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Abstract: Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer
cases and is the leading cause of cancer-related death. Despite advances in chemotherapy and
immunotherapy, the prognosis for advanced patients remains poor. The discovery of oncogenic
driver mutations, such as anaplastic lymphoma kinase (ALK) mutations, means that a subset of
patients has opportunities for targeted therapy. With the improvement of genetic testing coverage,
more and more ALK fusion subtypes and ALK partners have been discovered, and more than 90 rare
ALK fusion subtypes have been found in NSCLC. However, unlike the common fusion, echinoderm
microtubule-associated protein-like 4 (EML4)-ALK, some rare ALK fusions such as striatin (STRN)-
ALK and huntingtin interacting protein 1 (HIP1)-ALK, etc., the large-scale clinical data related to its
efficacy are still immature. The clinical application of ALK-tyrosine kinase inhibitors (ALK-TKIs)
mainly depends on the positivity of the ALK gene, regardless of the molecular characteristics of the
fusion partner. Recent clinical studies in the ALK-positive NSCLC population have demonstrated
differences in progression-free survival (PFS) among patients based on different ALK fusion subtypes.
This article will introduce the biological characteristics of ALK fusion kinase and common detection
methods of ALK fusion and focus on summarizing the differential responses of several rare ALK
fusions to ALK-TKIs, and propose corresponding treatment strategies, so as to better guide the
application of ALK-TKIs in rare ALK fusion population.

Keywords: anaplastic lymphoma kinase; tyrosine kinase inhibitor; rare fusion; non-small cell
lung cancer

1. Introduction

Anaplastic lymphoma kinase (ALK) mutation plays an important role in the occurrence
and development of non-small cell lung cancer [1,2]. The ALK gene encodes a single trans-
membrane receptor tyrosine kinase that belongs to the insulin receptor superfamily [3-5],
which has an extracellular domain, a transmembrane segment, and a cytoplasmic receptor
kinase segment [6]. Studies have identified pleiotrophin, midkine, and heparin as putative
ALK ligands [7,8]. Usually, the ligand binds to the extracellular domain, promotes the
coupling of two adjacent ALK proteins on the cell membrane, then activates the intracellu-
lar signal pathways such as RAS-MAPK, PI3K-AKT, JAK-STAT, MEKK2/3-MEK5-ERKS5,
CRKL-C3G and promotes cell growth [9,10].

So far, four detection methods and six ALK tyrosine kinase inhibitors (ALK-TKIs) have
been approved for clinical use. As far as ALK gene detection is concerned, fluorescence in
situ hybridization (FISH) is the preferred gold standard method; immuno-histochemistry
(IHC) can be used for screening because it is simple and cheap, and the FDA-approved
antibody (Ventana D5F3) can be used to detect ALK fusion independently without FISH
validation. Reverse transcription polymerase chain reaction (RT-PCR) can also be used,
but it cannot detect some rare fusions. Next-generation sequencing (NGS) can not only
detect ALK fusion but also determine the type of fusion and other accompanying driver
genes, which meets the current clinical needs. The emergence of ALK-TKIs has completely

Curr. Oncol. 2022, 29, 7816-7831. https:/ /doi.org/10.3390/ curroncol29100618

https:/ /www.mdpi.com/journal/curroncol


https://doi.org/10.3390/curroncol29100618
https://doi.org/10.3390/curroncol29100618
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/curroncol
https://www.mdpi.com
https://orcid.org/0000-0002-2258-0742
https://doi.org/10.3390/curroncol29100618
https://www.mdpi.com/journal/curroncol
https://www.mdpi.com/article/10.3390/curroncol29100618?type=check_update&version=1

Curr. Oncol. 2022, 29

7817

changed the treatment strategy and prognosis of advanced NSCLC patients with ALK
fusion [11,12]. The first-generation targeted drug simultaneously has three targets: ALK,
ROS1, and C-MET. The PROFILE 1014 study demonstrated that, compared with standard
platinum-based chemotherapy, crizotinib significantly prolonged the median progression-
free survival (mPFS, 10.9 months vs. 7.0 months; p < 0.001) and objective response rate
(ORR, 74% vs. 45%; p < 0.001) of previously untreated patients with ALK-positive advanced
NSCLC [13]. The second-generation ALK inhibitors can be used for crizotinib resistance
such as L1196M and C1156Y mutations [14]. Lorlatinib, the third-generation targeted drug
for ALK, can inhibit almost all resistance mutations that lead to crizotinib resistance, such
as G1202R, G1202del, etc. [15].

