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Abstract: Introduction: We evaluated the association of pre-treatment immunologic biomarkers on the
outcomes of early-stage non-small-cell lung cancer (NSCLC) patients treated with stereotactic body
radiation therapy (SBRT). Materials and methods: In this retrospective study, all newly diagnosed
early-stage NSCLC treated with SBRT between January 2010 and December 2017 were screened
and included for further analysis. The pre-treatment neutrophil-lymphocyte ratio (NLR), monocyte
lymphocyte ratio (MLR), and platelet-lymphocyte ratio (PLR) were calculated. Overall survival (OS)
and recurrence-free survival (RFS) were estimated by Kaplan–Meier. Multivariable models were
constructed to determine the impact of different biomarkers and the Akaike information criterion
(AIC), index of adequacy, and scaled Brier scores were calculated. Results: A total of 72 patients
were identified and 61 were included in final analysis. The median neutrophil count at baseline was
5.4 × 109/L (IQR: 4.17–7.05 × 109/L). Median lymphocyte count was 1.63 × 109/L (IQR: 1.29–2.10
× 109/L), median monocyte count was 0.65 × 109/L (IQR: 0.54–0.83 × 109/L), median platelet count
was 260.0 × 109/L (IQR: 211.0–302.0 × 109/L). The median NLR was 3.42 (IQR: 2.38–5.04), median
MLR was 0.39 (IQR: 0.31–0.53), and median PLR was 156.4 (IQR: 117.2–197.5). On multivariable
regression a higher NLR was associated with worse OS (p = 0.01; HR-1.26; 95% CI 1.04–1.53). The
delta AIC between the two multivariable models was 3.4, suggesting a moderate impact of NLR on
OS. On multivariable analysis, higher NLR was associated with poor RFS (p = 0.001; NLRˆ1 HR 0.36;
0.17–0.78; NLRˆ2 HR-1.16; 95% CI 1.06–1.26) with a nonlinear relationship. The delta AIC between
the two multivariable models was 16.2, suggesting a strong impact of NLR on RFS. In our cohort,
MLR and PLR were not associated with RFS or OS in multivariable models. Conclusions: Our study
suggests NLR, as a biomarker of systemic inflammation, is an independent prognostic factor for OS
and RFS. The nonlinear relationship with RFS may indicate a suitable immunological environment
is needed for optimal SBRT action and tumoricidal mechanisms. These findings require further
validation in independent cohorts.

Keywords: biomarkers; early-stage lung cancer; stereotactic body radiation therapy

1. Introduction

Stereotactic body radiation therapy (SBRT) is an effective alternative treatment for
patients with early-stage (stages IA, IB, or II) NSCLC who are medically inoperable or
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unwilling to undergo surgery, with cancer control and survival outcomes comparing
favorably with those of surgical resection [1,2]. SBRT has been found to produce greater
antitumor efficacy than would be predicted from standard radiological modelling alone,
possibly through the superior engagement of the immune system, leading to enhanced
antitumor immunity [3–5].

Markers of systemic inflammation—including circulating levels of neutrophils, mono-
cytes, and lymphocytes—have been evaluated in the setting of different malignancies and
have been found to predict response to therapy and disease outcomes. The neutrophil-to-
lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-lymphocyte
ratio (MLR) are easily derived and inexpensive markers of systemic inflammation with
prognostic value for survival in patients with various solid tumours [6–10].

Clinical outcomes after SBRT for early-stage NSCLC vary significantly between dif-
ferent studies: 3-year overall survival (OS) ranges from 37% to 72%, and recurrence rates
vary from 18% to 29% rising the question about the selection of patients who will ben-
efit from SBRT the most [11–14]. Utilizing prognostic factors—such as NLR, PLR, and
MLR—obtained from complete blood count (CBC) could potentially inform decision-
making in patients early-stage NSCLC considered for SBRT, given that it is readily obtained,
minimally invasive and inexpensive. We, therefore, sought to determine whether pre-
treatment immune biomarkers are predictive for cancer control and survival outcomes in
patients with early-stage NSCLC managed with SBRT.

