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Abstract: Multiple myeloma (MM) is a complex disease driven by numerous genetic and epige-
netic alterations that are acquired over time. Despite recent progress in the understanding of MM
pathobiology and the availability of innovative drugs, which have pronounced clinical outcome,
this malignancy eventually progresses to a drug-resistant lethal stage and, thus, novel therapeutic
drugs/models always play an important role in effective management of MM. Modulation of tu-
mor microenvironment is one of the hallmarks of cancer biology, including MM, which affects the
myeloma genomic architecture and disease progression subtly through chromatin modifications.
The bone marrow niche has a prime role in progression, survival, and drug resistance of multiple
myeloma cells. Therefore, it is important to develop means for targeting the ecosystem between
multiple myeloma bone marrow microenvironment and chromatin remodeling. Extensive gene
expression profile analysis has indeed provided the framework for new risk stratification of MM
patients and identifying novel molecular targets and therapeutics. However, key tumor microenvi-
ronment factors/immune cells and their interactions with chromatin remodeling complex proteins
that drive MM cell growth and progression remain grossly undefined.
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1. Introduction

Multiple myeloma (MM) is a complex hematological malignancy that is character-
ized by clonal expansion of plasma cells within the bone marrow [1]. While the healthy
plasma cells fight infections by producing antibodies, in multiple myeloma, cancerous
plasma B cells accumulate in the bone marrow instead of the normal plasma cells and
substitute the normal functioning of antibody production. MM is currently the second most
common in the United States and constitutes about 13% of all hematological cancers [2].
In almost all MM patients, disease progression occurs by a specific sequence of events
involving molecular modifications of plasma cells to its malignant form. This is followed by
additional secondary mutation events, augmenting the disease progression. MM is a culmi-
nation of complex interplay between genetic aberration and cytogenetic alterations with the
aberrations in the bone marrow environment, which results in modified immune system
response and associated pathways [1], which essentially have an impactful role in chro-
matin remodeling. Chromatin remodeling is controlled by several chromatin remodeling
complexes and some of these complex members, such as BCL7A and ARID family [3], have
mutations in the noncoding and coding region of the myeloma genome. Recent studies
have shown that ARID2, a component of the polybromo-associated BAF (PBAF) SWI/SNF
complex, is a pomalidomide-induced neo substrate of CRL4CRBN [4]. In addition to BRD7,
another crucial subunit of PBAF SWI/SNF complex is critical for pomalidomide-induced
ARID2 degradation, indicating the therapeutic intervention of MM through SWI/SNF
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chromatin remodeling factors [4]. Additionally, the tumor microenvironment (TME) plays
an immensely important role in promoting the expansion of specialized plasma cell types
with the most aggressive traits. The bone marrow (BM) microenvironment contains various
components, including the tumor-associated macrophages (TAMs), and has recently gained
interest as a potential therapeutic target. In this review, we will provide updated and
comprehensive insight into the current knowledge on the role of TME and its component
immune cells, as well as its effect and crosstalk with chromatin remodeling factors and
complexes.

2. Chromatin Remodeling and Myeloma

Chromatin is the basic and central structure in a cell which enables dynamic central
regulation of cellular transcription. A large array of genomic components that are generally
silent in the normal physiologic state are activated by an aberrant expression and/or
hyperactivity of chromatin remodelers in cancer cells in response to dysregulated cellular
signals [5]. Chromatin remodeling is grossly a rearrangement of the basic chromatin
structure by sequential repositioning of the nucleosome. The basic nucleosome mainly is
made up of histone core proteins (H2A, H2B, H3, and H4) and followed by wrapping up by
a 150-bp DNA sequence, which is affected in number of ways, including molecular events,
such as nucleosome ejection, nucleosome sliding, and histone eviction [5]. Nucleosome
sliding represents the movement of the histone octamer across the DNA sequence, whereas,
on the other hand, nucleosome ejection refers to the total segregation of the histone core
protein from the interacting DNA molecule. On the other hand, histone eviction primarily
deals with the removal or replacement of H2A–H2B dimer proteins as a molecular effect
of disintegration of the core histone octamer protein [5]. Basically, nucleosome ejection,
sliding, and removal of the H2A–H2B dimers directly affects DNA and nucleosome stability
adversely, thus playing a major role in transcriptional machinery and gene regulation
of the cell [6]. In chromatin remodeling, SWI/SNF complexes are essential for cellular
differentiation and proliferation but, unfortunately, the molecular mechanisms of the
functionality of the several chromatin remodelers are not well studied and need in-depth
experimental approaches to uncover their role in myeloma. Several biochemical analyses of
SWI/SNF complex show it contains several DNA-binding domains, nucleosome-binding
domains, high-mobility group box domains, and, finally, histone protein-binding domains
(e.g., bromodomains and plant homeodomains) [7].