Although ALK fusion is a clinically proven tumor therapeutic target, compared with
other carcinogenic drivers, such as epidermal factor growth receptor (EGFR), how to better
target ALK fusion lacks accuracy. More than 90 different ALK fusion partners have been
identified in lung cancer, including EML4, STRN, KIF5B, HIP1, TPM-3/—4, DCTN1, GCC2,
TFG, etc. [16-23]. Several clinical trials have demonstrated the efficacy of ALK-TKIs in
EML4-ALK-positive NSCLC [24]. The Alex study reported that regardless of the EML4-
ALK variant, the progression-free survival (PFS) of untreated ALK-positive NSCLC treated
with alectinib was better than that of crizotinib [25]. However, unlike the classic EML4-ALK,
some rare fusions such as STRN-ALK and HIP1-ALK, etc., the large-scale clinical data
related to efficacy are still immature. The clinical application of ALK-TKIs mainly depends
on the positivity of the ALK gene, regardless of the molecular characteristics of the fusion
partner. Recent clinical studies in patients with ALK-positive NSCLC have shown that
there are differences in PFS based on different subtypes [26]. Therefore, understanding the
responses of different rare ALK fusions to ALK-TKISs is necessary to guide clinical treatment.
This article will introduce the biological characteristics of ALK fusion kinases and the
common detection methods of ALK fusion and focus on summarizing the rare fusions
other than EML4-ALK and their treatment progress, and propose corresponding treatment
strategies, so as to better guide the application of ALK-TKIs in rare ALK fusion population.

2. The Biology of ALK Fusion Kinases

It is generally believed that the formation of pathogenic fusion genes requires three
steps (Figure 1A): firstly, external factors (such as various physical, chemical and biological
factors) or internal mechanisms of cells cause DNA double-strand breaks; secondly, the
ends of the broken DNA are close to each other; thirdly, the DNA ends are aberrantly
repaired, probably by alternative non-homologous end-joining [27]. DNA junctions often
show short homology, called microhomology, which allows non-homologous ends to be
connected. In the last step, the expression of the fusion gene gives the cell growth and/or
survival advantages, so as to achieve selective cloning and amplification [28].

ALK fusion is the result of chromosome rearrangement between the ALK gene and
other genes (Figure 1B). One of the most common types of rearrangement is interchro-
mosomal translocation, which involves the exchange of chromosomal material between
heterologous chromosomes, such as TFG-ALK, KIF5B-ALK, etc. [29,30]. Intrachromosomal
rearrangement is also usual, especially with paracentric inversion (excluding centromere).
For example, EML4-ALK involves the short arm of chromosome 2 [31]. Two other intra-
chromosomal rearrangements are deletions and duplications, such as STRN-ALK (partial
sequence deletion of the short arm of chromosome 2 results in fusion of STRN exon 3 and
ALK exon 20) [32], C20rf44-ALK (caused by a 5.2-megabase pair tandem duplication on
chromosome 2) [33]. However, the production of ALK fusion protein needs other condi-
tions. Firstly, the ALK gene breakpoint must include the entire tyrosine kinase domain
(usually at exon 20). Secondly, the promoter region tends to be derived from the fusion
partner, probably due to the fact that the ALK promoter is inactive in adults and thus cannot
drive gene transcription [34]. Finally, the fusion partner must contain the oligomerization
domain. Most fusion partners contain coiled coils or leucine zipper domains that drive
fusion kinase activation [1,35].
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Figure 1. (A): Generation of pathogenic fusion genes; (B): types of ALK rearrangement.

The molecular structure and biochemical properties of fusion proteins can affect the
differential response of patients to ALK-TKIs, including: (1) the type of oligomeric domains;
(2) the stoichiometry of oligomerization: dimers, trimers, and multimers [36-39]; (3) the
intrinsic kinase activity of the fusion protein [40]; (4) protein—protein interactions, which
vary mainly by the structure of the fusion partner; (5) length of the 5 partner; (6) protein
folding and spatial structure; (7) protein stability. For example, EML4-ALK variants 1, 2,
and 3 have different structures. EML4-ALK variant 3 lacks the HELP and WD40 domains,
while the WD40 domain of EML4-ALK variant 2 has 5 WD40 repeats less than that of
variant 1, resulting in differences in protein stability and tyrosine kinase activity among
the three variants [41]. In one study, Yoshida et al. [42] reported differential responses to
crizotinib in 35 patients with NSCLC harboring different EML4-ALK variants. The results
showed that EML4-ALK variant 1 showed better efficacy compared with non-variant 1,
with the objective response rate (ORR) of 74% versus 63% (p = 0.7160, no significant
difference), disease control rate (DCR) 95% versus 63% (p < 0.05, significant difference) and
the PFS11 months versus 4.2 months (p < 0.05, significant difference).

