to the top left point of the
ROC curve. As the AUC is independent of the chosen threshold, we used it as the main
evaluation metric.

2.5. Confidence of Prediction and Shannon’s Information Gain

Shannon’s information gain was used to assess the prediction confidence [20]. If a
patient, i, is lacking the information concerning the class that the patient is included in
(k-class), the Shannon’s information entropy representing uncertainty is expressed with:

H(i) = log2 k

If a classifier provides prediction probabilities for each class, the entropy will be:

Hc(i) =
k

∑
j=1

pj(i) log2(pj(i))

Here, pj(i) is the predicted probability that the patient i is included in class j. Thus,
we obtain the information gain, i.e., information gained by the prediction:

IG(i) = H(i)− Hc(i)

The individual information gain for each class is given by:

IGj(i) = pj(i)× IG(i)

3. Results
3.1. Prediction of Deep Stromal Infiltration of Cervical Cancer Based on Multiple Preoperative
Blood Markers Using Machine Learning Methods

Depth of stromal invasion was evaluated by an experienced pathologist and was
recognized as significant, with more than one millimeter of invasion in the depth of the
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stroma in a microscopic examination. The status of the depth of stromal infiltration was
classified into two groups: “non-deep” and “deep”. The “deep” group referred to patients
who had an invasive carcinoma with greater than one-third stromal invasion according
to the pathologic findings. “Non-deep” indicated a carcinoma infiltrating no more than
one third of the cervical stroma. The values for the highest ACC of the prediction and
the AUC were 70.8% and 0.767 with RF classifier, which achieved a 5.4% higher score
than the traditional method of multiple logistic regression analysis in AUC (Figure 1A;
Supplemental Table S2). It is notable that the best two classifiers, RF and GBM, both used
ensemble methods that combine weak decision trees.

Next, we focused on the best model, RF, and understood the variables. The relative
importance of each variable for segregating deep stromal infiltration patients from non-
deep infiltration ones was calculated for RF (Figure 1B). We identified the top eight factors,
including SCC, D-D, tumor diameter, URIC, age, neut%, ALP and TP, as important RF
predictors for distinguishing deep infiltration from non-deep infiltration. Standard box
plots that presented the distribution of each variable between deep and non-deep samples
are shown in Figure 1C.

Interestingly, we found that D-D was a critical variable, in addition to SCC. From
the confusion matrix (Figure 1D), RF predicted 81 patients with deep infiltration as ones
with non-deep infiltration and predicted 108 patients with non-deep infiltration as ones
with deep infiltration. When we considered the Shannon gain to represent the confidence
of predictions and chose those patients with certain higher confidence of predictions,
the predictions designated as higher confidence (>0.2 bits from Shannon information
gain computation) contained only 21 mispredictions out of 148 instances (Figure 1E). In
particular, for the predictions with higher confidence, if a patient was predicted as non-deep,
this was right at a rate of 1 − 7/52 = 86.5%.



Curr. Oncol. 2022, 29 9618Curr. Oncol. 2022, 29, FOR PEER REVIEW  6 
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Figure 1. Prediction of deep stromal infiltration of cervical cancer based on multiple preoperative
blood markers using machine learning methods. (A) ROC curves derived from logistic regression for
predicting deep stromal infiltration of cervical cancer based on all 75 peripheral blood markers using
machine learning methods compared with logistic regression. (B) Relative importance of variables
for prediction of deep stromal infiltration calculated in the RF. Variable importance is represented as
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a percentage of the highest value. (C) Box and jitter plots representing the distribution of top
eight important parameters for distinguishing infiltration from non-infiltration. (D,E), Confusion
matrix indicating the prediction quality of the RF classification for all predictions (D) and for those
predictions with high (>0.2 bits) confidence (E). Notes: SCC, squamous cell carcinoma antigen; D-
D, D-dimer; URIC, uric acid; ALP, alkaline phosphatase; TP, total protein; IgA, immunoglobulin
A; LDH, lactate dehydrogenase; TT, thrombin time; PT(A), plasma prothrombin time ratio (A);
MONO%, percentage of monocytes; HCT, hematocrit; HGB, hemoglobin; CK-MB, creatine kinase-MB
isoenzyme; b1-G, beta 1 globulin; PT(r), plasma prothrombin time ratio (r).