Recent high-throughput molecular and crystallography studies have identified three
distinct mammalian SWI/SNF (m-SWI/SNF) complexes: canonical-BAF, p-BAF (polybromo-
associated BAF), and noncanonical BAF (ncBAF). All of these three complexes contain a
mutually exclusive subunit, SMARCA4 or SMARCA2. These structures showed the first
mechanistic insights into ATP-driven rearrangements causing histone eviction [7]. Since the
basic fundamental role of m-SWI/SNF complexes is maintenance and accessibility of prime
transcription factors, as a molecular consequence, they also exert a considerable antitumor
effect. Consequently, m-SWI/SNF-perturbated cellular state can trigger reprograming of
cellular processes and can also drive oncogenic pathways. Loss-of-function mutations in
genes encoding SWI/SNF subunits are found in about >20% of human cancers, with point
mutations occurring about twice as often as deletions [7]. Much research led to the dis-
covery of chromatin remodelers and complexes, such as ATP-dependent macromolecular
machineries, or remodelers, such as the nucleosome remodeling and histone deacetylase
complex (NuRD), nucleosome remodeling factor (NURF), chromatin assembly complex
(CHRAC), and the most important SWI/SNF complex [8,9].

Multiple myeloma is characterized by genetic changes in the chromatin remodelers and
regulators. Recent studies have shown mutation in chromatin regulators, such as KMT2C
(14.3%), KMT2D (14.3%), EP300 (11.6%), and ARID gene family (31.3%), were observed to be
frequently mutated in newly diagnosed MM (NDMM) patients [10]. Chromatin remodeling
and histone rearrangement is characterized by popular chromatin remodelers, such as
ARID family proteins (ARID1A, ARID1B, and ARID2) [11], and several important proteins,
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such as DNA methyl transferases, DNMT1 and DNMT3A; histone-modifying enzymes,
such as HAT1, KMT2C, etc. [12], have a deep impact in the organization of myeloma
genome, and aberration in any of these factors leads to change in clonal propagation of
myeloma cells. However, since the mutation frequency of these factors is less frequent in
myeloma, thorough investigation on the other genetic alterations and interactions with
the immune effector cells in the microenvironment can be crucial in understanding the
chromatin remodeling and microenvironment milieu in myeloma. Apart from chromatin
regulators, genes encoding the chromatin remodeling SWI/SNF complex subunits are
frequently mutated in about 16% in multiple myeloma, indicating the importance of this
complex in MM progression [13]. Although several high-throughput molecular studies
have identified epigenetic changes in the genome, their pathogenic impact is still unclear
and the chromatin regulatory pathway directing abnormal cellular functions in MM is still
under several investigations [13]. Most importantly, a very important study has shown
that chromatin remodeling is affected by pathogenic factors of myeloma microenvironment
leading to activation of chromatin and upregulation in genes involved in p53, NF-kB,
and mTOR molecular pathways [14]. Thus, aberrant chromatin remodeling leading to its
activation is a result of MM microenvironment.