3. Detection Methods for ALK Rearrangements
3.1. Immuno-Histochemistry

IHC is mainly detected by the binding reaction between high-sensitivity ALK antibody
and antigen, combined with signal cascade amplification (Figure 2). Normal lung tissue is
difficult to express detectable levels of ALK, but the level of ALK expressed by rearranged
ALK-positive NSCLC is moderate [43—45], and the combination of highly sensitive ALK
antibodies makes IHC quite reliable in detecting ALK-positive NSCLC [43,46]. However,
due to the heterogeneity of tumor cells and the uneven expression of target proteins, IHC
detection may be false negative in some cases. In addition, IHC cannot identify the type
and molecular structure of fusion partners, which may have an impact on treatment [26].
Therefore, clinicians recommend the use of IHC for preliminary screening [47].



Curr. Oncol. 2022, 29 7819

—

-

o ™

$53 300 B :
Figure 2. Inmuno-histochemistry (IHC); From Roche Ventana.

3.2. Fluorescence in Situ Hybridization

FISH is to use specific nucleic acid probes labeled with fluorescence to hybridize with
corresponding DNA molecules in cells, and then observe the fluorescence signal under the
microscope to determine the position of DNA molecules binding to specific fluorescent
probes in chromosomes [48,49] (Figure 3). FISH is a very sensitive and rapid method, which
makes up for the false negative defect of IHC due to different expression intensities of ALK
protein [50]. However, for some specific rearrangements, such as the separation of EML4
and ALK on chromosome 2p by only 12.5 Mb, it is impossible to accurately determine
whether the two signals are separated under the microscope [51]; In addition, like IHC,
FISH can only be used to determine whether the ALK site is broken, and cannot distinguish
the type of fusion partner. Despite these deficiencies, FISH remains the gold standard for
the detection of ALK rearrangements [52].

Figure 3. FISH interpretation criteria: (From Abbott Molecular, Vysis probes) (I) Count 50 tumor cells:
If the number of positive cells was >50% (25), the patient was judged to have ALK rearrangements
(On the right). If the number of positive cells was less than 10% (5), the patient was judged to have
no ALK recombination (On the left); (I) If the positive cells were >10% (5) and <50% (25), another
50 tumor cells were counted, and then the 100 tumor cells were counted together. If the number of
positive cells is >15%, the patient is judged to have ALK recombination. If the number of positive
cells was less than 15%, the patient was judged to have no ALK recombination. Note: The positive
cells were the cells with orange and green signal separation or orange signal alone.

3.3. Reverse Transcription Polymerase Chain Reaction

RT-PCR detects fusion mutations by extracting total RNA from tissues or cells, using
the mRNA as a template, and then using pre designed primers to reverse transcribe
sample RNA(Figure 4). Clinical studies have shown that different ALK fusion partners
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may affect the dimerization of fusion kinases, resulting in differences in tumor biological
characteristics [53]. Therefore, it is important to identify specific fusion partners before
selecting appropriate treatment measures. RT-PCR can sensitively detect the type of ALK
fusion partner, and it is also applicable to some specimens that are not suitable for slice
preparation, such as bronchial lavage fluid, pleural effusion, or blood [54]. However, the
accuracy of RT-PCR diagnosis largely depends on the RNA quality of samples [54,55].
Before the successful identification of ALK fusion partners, many different primer sets need
to be used, and unknown fusion variants cannot be detected [56,57].
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Figure 4. Realtime RT-PCR; From AmoyDx EML4-ALK Fusion Gene Detection Kit.