3.2. Differentiation of Lymph Node Metastasis of Cervical Cancer with Machine Learning Methods

The status of lymph node metastasis was classified into two groups: “metastasis” and
“non-metastasis”. We found that Cforest showed the best prediction performance with an
ACC of 64.3% and an AUC of 0.620 (Figure 2A; Supplemental Table S2), which achieved a
5.8% higher score than LR in AUC.

Next, the relative importance of a variable for segregating metastatic patients from
non-metastatic ones was calculated for Cforest (Figure 2B). We identified the top eight
factors, including SCC, IB2, IB1, MONO%, diameter, PT(A), HCT and TT, as important
Cforest predictors for distinguishing metastatic patients from non-metastatic ones. It
should be noted that as the clinical stage progresses, SCC and tumor diameter can increase.
Standard box plots that presented the distribution of each variable between metastatic and
non-metastatic samples are shown in Figure 2C.

Interestingly, we found that SCC was a critical variable. From the confusion matrix
(Figure 2D), RF predictions had 105 false negative samples and 13 false positive samples.
However, predictions designated as higher confidence (>0.2 bits from Shannon information
gain computation) contained only 29 misprediction out of 230 instances (Figure 3E). In
particular, for the predictions with higher confidence, if a patient was predicted as non-
metastasis, this was right at a rate of 1 − 29/230 = 87.4%.
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Figure 2. Differentiation of lymph node metastasis of cervical cancer with machine learning methods.
(A) ROC curves derived from logistic regression for predicting lymph node metastasis of cervical
cancer based on all 75 peripheral blood markers using machine learning methods compared with
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logistic regression. (B) Relative importance of variables for prediction of lymph node metastasis calcu-
lated in the Cforest. Variable importance is represented as a percentage of the highest value. (C) Box
and jitter plots representing the distribution of top eight important parameters for distinguishing
metastasis from non-metastasis. (D,E), Confusion matrix indicating the prediction quality of the
Cforest classification for all predictions (D) and for those predictions with high (>0.2 bits) confidence
(E). Notes: SCC, squamous cell carcinoma antigen; MONO%, percentage of monocytes; PT(A), plasma
prothrombin time ratio (A); HCT, hematocrit; TT, thrombin time; LDH, lactate dehydrogenase; D-D,
D-dimer; PT(r), plasma prothrombin time ratio (r); HGB, hemoglobin; ALP, alkaline phosphatase;
TP, total protein; URIC, uric acid; neut%, percentage of neutrophils; b1-G, beta 1 globulin; CK-MB,
creatine kinase-MB isoenzyme; IgA, immunoglobulin A.

3.3. Prediction of Lymph-Vascular Space Invasion of Cervical Cancer Based on Preoperative Blood
Markers Using Machine Learning Methods

In the task of lymph-vascular space invasion, patients were labeled as “invasion” or
“non-invasion”. LVSI refers to the presence of epithelial tumor cells in the lumen of vessels.
“Invasion” indicated positive pathologic findings of LVSI and “non-invasion” indicated no
pathologic proof of LVSI. We found that EN showed the best prediction performance, with
ACC of 59.7% and AUC of 0.628, and the traditional method of multiple logistic regression
analysis was comparative with ACC of 59.5% and AUC of 0.627 (Figure 3A; Supplemental
Table S2).

Next, the relative importance of each variable for segregating invasion from non-
invasion was calculated for EN (Figure 3B). We identified the top eight factors, including
RDW-SD, CK-MB, PCT, A/G, PT(A), IB1, TT and TBIL, as important EN predictors for
distinguishing invasion patients from non-invasion ones. Standard box plots that present
the distribution of each variable between invasion and non-invasion are shown in Figure 3C.