3. Components of Myeloma Tumor Microenvironment (TME) and their Impact

The myeloma bone marrow (BM) niche significantly acts as a pathogenic entity in
MM, and the BM milieu has been reported to augment plasma cell growth and tumor cell
progression and homing [15]. The BM milieu of MM patients varies in its genetic, epigenetic,
and noncellular organization from that of normal plasma cells from normal subjects [16].
Tumor microenvironment, which controls MM progression, actually is part of the bone
marrow, which is made up of the following essential cellular elements: extracellular matrix
proteins (EMPs), hematopoietic stem cells (HSCs), progenitor cells, mesenchymal stromal
cells (MSCs), endothelial cells, osteoblasts, growth factors, immune cells, etc. The TME of
myeloma accommodates different types of immune cells, which persists in an immune-
deprived condition and results in an abrogated immune response through deregulated
immune cells and pathways (summarized in Figure 1).
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3.1. Hematopoietic Stem Cells and Progenitor Cells

Hematopoietic stem cells (HSCs) reside in the bone marrow and they give rise to
all the blood cell types of the myeloid and lymphoid lineages [17]. In adults, HSCs
and hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow, acting
according to their maturation states and activity [18,19]. HSCs are believed to exist close to
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the arterioles and any stress generally leads to HSC proliferation and distribution at distant
locations in the body [20–22]. HSCs and HSPCs of MM patients differentiate into cells
with endothelial cell characteristics, whereby they tend to express less CD133 and develop
VEGFR-2, vascular endothelial (VE)-cadherin and factor VIII-related antigen (FVIII-RA) [23].
HSCs and progenitors have an immense effect on determining how the niche supports
the growth of tumor. An important study mentions that genomic profiling of HSCs and
progenitor cell subsets revealed aberrations of MM microenvironment signaling pathways,
such as TGFβ signaling, cellular migration, cellular adhesion, etc. [24]. Furthermore,
inhibition of the involving factors of HSCs and progenitor cells depends on MM-associated
microenvironment conditions [24].

3.2. Mesenchymal Stromal Cells

Mesenchymal stromal cells (MSCs) are a heterogenous population of cells having
self-renewal properties and defined by markers, such as nestin, leptin receptor, neural-glial
antigen (NG)-2, and paired related homeobox (Prx-1) [22,25–27]. MSCs can differentiate
into different lineages, including osteoblastic cells, chondrocytes, and adipocytes [28].
MSCs associate with HSCs by secreting supporting elements, such as stem cell factor
(SCF/Kit ligand), C-X-C motif chemokine ligand 12 (CXCL12), and others, which differs
according to their location in the bone marrow microenvironment (BMM) [29].

3.3. Endothelial Cells

Endothelial cells line the vascular system and play crucial roles in regulating tumor
initiation, progression, and metastasis. Angiogenesis is an important feature of tumor
metastasis and tumor cells are receptive to growth factors specific for endothelial cells and
result in a switch in the balance of positive and negative angiogenic factors [30]. The hypoxic
environment of the bone marrow promotes acquisition of the epithelial–mesenchymal
transition (EMT) machinery in MM cells, leading to their enhanced mobilization away
from the BMM [31]. MM endothelial cells (MMEC) secrete proangiogenic factors, such
as VEGF, FGF-2, and IL-8, by enhanced transcription by platelet-derived growth factor
(PDGF)-BB/PDGF receptor beta (PDGFRβ), thus promoting the tumorigenesis [32]. In
contrast, a prolonged treatment with a PDGFRβ/SrcTK inhibitor reduced the expression
of endogenous VEGF, thus abrogating this effect. Additionally, endothelial cells have
been shown to support HSC maintenance by providing factors, such as CXCL12, SCF,
angiopoietin, fibroblast growth factor (FGF) 2, and Delta-like 1 [19,33]. Furthermore,
removal of E-selectin from endothelial cells increased HSC quiescence and self-renewal,
confirming that E-selectin also supports HSC function [34].

3.4. Immune Cells

Tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs) are
among the critical immune cells that have a pivotal role in the multiple myeloma TME and,
thus, have long been considered as promising targets for therapeutic intervention.