3.4. Next-Generation Sequencing

NGS can simultaneously detect hundreds of gene mutations, insertions, deletions,
fusions, copy number variations, etc., providing an effective and accurate alternative
for FISH testing to detect known and new ALK fusions. Compared with traditional
pathological detection, NGS has the advantages of high efficiency, high throughput and
short cycle (Figure 5). As mentioned above, not all ALK fusions have biological significance.
In order to become an oncogene, the fused ALK gene needs to retain its own kinase domain
and the original correct reading frame. NGS can clearly observe the breaking site, so it can
clearly know whether the fusion gene formed has normal biological function. In addition,
NGS can also predict the therapeutic effect and drug resistance mechanism of drugs by
detecting circulating tumor DNA (ctDNA) and circulating free DNA (cfDNA) in the blood,
which is expected to improve the prognosis [58].
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Figure 5. High-throughput sequencing Kit (next-generation sequencing technology, NGS).
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4. Rare ALK Fusions and Therapeutic Advances
4.1. STRN-ALK

The STRN-ALK fusion in NSCLC was first described by Majewski et al. in 2013 using
RNA sequencing [59]. Striatin (STRN) is a protein encoded by the STRN gene, including
STRN, STRN3, and STRN4. Members of the striatin family feature multiple protein-binding
domains, such as a caveolin-binding motif, a coiled-coil structure, a calmodulin-binding
site, and a WD-repeat domain [60]. The STRN-ALK fusion has been reported to involve an
intrachromosomal translocation of exon 3 of STRN and exon 20 of ALK within the short
arm of chromosome 2 (S3A20, separated by ~7.5 Mb) [32,61,62]. STRN induces constitutive
activation of ALK kinase through dimerization mediated by the 5 coiled-coil domain
in the gene [32]. Previous studies have shown that STRN-ALK can affect the aggressive
characteristics of tumors, including lymph nodes, and distant metastases [32,63,64].

More than 20 cases of STRN-ALK fusion have been reported worldwide, including
thyroid carcinoma, NSCLC, colorectal cancer, and renal cancer [62,65-67]. Among them,
there were seven cases of NSCLC (Table 1). Four patients received first-line treatment
with alectinib [18,64,68,69], three patients responded well to alectinib, while the other
developed within 3 months [64]. Through the study of this progressive case, it was found
that the patient was also accompanied by overexpression of ATP binding cassette subfamily
B member 1 (ABCB1) mRNA, and this mechanism was proved to be a potential drug
resistance factor of ALK-TKIs [70], so this patient responded poorly to alectinib. Li et al.
reported a patient with stage IIIA ALK-positive lung adenocarcinoma who was treated
with alectinib after operation [71]. After 3 months, multiple lung progression occurred.
NGS showed a rare STRN-ALK fusion with MET amplification. The patient then received
second-line treatment with crizotinib and achieved partial remission (PR) one month later.
PFS exceeded 11 months. It has been proved that MET amplification is a recurrent drug
resistance mechanism of the second-generation ALK-TKIs [15,72]. Given the high selectivity
and strong affinity of alectinib for ALK fusions, crizotinib exhibits a relatively low affinity
for ALK and can target multiple tyrosine kinases such as MET and ROS1 [73,74]. The
progress of this patient is likely due to the occurrence of acquired MET amplification. In
contrast, patients with STRN-ALK benefit more significantly from second-line or multi-line
treatment with crizotinib. Zhou et al. reported a case of stage IV NSCLC patients with
acquired resistance mutation of STRN-ALK after receiving osimertinib [75]. The researchers
gave gefitinib combined with crizotinib in combination with gene testing results and PFS
lasted for more than 6 months, which once again proved the feasibility of crizotinib in the
treatment of STRN-ALK fusion.

Table 1. Published details of STRN-ALK-positive NSCLC patients treated with ALK-TKIs.

Ref Year Accompanying Mutations ALK-TKIs Treatment Response
MYC amplification; o s
1 Yang, Y. et al. [76] 2017 TP53 (R181C) Crizotinib Third line CR>6m
2 Zhou, C. et al. [75] 2019 EGFR (19DEL) Crizotinib Third line PR>6m
+Gefitinib
3 Nakanshi, Y. et al. [64] 2017 ABCB1 mRNA overexpression Alectinib First line PD<3m
GRMS (E508K); .. T
4 Su, C. etal. [18] 2020 SETD2 (E1553K) Alectinib First line PR>19m
5 Nagasaka, M. et al. [69] 2020 TP53 (L43fs);MYC amplification Alectinib First line PR>6m
6 Zeng, H. et al. [68] 2020 PDK1-ALK (P7: A20); TP53 Alectinib First line PR>7m
. e Alectinib First line PD:3m
7 Li, M. et al. [71] 2021 MET amplification Crizotinib Second line PFS> 11 m