Interestingly, we found that RDW-SD was a critical variable. From the confusion matrix
(Figure 3D), EN predictions had 180 false negative samples and 36 false positive samples.
However, predictions designated as higher confidence (>0.2 bits from Shannon information
gain computation) contained only 15 misprediction out of 98 instances (Figure 3D,E). In
particular, for the predictions with higher confidence, if a patient was predicted as non-
invasion, it was right at a rate of 1 − 15/98 = 84.7%.
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Figure 3. Prediction of lymph-vascular space invasion of cervical cancer based on preoperative
blood markers using machine learning methods. (A) ROC curves derived from logistic regression for
predicting lymph-vascular space invasion of cervical cancer based on all 75 peripheral blood markers
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using machine learning methods compared with logistic regression. (B) Relative importance of
variables for prediction of lymph-vascular space invasion calculated in the EN. Variable importance
is represented as a percentage of the highest value. (C) Box and jitter plots representing the distri-
bution of top eight important blood markers for distinguishing invasion from non-invasion. (D,E)
Confusion matrix indicating the prediction quality of the EN classification for all predictions (D) and
for those predictions with high (>0.2 bits) confidence (E). Notes: RDW-SD, standard deviation of
red blood cell distribution width; CK-MB, creatine kinase-MB isoenzyme; PCT, plateletcrit; A/G,
albumin to globulin ratio; PT(A), plasma prothrombin time ratio (A); TT, thrombin time; TBIL, total
bilirubin; TP, total protein; TBA, total bile acid; MCV, mean corpuscular volume; abdo_surgery_0.0,
previous abdominal surgery; MONO%, percentage of monocytes; LDL-CHO, low density lipoprotein
cholesterol; D-D, D-dimer; b2-MG, beta 2 microglobulin.

4. Discussion

In recent years, machine learning algorithms based on AI technology have been widely
accepted and extensively utilized for diagnostic and prognostic assessment of various types
of cancers in the context of precision medicine [11,21,22]. This innovative approach, serving
as an important tool with high accuracy and efficient ability to process complex data, can
explore the key related factors to effectively assist in the clinical decision making of cervi-
cal cancer treatment. More importantly, hidden and embedded patterns within familiar
clinical data can be revealed with the aid of AI models. However, so far, no studies have
been conducted on integrating readily accessible clinical blood markers into the model
construction of predicting pathologic risk factors in cervical cancer based on AI technology.
Our study allowed for the comparison of various machine learning algorithms with the
traditional logistic regression analysis to identify the approach with the most favorable
performance and explore the serologic biomarkers with potential diagnostic potency. In
cervical cancer with FIGO stage IB-IIA, radical hysterectomy followed by tailored adju-
vant radiotherapy and concurrent chemoradiotherapy are both recommended for suitable
treatment modalities [21]. Postoperative adjuvant radiotherapy is warranted for women
with histopathologically verified risk factors, such as LVSI, LNM, DSI, etc., to improve
prognosis [22–24], which led to an increase in the risk of higher morbidity [25–27]. It is
beneficial and meaningful to predict pathologic risk factors so as to identify those more
likely to receive postoperative adjuvant radiotherapy to avoid compounding treatment-
related morbidity. Currently, the lack of ability to accurately identify those with a higher
chance to receive postoperative radiotherapy and achieve individualized medical man-
agement instead of a “one-size fits all” approach has been a primary clinical limitation.
Therefore, predicting pathologic risk factors by comprehensive utility of laboratory blood
tests and other pretreatment information is a fundamental way toward individualized
optimal medical care. In this study, we explored the ability of multiple machine learning
methods to predict pathologic risk factors of patients with cervical cancer by incorporating
readily available blood biomarkers. We found that three ensemble classifiers, RF, Cforest
and EN, were able to predict pathologic risk factors of early-stage cervical cancer, in which
RF showed the best predictive performance with an appreciable accuracy of 70.8% and
AUC of 0.767 for DSI. Cforest showed the most accurate predictive value for LNM (64.3%
accuracy and 0.620 AUC), and EN for LVSI (59.7% accuracy and 0.628 AUC). Compared to
the traditional approach of logistic regression analysis, the RF classifier achieved a 5.4%
higher score of AUC in DSI prediction, Cforest achieved a 3.4% higher score of AUC in
LNM prediction and EN showed almost the same performance in LVSI prediction. The
underperformance of these classifiers with regard to LNM and LVSI may be attributable to
the lack of particularly strong distinctions of cervical cancer at the level of an early stage
based on serum biomarkers. Nevertheless, the results indicate that AI technology can pro-
vide valuable predictive information before primary treatment to facilitate individualized
medical strategy. In addition, based on the optimal results of machine learning algorithms,
this study may offer useful clinical information concerning variables that are of most
importance for identification of pathologic risk factors, like DSI, in early-stage patients.
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Previous evidence has suggested that cancer is a metabolic disease associated with in-
flammation [28]. Cervical cancer harbors a unique collection of inflammatory and metabolic
molecules in the serum [29]. In early-stage cervical cancer, local inflammatory processes
may be at an initial state in which the peritumoral microenvironment perhaps alters the
most, while distant and systemic metabolic features and cancer-target responses are im-
munosuppressed [30], leading to the slight distinction of cancer invasiveness, which was
obscured in serum markers. Understandably, as tumor debulk progresses, tumor burden
aggravates, leading to cancer invasiveness. In this study, we found that squamous cell
carcinoma antigen (SCC), D-dimer and uric acid (UA) levels were the top five significant
plasma biomarkers for predicting DSI. SCC has been considered as the most important
diagnostic and prognostic tumor marker in cervical cancer. Many studies demonstrated
that an elevated level of pretreatment serum SCC was closely associated with disease
progression and recurrence [31,32]. UA is a powerful antioxidant and considered as a
protective factor against cancer [33]. It has been reported that an elevated level of UA
was associated with cancer risk, aggressiveness and poor oncologic outcomes in various
cancer types [34–36], but few studies have focused on gynecologic cancer. Interestingly,
previous studies have also shown a prooxidant role of UA [37] and lower levels of UA were
associated with elevated risk of cancer-related mortality compared with high levels [38].
The precise relation of UA with cancer, especially cervical cancer, needs further study.
D-dimer serves as a valuable marker of activation of coagulation and fibrinolysis, and is
also known as a biomarker of cancer prognosis, especially in metastasized patients [39–41].
The pretreatment prediction model of DSI in cervical cancer performed well and revealed
potential meaningful serum biomarkers that were readily available in clinical settings,
which is also consistent with previous studies. This study’s findings suggest that the
supervised machine learning analysis serves as a feasible and effective approach that can
aid in discovering more meaningful biomarkers that are correlated with PRF in cervical
cancer and are not identified by conventional multiple regression analysis.