The adaptive immune system is equipped with pivotal properties, such as recognition
and elimination especially by CD8+ cytotoxic T lymphocytes (CTLs) [35]. It is known that
upregulation of programed cell death-ligand 1 (PD-L1) on cancer cells inhibits immune
intervention by binding to its specific receptor programed cell death protein 1 (PD1), ex-
pressed on activated T cells [36]. High PD-L1 expression is an indicator of malignant plasma
cells, which makes it a promising target for immune checkpoint inhibitors (ICI) [37,38].
Additionally, MM is characterized by reduced T cell activation, resulting in an immunosup-
pressive environment, as shown by studies on BM of MM patients containing an increased
number of PD1-positive and T cell immunoglobulin and mucin-domain-containing protein
3 (TIM3)-positive T cells [39]. Nevertheless, although ICI monotherapies have not shown
clinical benefits to MM patients [40], combination therapy shows better efficacy and safety
with advanced malignancy [41]. Dendritic cells (DCs) in the TME could, furthermore,
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protect the myeloma cells from CTL-mediated cell killing by downregulating expression of
proteasome subunits [42].

Tumor-associated macrophages (TAMs) are known to promote disease progression
in numerous solid tumors, including melanoma, glioblastoma, lung cancer, colorectal
cancer, and ovarian cancer [43–47]. Many preclinical models have been utilized to study
how TAMs affect MM cell survival. The proinflammatory cytokines (IL-6 and TNFα)
secreted by CD169-positive TAMs are known to enhance vascular leakage and abrogate
CD138-mediated cell adhesion; this may drive dissemination of myeloma cells into the
blood circulation [48]. In tandem, M2-polarized macrophages are established to promote
angiogenesis [49]. In a study, while xenografts in untreated mice displayed increased tumor
growth and VEGF, they were reduced in myeloma xenografts injected with M2-polarized
macrophages and treated with the macrophage-depleting agent clodronate [50]. TAMs have
immense effect on angiogenesis, as a report suggests that the transcriptomics profile of the
immune cells of MM patients represented enrichment of particular gene types, including
VEGF-A or diphtheria toxin receptors [51]. TAMs exercise influence on myeloma cells by
preventing elimination by the immune system and boosting their cell survival. It has been
reported that M2 macrophages can prevent MM cells from apoptosis induced by drugs,
possibly by enhanced resistance and tumor progression [52,53]. Reduced CXCR4 receptor
was detected in MM patients undergoing bortezomib treatment, which can be an indication
of impaired adhesion and increased expression of macrophage migration inhibitory factor
(MIF) [54,55]. Increased expression of CD47 is another characteristic of MM patients and its
binding to signal regulatory protein a (SIRPa) on macrophages generally act as a “don’t eat
me signal” and safeguards myeloma cells from phagocytosis and apoptosis [56].

3.5. Osteoblasts and Osteoclasts

The effect of osteoblasts and osteoclasts on MM progression are less studied in com-
parison to the other components of the TME. In MM patients, osteoclast activation and
osteoblast differentiation inhibition result in a mutual imbalance, which, in turn, impairs
osteoblastogenesis [57–59]. This is the reason why MM patients often experience bone pain
and fractures [60,61].

Osteoclasts influence MM progression directly by releasing cytokines, such as IL-6,
IL-3, and others, or expressing receptor activator of NF-kB ligand (RANKL), which leads to
resorption of the bone matrix [62–65]. This turns on the “vicious cycle” of MM growth by
several soluble factors, such as IL-6, BAFF, APRIL, and others [66,67]. IL-6 downregulates
CD138 and enhances the permeability of blood vessels, enabling intravasation of cancer
cells and exerting an overall pro-tumorigenic role [48]. In contrast, osteoblasts balance
the osteoclast activity by pushing MM cells towards the quiescent state and initiating
apoptosis [68]. MM cells try to combat this effect by releasing secreted frizzled-related
protein 2 (sFRP2), Dickkopf-related protein 1 (DKK1), and trans-forming growth factor
beta (TGF-β) to conquer the tumor-suppressive outcomes of osteoblasts [64,69,70].