4.2. KIF5B-ALK

The KIF5B gene is located on the short arm of human chromosome 10 and encodes
the kinesin family 5B gene (KIF5B). The KIF5B protein is the main component of the
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microtubule-associated motor protein complex, which mediates the transport of organelles
in eukaryotic cells [29,77]. Exons 1 to 24 of KIF5B can fuse with exon 20 of ALK to produce
a new fusion gene KIF5B-ALK, which mediates ALK dimerization through the domain
of KIF5B, thereby activating its tyrosine kinase activity [29]. As one of the rare fusion
partners of ALK, KIF5B only accounts for about 0.4% of ALK fusions. Studies have shown
that KIF5B-ALK transfected cells have significantly enhanced proliferation, migration, and
invasion [16].

Takeuchi et al. reported a patient with lung adenocarcinoma harboring KIF5B-ALK
fusion, in which intron 24 of KIF5B was fused to intron 19 of ALK [29] (Table 2). Wong et al.
reported another variant of the KIF5B-ALK fusion, KIF5B exon 15 fused to ALK exon 20 [16].
However, neither case reported the sensitivity of KIF5B-ALK to ALK-TKIs. Zeng et al. intro-
duced a case of lung adenocarcinoma with rare KIF5B-ALK (intron 20 of KIF5B is connected
to intron 20 of ALK) and obtained PFS for 11 months after treatment with crizotinib [78].
In addition, NGS-ctDNA genomic analysis after craniocerebral progression in the patient
suggested the known KIF5B-ALK fusion and ALK exon 23 L1196M missense mutation. The
patient immediately received second-line treatment with ceritinib, craniocerebral lesions
were significantly reduced and a 9-month PFS was achieved with continuous follow-up.
Although the initial effect of crizotinib is remarkable, patients inevitably develop resistance.
Clinical studies have shown that 66.7% of patients have secondary mutations in the ALK
kinase domain after treatment with crizotinib. These drug-resistant mutations include
L1196M, G1269A, G1202R and C1156Y [79-82]. Among them, L1196M is the most common
secondary mutation in NSCLC. It is located in the protein kinase domain of ALK protein
and can control the entry of small molecule ALK inhibitors into the hydrophobic pocket
within the catalytic site, thereby sterically blocking the binding of crizotinib to ALK [83].
Second-generation ALK-TKIs are known to be effective against ALK-related secondary
resistance mutations. Another preclinical evaluation showed that ceritinib can overcome
crizotinib-induced resistance mutations, especially the secondary L1196M mutation [84].
Therefore, patients with KIF5B-ALK rare fusion can flexibly combine the first-, second-, and
third-generation ALK-TKIs for sequential therapy in combination with ALK fusion type
and mutation type, so as to improve the prognosis of patients with ALK-positive NSCLC.

Table 2. Published details of KIF5B-ALK-positive NSCLC patients treated with ALK-TKIs.

Ref Year Variants ALK-TKIs Treatment Response
: Not treated
1 Takeuchi, K. et al. [29] 2009 (K24:A19) with ALK-TKIs - -
2 Wong, D.W. et al. [16] 2011 (K15:A20) Not treated - -
ong, LA etal ' with ALK-TKIs
Crizotinib First line PFS: 11 m
3 Zeng, H. etal. [78] 2021 (K20:A20) Ceritinib Second line PFS>9m
4.3. HIP1-ALK

Huntingtin interacting protein 1 (HIP1) contains multiple domains, and its N-terminal
homologous domain can bind to inositol polyphosphate signal, playing an important
role in clathrin-mediated receptor transport and cell survival [85,86]. Studies have shown
that HIP1 can be overexpressed in various human tumor cells and promote their clonal
proliferation. Kalchman et al. reported a novel HIP1-ALK fusion gene in NSCLC for the
first time [87]. The HIP1-ALK protein contains the coiled-coil domain of HIP1 and the near
membrane intracellular region of ALK. Through the dimerization of the coiled-coil domain,
the activity of ALK tyrosine kinase is abnormally activated, resulting in the occurrence of
tumor [12,88].