Identification of reliable pretreatment blood markers associated with pathologic risk
factors helps clinicians in clinical decision making [42]. In this study, we found some
serologic indicators, such as RDW-SD and other indicators, that had scarcely been found
to be related to the diagnosis and prognosis of cervical cancer in previous studies. We
found that RDW was the top predictive indicator for LVSI. RDW is a routinely measured
hematological index, primarily reflecting the degree of anisocytosis. It has been reported
that this simple and inexpensive parameter is a strong and independent risk factor for
death in the general population [43]. Research has demonstrated that an aberrant elevation
level of RDW leads to poor survival outcomes in most tumor types and stages, independent
of age, gender or region [44]. However, little is known about RDW in cervical cancer.
One recent study indicated that RDW was associated with worse prognosis in cervical
cancer [45]. Excessive oxidative stress, inflammation, and cell senescence were proposed as
the conditions that RDW associates closely with mortality [46,47]. More dataset analysis is
still needed to confirm the predictive ability of these factors. Based on the high efficiency of
pretreatment blood markers, the dynamic detection of serological indicators in multiple
time periods may be more powerful in prediction. As the dynamic analysis of serological
indicators is more complex, future studies should develop the use of artificial intelligence-
based machine learning algorithms to identify the predictive features of preoperative
blood variable time series, which might significantly facilitate the accuracy of clinical
characteristics prediction and deserve further study.

As tumors progress over time, the signal transduction and correlation between
the tumor and its microenvironment, including fibroblasts, tumor-related immune cells
and endothelial cells, will become increasingly closer [48]. The changes of peripheral
blood parameters before surgery were inherently a combination of tumor-specific and
microenvironment-specific factors and the result of the interaction between tumor and mi-
croenvironment. Given the importance of tumor microenvironment in the process of tumor
development, clinicians should make full use of preoperative peripheral blood indicators
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for treatment decision making, cancer progression evaluation and prognosis assessment. In
previous studies, clinicians often ignored the reflection of regular blood biomarkers on the
biological characteristics of tumors and relied almost exclusively on tumor-specific factors
as included indicators for assessment, which was also a common problem in previous
retrospective analysis of tumors. In this study, we identified a series of blood indicators that
were readily available and necessary for preoperative evaluation related to pathologic risk
factors by machine learning methods, such as UA, D-dimer, thrombin time, AST, MONO%,
RDW-SD, etc. These parameters have the potential to be related to the microenvironment
in cancer progression or metastasis, and their changes will also influence treatment timing
and selection.