3.6. Adipocytes

Recently, bone metastatic cancers, such as breast cancer and acute myelogenous
leukemia, have been linked to bone marrow adipocytes [71–73]. Some key risk factors in
multiple myeloma disease prevalence are obesity and aging of the bone marrow, indicating
that bone marrow adipose tissue (BMAT) may affect the progression of MM [74–76]. Thus,
the mutual interactions between BMATs and myeloma cells have substantial effects on
the pathogenesis and treatment of multiple myeloma and could be used as a potential
therapeutic target for future interventions [77].

3.7. Extracellular Matrix Proteins

The extracellular matrix (ECM) is a critical component of the tumor microenvironment
that contributes to the regulation of cell survival, proliferation, differentiation, and metasta-
sis. In addition to myeloid cells that penetrate myeloma, extracellular matrix components
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and stromal cells also play a role [78]. One of the reports suggest that tumor ECM is recon-
structed at the mRNA and protein levels in MGUS and MM to promote their progression;
moreover, decreased survival in MM has been affiliated to two ECM proteins, ANXA2
and LGALS1 [79]. An extracellular matrix metalloproteinase inducer (EMMPRIN), CD
147, is also connected with MM development [80]. Therefore, the connection between MM
cells and the bone marrow (BM) microenvironment, such as the ECM, is necessary to the
pathogenesis of the sickness and the improvement of drug resistance.

3.8. Growth Factors

Multiple myeloma (MM) is known to rely strongly on the tumor cells on their mi-
croenvironment, which produces growth factors supporting survival and proliferation of
MM cells. A detailed study provided an extensive description of myeloma growth factor
(MGF) gene expression in the various cell populations of the BM of MM patients, which
revealed an enhanced expression of MGF and MGFR genes during plasma cell differen-
tiation [81]. Additionally, interleukin-6 has long been reported as a potent myeloma-cell
growth factor in patients with aggressive MM [82]. Several reports affirming the clinical
impact of hepatocyte growth factor, vascular endothelial growth factor, and antiapoptotic
signaling pathways validate that growth factors are indeed crucial in maintaining the tumor
progression in MM [83–85].

4. Components of the TME in the Light of Chromatin Remodeling

Epigenetic modifications are well known to contribute to cancer development and
progression [86]. Epigenetic modifications or changes lead to epigenetic marks, which
specifically characterize different cells, such as tumor-associated macrophages, lympho-
cytes, monocytes, etc., of the tumor microenvironment [87]. While there are many reports
in the cancer research field about epigenetic modifications, rising evidence signifies their
role in developing a favorable TME [6]. The crosstalk of the components of the tumor
microenvironment with chromatin remodeling network (summarized in Figure 2) has been
reviewed in the next few paragraphs.
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Hematopoietic stem cells are known to be regulated at the level of chromatin remod-
eling in various areas of research. Reports indicate that glucocorticoid hormone induces
chromatin remodeling and, in turn, enhances recruitment of human hematopoietic stem
cells and their engraftment [88]. The BAF45a/PHF10 subunit of SWI/SNF-like chromatin
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remodeling complexes has been reported to be crucial for maintenance of hematopoietic
stem cell [89]. The chromatin remodeler BPTF is reported to promote maintenance of
adult hematopoietic stem cells via activation of a stemness gene-expression pathway [90].
Chromatin remodeler Znhit1 is known to maintain hematopoietic stem cell quiescence
by determining the access to distal enhancers [91]. Stem cell self-renewal is also known
to be regulated by chromatin remodeling factors [92]. Chromatin remodeling factor Mll1
has been reported to be needed for neurogenesis from postnatal neural stem cells [93].
Embryonic stem cell self-renewal and pluripotency is regulated by embryonic stem cell
chromatin remodeling complex, esBAF [94]. The maintenance of undifferentiated mouse
embryonic stem cells is possible due to BAF250B-associated SWI/SNF chromatin remodel-
ing complex [95]. Human embryonic stem cells undergoing pancreatic differentiation have
been reported to be coordinated by the dynamic chromatin remodeling mediated by poly-
comb proteins [96]. In epidermal progenitor cells, p63 and Brg1 regulate the higher-order
chromatin remodeling during their differentiation [97].