A total of five HIP1-ALK variants have been reported so far: (H28:A20); (H21:A20);
(H19:A20); (H22:A21) and (H30:A20) [20,24,89-94] (Table 3). Clinical studies have shown
that HIP1-ALK-positive patients carrying different variants have significantly different
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responses to ALK-TKIs. Fang et al. tested the sensitivity to crizotinib by establishing
a patient-derived xenograft (PDX) model of NSCLC with HIP1-ALK fusion (H28:A20)
in vitro [93]. Unfortunately, this PDX model is derived from moderately differentiated
squamous cell carcinoma, and it has not been further validated whether the patients have
clinical benefits. On this basis, Couétoux et al. successfully that lung adenocarcinoma
patients with HIP1-ALK (H28:A20) responded well to crizotinib, and the PFS could reach
26.9 months [94]. In addition, Hong et al. reported a case of a postoperative patient with
HIP1-ALK fusion (H21:A20) who received adjuvant crizotinib and did not experience
recurrence or metastasis after 15 months of follow-up [20]. However, some studies have
shown that HIP1-ALK patients with variants such as (H19:A20) and (H30:A20) have a
poor response to crizotinib, in which Li, M. et al. found that HIP1-ALK (H19:A20) primary
resistance to crizotinib and subsequent second-line treatment with alectinib resulted in PFS
of more than 9 months [24]. Given that, Ou, S.H. et al. reported that HIP1-ALK (H30:A20)
was ineffective against crizotinib [90]. Li Y et al. proved that HIP1-ALK (H30:A20) positive
patients can benefit from alectinib with a PFS of more than 19 months [91]. Another
retrospective study assessed clinicopathological features, genomic features, responses to
ALK-TKIs, and resistance mechanisms in 11 patients with HIP1-ALK fusion from China [95].
The ORR of 10 patients treated with crizotinib was 90% [9/10 cases, 95% confidence
interval (CI): 54.1%-99.5%], the mPFS was 17.9 months [95% CI: 5.8-NA], and the median
overall survival (mOS) was 58.8 months (95% CI: 24.7-NA). One patient receiving first-line
treatment with lorlatinib achieved partial response (PR) for more than 26.5 months, of the
ten patients who received crizotinib, four underwent biopsy after progression, and two
carried acquired ALK mutations (L1152V/Q1146K and L1196M). Although the HIP1-ALK
fusion initially responds well to crizotinib, resistance is inevitable, whereas brigatinib
is effective in patients who have failed crizotinib due to the L1152V /Q1146K resistance
mutations, which may be related to the high affinity of brigatinib with these mutations.

Table 3. Published details of HIP1-ALK-positive NSCLC patients treated with ALK-TKIs.

Ref Year Variants ALK-TKIs Treatment Response
Not treated PDX is sensitive
1 Fang, D.D. et al. [93] 2014 (H28:A20) with ALK-TKIs - to crizotinib
2 Hong, M., et al. [20] 2014 (H21:A20) Crizotinib First line PFS>15m
Crizotinib First line PD
3 Ou, S.H., etal. [90] 2014 (H30:A20) Alectinib Second line PFS>12m
4 Jang, J. S, et al. [92] 2016 (H19:A20) Wﬁ:’:{?}%‘ib - Not reported
5 Couetoux, D. T. M, et al. [94] 2019 (H28:A20) Crizotinib First line PFS'I;I; 9m
. N . . PR
6 Tian, P, et al. [89] 2020 (H22:A21) Crizotinib First line PFS: 7.0 m
. Crizotinib First line PD
7 Li, M, etal. [24] 2021 (H19:A20) Alectinib Second line PFS>9m
8 LiY, etal. [91] 2022 (H30:A20) Alectinib First line PFS>19m