There have been a few previous studies exploring the use of serologic biomarkers to
predict PRF. One study [49] in 2016 incorporated clinical factors and three blood markers
derived from pretreatment blood routine examination to predict LNM, patients’ overall
survival and recurrence-free survival. They found platelet/lymphocyte ratio were signifi-
cantly associated with LNM. Another study [50] in 2020 found that pretreatment albumin
to fibrinogen ratio was significantly related to lymph node metastasis, depth of stromal
infiltration, etc. Many studies focused on prediction for survival outcomes or a single PRF
of cervical cancer based on clinical factors [51–53] and/or radiomic parameters [54,55].
However, no studies have made an attempt to predict three PRFs based on a series of
clinically readily available blood markers. In addition to critical data analysis methods
based on clinical factors, there are still many studies exploring new approaches of post-
operative pathologic risk factors prediction. It is clear that the diagnosis of pathologic
risk factors could only be accurately judged from the postoperative report of cervical can-
cer. Identification of reliable approaches that are able to predict pathologic risk factors
in advance would facilitate the identification of more accurate diagnostic stratification
and a more appropriate treatment strategy. A previous study indicated that DSI can be
determined by combining the 2D or 3D ultrasound with clinical variables before treatment,
with over 70% accuracy and AUC [56]. However, this diagnostic approach depended more
on subjective judgment rather than objective parameters based on relatively few cases. It
was reported that the assessment of cervical cancer with full-thickness stromal invasion by
MRI examination was limited [57]. In Bidus’s study, the conical method combined with
clinical factors to determine DSI and LVSI before treatment also achieved good accuracy
but this method is a destructive examination and may easily interfere with the complete
resection of radical surgery [58]. In the study of LNM diagnosis, sentinel node staining is
currently the most commonly developed method, but it is only used to determine whether
complete lymph node resection is performed before surgery [59,60]. In this study, LNM
was associated closely with primary tumor size as staging and tumor diameter were among
the top five predictors for LNM. Results indicated that imaging materials, such as MRI,
reflecting the visual size of the tumor itself and enlarged lymph nodes would potentially
provide more accurate predictive information preoperatively. However, previous studies
also used magnetic resonance imaging (MRI) and ultrasound to determine lymph node
metastasis, but imaging data could only determine lymphadenectasis rather than tumor
cell metastases in most cases, which leads to the unsatisfactory accuracy of the prediction
model [56,61]. This is a reminder that traditional data analysis on simple integration of
imaging information is not adequate enough to achieve LNM prediction. It is promising
to achieve more comprehensive and precise prediction by virtue of effective integration
of high-throughput extraction of a large amount of information from images based on AI
technology, which will be the focus of our subsequent research. As the approach used
in this study did not consider any information from pretreatment biopsies or imaging
studies, there may be a limitation of the ability to predict pathologic risk factors before
initial treatment; indeed, more independent datasets from other institutions are required to
investigate how pretreatment blood signatures can be utilized for more accurate assessment
of pathologic risk factors. Manipulation of high-throughput sequencing analysis, such as
RNA sequencing, of pretreatment peripheral blood may improve predictive performance,



Curr. Oncol. 2022, 29 9626

however, from another perspective, it may become more complicated and expensive to
incorporate RNA analysis information into the process of preoperative assessment in the
current context of clinical settings. Further comprehensive investigation is needed in the
hope of achieving the best clinical and socioeconomic benefits.

Our study has some limitations. Firstly, this study was a single-center retrospective
study. The retrospective nature may result in inherent bias. Secondly, results from our
database should be supplemented with external and prospective validation for prevention
of overfitting as well as further spread of application in clinical practice. Thirdly, other
machine learning approaches should be undertaken to manage the missing data in future
work. Fourthly, our assessment of diagnostic ability to predict pathological risk factors
was preliminary, and further study is warranted to better validate the accuracy of blood
biomarkers. At present, our model is not sufficiently powerful and accurate to predict LVSI
and LNM, but some blood biomarkers have been revealed for the first time that may be
potentially useful predictors from a large number of variables. However, a positive predic-
tion is not trivial; compared with traditional methods, the machine learning algorithms
could serve as a feasible tool for clinicians to predict oncologic outcomes based solely on
pretherapeutic information.

5. Conclusions

This study indicates that AI-based algorithms are useful tools that may aid in providing
critical information for diagnostic evaluation of pathologic risk factors in patients with
cervical cancer before initial treatment. The use of predictive algorithms may facilitate
personalized treatment selection through pretherapeutic assessment.
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