Mesenchymal cells are an integral part of MM TME and they are under epigenetic
control by various means. It has been reported that, in human mesenchymal stem cells,
exposure to unfavorable microenvironments leads to their extensive chromatin remodel-
ing [98]. Recent reports show that chromatin remodeling agent trichostatin A in the liver
cells modulates the differentiation process of human mesenchymal stem cells (hMSCs) in
bone marrow [99]. PBAF-dependent chromatin remodeling and BMP/TGF-β signaling are
important events that happen during mesenchymal stromal cell osteolineage differenti-
ation due to the effect of Pbrm1 [100]. The cell growth arrest, apoptosis, and senescence
of rat mesenchymal stem cells involves Brg1, an important chromatin remodeling fac-
tor [101]. Epigenetic control of mesenchymal stem cells also, by and large, regulates cell
senescence. Several studies have reported that the chromatin remodeling complex factor
BRG1 ATPase, which reportedly alters nucleosome structure by hindering histone protein
and DNA interaction, promotes senescence of mesenchymal stem cells through influencing
the RB–P53 molecular pathway [102] and, thus, might be crucial in silencing of NANOG
protein, thus altering the expression levels of several chromatin proteins affecting cellular
physiology [103].

The endothelial cells are functionally relevant in many contexts, including angiogene-
sis, and there are ample reports of these cells being epigenetically regulated. For example,
the NuRD chromatin remodeling complex enzyme CHD4 is known to inhibit transcription
of hypoxia-induced endothelial Ripk3, thus preventing vascular rupture [104]. Endothelial
differentiation is affected by chromatin remodeling factor Nox4 [105]. Angiogenic factor
receptor VEGFR is regulated in breast cancer cells by its interaction with the SWI/SNF
chromatin remodeling complex [106].

Many biochemical and molecular studies have uncovered important roles of epige-
netic aberration in changing the nature of TAMs and, thus, epigenetic alteration of these
TAMs has the molecular thrust to reprogram the tumor microenvironment in different
tumors, as well as in myeloma (TME). These molecular events have a deep impact in
transformation to an immunosuppressive environment from an antitumor environment. It
is well known that cellular origins of macrophages are of two types, either they undergo
differentiation from circulating monocytes in the blood stream or originate from the resi-
dent macrophages involved in early development of organs [107]. Activated macrophages
can be subdivided into M1 (classically activated) and M2 (alternative activated) pheno-
types [108]. Activation of classical M1 macrophage generally occurs in response to bacterial
infections and immune stimuli (lipopolysaccharide and interferon γ). M1 macrophages can
also facilitate the innate immunity against tumor and parasites, resulting in inflammation
by secretion of molecules such as tumor necrosis factor α, reactive nitrogen, and oxygen
species. In addition, M1 macrophages evoke T-helper-1 (Th1) responses [109]. In contrast,
M2 macrophages are responsive to cytokines such as IL-4, IL-13, IL-10, and glucocorticoid
hormones; they play crucial roles in inflammatory response and wound healing and are
majorly secreting immunosuppressive cytokines, such as IL-10 that promotes a Th2 im-
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mune response [110,111]. Although TAMs were believed to have an M2-like phenotype,
promoting cancer growth and metastasis [112], recent evidence suggests that the TAMs
may undergo M1–M2 transition [113]. Tumors contain M1 macrophages initially [114,115],
which, on progression, switch to an M2-like characteristic [116,117]. It has been shown
specifically that post-translational modifications of histone proteins associated with the
inflammation-related genes influences the epigenetic machinery that controls activation of
M1 and/or M2. The development and formation of macrophage phenotype is governed by
the alterations in histone acetylation by acetyltransferases, and deacetylases and histone
methylation by methyltransferases and demethylases. Furthermore, genetic regulations of
macrophage gene expression occur mainly in the enhancers of related genes and during
differentiation of macrophage. Moreover, macrophage promoters and lineage-specific
enhancers undergo histone modifications [118]. Active enhancers are characterized by
accumulation of H3K27ac [119]. It has also been reported that M2 activation is majorly
associated with strong association of histone methyl transferases, resulting in the repression
of M1 phenotype and promoting the transcription of M2 genes [120].