4.4. Other Rare ALK Fusions

In addition to the above rare ALK fusions, there are also some fusions with very low
incidence that respond well to ALK-TKIs (Table 4). Cao et al. reported a new form of ALK
rearrangement (NCOA1-ALK) in which the patient received PFS for more than 18 months
under the treatment of crizotinib [96]. Fang et al. introduced the first lung adenocarcinoma
patient carrying myosin phosphatase interacting protein (MPIP) -ALK fusion based on
RNA sequencing [97]. Previously, in lung cancer or other tumors, it has been found that
MPRIP can interact with neurotrophic tyrosine receptor kinase 1 (NTRK1), platelet-derived
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growth factor receptor3 (PDGFRB), and proto-oncogene such as RAF1 [98-100]. An in vitro
study found that the MPRIP-ALK fusion gene could promote colony formation, cell growth,
and ALK phosphorylation. The corresponding cells were inhibited by crizotinib treatment.
Consistent with the study result, the good response of MPRIP-ALK fusion to ALK-TKIs was
validated in the clinical presentation of this patient, who was still receiving crizotinib at the
time of reporting, with a PFS of at least 11 months. In another multi-sample retrospective
study, seven patients were confirmed by NGS sequencing to carry eight rare non-EML4
variants, including CHRNA7-ALK, LOC349160-ALK, TACR1-ALK, KIF5B-ALK, CENPA-
ALK, HIP1-ALK, DYSF-ALK and ITGAV-ALK [89]. The seven patients were subsequently
treated with crizotinib, with five PRs, two SDs, and a median PFS of 11 months, ranging
from 4 to 23 months. Recently, Chen et al. introduced a novel SOS1-ALK fusion [101].
According to related research reports, the son of sevenless homolog 1 (SOS1) gene encodes
the SOS1 protein, which is a regulatory protein that is widely expressed in cells. As a key
protein in the signaling pathway, SOS1 plays an important role in the regulation of many
signal transduction pathways in cells, such as Ras and Rac [102,103]. Abnormal expression
or mutation of SOS1 is closely related to the occurrence of clinical diseases. Through clinical
observation, this SOS1-ALK fusion (S2:A20) showed a good response to crizotinib, and
the patient’s PFS exceeded 6 months. A patient with novel LMO7-ALK fusion (L16:A20)
reported by Li M et al. rapidly progressed within two months of first-line treatment with
alectinib, and then the patient switched to the second-line treatment of ensartinib [71].
Under the preliminary follow-up, PFS has been more than 18 months.

Table 4. Published details of other rare ALK fusions positive NSCLC patients treated with ALK-TKIs.

Rare ALK

Ref . Merge Mutations ALK-TKIs Treatment Response
Fusion Types
CDAK?Q ERCCINUISN DPYDIS43V, o o

1 Cao Q, et al. [96] NCOA1-ALK MTEIFRA22Y GSTP1105V Crizotinib Third line PFS>18m
2 Fang, W. et al. [97] MPIP-ALK Crizotinib Second line PFS>11m
3 Tian, P. et al. [89] CHRNA7-ALK Crizotinib First line PFS: 18 m
4 Tian, P. et al. [89] LOC349160-ALK Crizotinib First line PFS: 7 m
5 Tian, P. et al. [89] TACR1-ALK Crizotinib First line PFS: 15 m
6 Tian, P. et al. [89] CENPA-ALK Crizotinib First line PFS: 4 m

. DYSF-ALK ALK p.Q1146P; N o .
7 Tian, P. et al. [89] ITGAV-ALK MET p.M636V Crizotinib First line PFS: 23 m
8 Chen, H.E. et al. [101] SOS1-ALK Crizotinib First line PFS>6m

. Alectinib First line PD
9 Li, M. et al. [71] LMO7-ALK NRGI1 ¢.602A > T;TP53 Ensartinib Second line PFS> 18 m

The patients who harbor double ALK fusion variants are extremely rare. Few investi-
gations have focused on the concomitance of double ALK rearrangements because of the
low incidence (Table 5). According to our literature search results, only eleven cases have
been previously reported, including CCNY-ALK and ATIC-ALK [104], NLRC4-ALK and
EMLA4-ALK [105], PRKCB-ALK and EML4-ALK [106], EML4-ALK and BCL11A-ALK [107],
EML6-ALK and FBXO11-ALK [108], DYSF-ALK and ITGAV-ALK [109], ALK-SSH2 and
EMI4-ALK [110], ARID2-ALK and EML4-ALK [110], EML4-ALK and CDK15-ALK [111],
PDK1-ALK and STRN-ALK [68], as well as ALK-GCA and EML4-ALK [112], etc. Previ-
ous reports confirmed that patients with double ALK fusion may respond to ALK-TKIs.
However, the responses are heterogeneous for patients with different ALK fusions. The
effectiveness of ALK-TKI treatment might be affected by the two kinds of ALK mutations
exist simultaneously in one patient. In other words, the disappearance of one ALK fusion
in patients with double ALK fusion may be the reason affecting the therapeutic effect of
ALK-TKIs. Additionally, one study speculated that coexistence of double ALK fusion may
be related to the occurrence of serious adverse events or drug resistance.
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Table 5. Published details of other double ALK fusion positive NSCLC patients treated with ALK-TKIs.