The role of chromatin modulators in osteoclast and osteoblast dynamics in TME is
very interesting. Dpy30 has a role in osteoclast differentiation and function [121]. MITF
and PU. 1 recruit p38 MAPK and NFATc1 to target downstream genes during osteoclast
differentiation [122]. Histone deacetylases regulate osteoclast differentiation and skeletal
maintenance [123]. Transcriptional activation for osteogenesis and odontogenesis is affected
by Baf45a-mediated chromatin remodeling [124]. Moreover, HIF-1α has been known to
disrupt the osteoblasts and osteoclasts balance in bone remodeling by upregulation of OPG
expression [125].

Extensive chromatin remodeling during early adipogenesis indicates that TME adipocytes
could essentially be epigenetically regulating the tumor [126]. The SWI/SNF protein BAF57
is reported to control adipogenesis [127]. Ucp1 expression in murine adipose tissue has been
known to be controlled by Ucp1 enhancer methylation and chromatin remodeling [128].
EBF2 regulates brown adipogenesis transcriptionally with the help of histone reader DPF3
and chromatin remodeling complex BAF [129].

Evidence that epigenetics play a role in modulating extracellular matrix protein ex-
pression includes reports that co-operation of SWI/SNF and transcription factors is highly
required to control the extracellular-matrix-regulated gene expression [130]. Moreover,
the NuRD chromatin-remodeling enzyme CHD4 elevates embryonic vascular integrity by
regulating extracellular matrix proteolysis [131]. Extracellular matrix remodeling is also
promoted by the inhibition of histone deacetylase activity in human endometrial stromal
cells [132].

5. Super-Enhancers Affect Chromatin Remodeling and Bone Marrow
Microenvironment in Myeloma

Multiple myeloma progression is affected by activity of several super-enhancers,
which are one of the most important cis-regulatory DNA elements containing several
binding motifs for transcription factors such as Myc, IRF4, etc. [133]. These transcription
factors, by binding to super-enhancers, modulate the chromatin accessibility of myeloma
cells. A recent study showed that aberrant expression of cyclinD2 might provide a way
for the identification and characterization of novel super-enhancer-associated oncogenes,
which are biologically relevant in myeloma [134]. Some of these super-enhancer-based
dependencies may be exploited for potential therapeutic targets. Chromatin regulatory
factors, such as transcriptional coactivator BRD4, are inhibited by the BET domain inhibitor,
namely JQ1, which resulted in substantial loss of BRD4 in MYC super-enhancers and
associated transcriptional anomalies [135]. A comprehensive combinatorial study revealed
aberrant transcription factor regulation network and the epigenetic changes in MM by
analysis of myeloma gene expression, openness of chromatin, and enhancer landscape [136].
Many important gene loci, earlier linked to myeloma progression, depict increased super-
enhancer activity, as well as gene expression, for example, genes involved in bone marrow
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microenvironment, such as IL6S, CD200, KIT, ITGA4 CXCR4, etc. [136]. Most importantly,
super-enhancers, as well as genes, identified in several steps of molecular pathways, such
as NF-kB pathway, p53 signaling, mTOR signaling, cancer stem cell pathway, and NOTCH
pathway, in myeloma maintain the crosstalk within the myeloma microenvironment, re-
sulting in the activation of chromatin regulatory network in myeloma [14].

6. Conclusions

As per the current literature available, it is very clear that chromatin remodeling
in the light of the tumor microenvironment has deep impact in multiple myeloma, as
well as other hematological malignancies. Thus, a careful understanding of the regulatory
circuitry, which includes several DNA modifying elements governing the crosstalk between
the tumor microenvironment and chromatin remodeling factors and complexes affecting
the molecular landscape of multiple myeloma, will help us to identify novel oncogenic
mechanisms underlying myeloma initiation and progression, and might provide novel
therapeutic opportunities in the future.
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