Ref Year Double Fusion ALK-TKIs Treatment Response
1 Wu, X. et al. [104] 2020 CCNY-ALK ATIC-ALK Crizotinib First line PR>6m
2 Wuy, X. et al. [105] 2020 NLRC4-ALK; EML4-ALK Crizotinib First line PFS > 10 m
3 Luo, J. et al. [106] 2019 PRKCB-ALK; EML4-ALK ngiﬁﬂg’ schlgs;cilﬁie PI;FSS'szn
4 Qin, B. et al. [107] 2019 BCL11A-ALK; EML4-ALK Crizotinib First line PFS: 13 m
5 Lin, H. et al. [108] 2018 FBXO11-ALK; EML6-ALK Crizotinib Second line PFS>11m
6 Yin, J. et al. [109] 2018 DYSF-ALK; ITGAV-ALK Crizotinib Second line PFS >3 m
7 Tao, H. et al. [110] 2022 ALK-SSH2; EML4-ALK Crizotinib First line PFS: 9 m
8 Tao, H. et al. [110] 2022 ARID2-ALK; EML4-ALK Crizotinib First line PFS: 12 m
9 Guo, J. etal. [111] 2020 CDK15-ALK; EML4-ALK Crizotinib Second line PFS: 23 m
10 Zeng, H. et al. [68] 2021 PDK1-ALK; STRN-ALK Alectinib First line PFS>11m
11 Zhai, X. et al. [112] 2022 ALK-GCA; EML4-ALK Alectinib First line PFS >20 m

However, not all rare fusion types are sensitive to ALK-TKIs. Previous studies have
shown that fusion partners need to provide dimerization domains to facilitate the automatic
activation of kinases. Similar to other tyrosine kinases, ALK must dimerize to automatically
activate and signal downstream [1]. Many fusion partners contain coiled coil domains or
other known dimerization domains, but not all fusion partners have obvious dimerization
motifs. PTPN3-ALK is predicted to be unresponsive to crizotinib treatment because it lacks
the ALK kinase domain [113]. In addition, studies have also reported that CMTR1-ALK
does not respond to crizotinib. It is hypothesized that this particular type of ALK fusion is
a null fusion and thus unable to translate the kinesin that causes tumorigenesis [114].

5. Conclusions

Since the discovery of the EML4-ALK fusion in NSCLC, a variety of ALK-TKIs have
been developed to treat ALK-positive NSCLC. The rapid development of targeted therapy
has resulted in significant improvements in PFS and OS in patients with metastatic ALK-
positive NSCLC. However, the heterogeneity of clinical response exists not only among
different ALK fusion subtypes, but also among different variants. Among the rare fusions of
ALK, we found that even in homozygous fusions, different variants responded differently
to ALK-TKIs.

There are two possible explanations for the heterogeneity of responses to ALK-TKIs:
one is that different fusion partners lead to differences in protein stability and expression
levels, and the other is other genetic alterations that accompany ALK rearrangements
leading to different responses to ALK-TKIs. In this article, we summarize that different 5
partners affect the biological properties of ALK fusion proteins, including kinase activity,
protein stability, transformation potential, and most importantly, the response to ALK-TKIs.
Patients with rare ALK fusion can combine the type of ALK fusion and the resistance or sen-
sitivity of existing mutations to different ALK-TKIs, and flexibly combine the first-, second-,
and third-generation ALK inhibitors for sequential treatment to improve the prognosis.

FISH, as the gold standard for detecting ALK-positive, cannot identify specific fusion
forms. Since different variants may have different responses to ALK-TKIs, it is critical to
identify specific variants in different individuals to enable precision drug therapy in the
future. To some extent, NGS may be a better complementary detection method. With the
application and popularization of NGS technology, more and more rare ALK fusions have
been discovered one after another, helping ALK-positive NSCLC patients receive more
precise targeted therapy. At the same time, NGS can also detect the ctDNA and cfDNA
in the blood to predict the therapeutic effect and drug resistance mechanism of the drug,
thereby improving the prognosis of patients with ALK-positive NSCLC.
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However, due to the limited number of rare fusion cases, it is difficult to compare
the reasons for the differential responses of different rare fusions to ALK-TKIs and their
resistance mechanisms. In the future, genomic, transcriptomic, and proteomic analyses are
needed to investigate overall therapeutic strategies for rare fusions in ALK. At the same
time, clinicians are also encouraged to report these novel fusions and provide information
on fusion breakpoints and responses to ALK-TKIs to better understand the application of
ALK-TKIs in rare ALK rearrangements.
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