2. Materials and Methods

The local research ethics board approved this retrospective study. All newly diagnosed
early-stage NSCLC (T1-2N0M0) patients treated with SBRT at CancerCare Manitoba be-
tween January 2010 and December 2017 were screened for inclusion and analysis. Patients
with a previous history of malignancy apart from skin malignancy (excluding melanoma)
were excluded from the study. Pre-treatment staging assessments included positron emis-
sion tomography (PET) and/or computed tomography (CT), chest-abdomen and cranial
imaging (CT or MRI). Tissue diagnosis was preferred, and in cases where no tissue diagno-
sis was feasible, cases were discussed in local disease site group meetings for consensus
on radiological diagnosis and treatment recommendations. In compliance with RTOG
0236 and RTOG 0815 trial protocols, tumours within 2 cm of the proximal bronchial tree
were classified as central RTOG definition, and the rest were considered peripheral in
location [2,15]. Peripheral lesions were treated with 48 Gy in 4 fractions, and central lesions
were treated with a dose of 60 Gy in 8 fractions. Post-treatment patients were followed
up with a CT scan of the chest at 3-, 6-, 12-, and 18-month post-treatment, and then every
12 months subsequently.

Patient-related characteristics were extracted manually from the electronic medical
record including age, sex, Eastern Cooperative Oncology Group (ECOG) performance sta-
tus score, forced expiratory volume in 1 s (FEV1), diffusing capacity of carbone monoxide
(DLCO), NLR pre-SBRT, PLR pre-SBRT, and MLR pre-SBRT. Tumour and treatment-related
characteristics included T stage, maximum size (diameter), location, histology, and maxi-
mum standard uptake value (SUVmax) of positron emission tomography (PET), internal
target volume (ITV) and planning target volume (PTV) and delivered doses. The overall
survival (OS) interval was calculated from the date of radiation (first fraction of SBRT) to
the date of death (any cause). Recurrence-free survival (RFS) was calculated from first
fraction of SBRT to the time of radiological progression or last known follow-up date.

Cox hazard regression was used to assess the association of baseline variables with
overall survival and recurrence-free survival. Univariable and multivariable analyses
hazard regressions analysis were performed, including the following explanatory variables:
NLR, PLR, MLR, ECOG performance status, ITV volume, age, and gender. Polynomial
functions were used to account for any nonlinear relationships between predictors and
outcomes. This was done because dichotomizing continuous predictors often reduces
statistical power and variation between groups (e.g., individuals on either side of a cut
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point are seen as being very different) and does not indicate the possible nonlinear relation-
ship [16,17]. Nonlinear relationships were presented using log (relative hazard) plots. To
assess the impact of individual lymphocyte ratios, three metrics were computed: delta AIC,
index of adequacy [18], and increase in integrated scaled Brier [18,19]. For this study, a
delta AIC of 10 or more was considered to be a substantial improvement in model fit [20,21].
However, AIC values include sample size in their calculations. Therefore, delta AIC scores
will increase in value for the same effect size as cohort size increases. The index of adequacy
compares the likelihood ratio test of a model without the lymphocyte ratio to a model
with the lymphocyte ratio. One minus the index adequacy indicates the fraction of new
information provided by the lymphocyte ratio. The Brier score is the mean squared error
and was scaled (1-(Brier/max Brier), where the max Brier is obtained from a Cox regression
model without predictors. A scaled Brier score of 0 indicates a random association, and
a value of 1 indicates perfect prediction. The proportional hazard assumption was tested
using Schoenfeld residual plots. Kaplan–Meier survival plots of predicted values were
produced with control variables held at their mean. Predictions were calculated for the
10th, 50th, and 90th percentile of each biomarker ratio.

3. Results
3.1. Patient Characteristics

In total, 72 ES-NSCLC patients were treated with SBRT from January 2010 to De-
cember 2017 at our institution, 10 of them were excluded from final analysis on ac-
count of missing CBC and one for missing ITV volume. Final cohort consisted of 61 pa-
tients included to final analysis. The median age of the cohort was 78 years with an in-
terquartile range (IQR) of 72–82 years). Most of the patients were female (n = 41 (67.2%)),
and 20 males (32.8%) were included. Eleven patients (18.0%) had an ECOG performance
status 0, 37 patients (60.7%) had ECOG performance status 1–2, and in 13 patients (21.3%),
ECOG performance status was unknown. Pretreatment histopathological diagnosis was
available for 31 patients (50.8%), including 15 (24.6%) with adenocarcinoma, 10 (16.4%)–with
squamous cell carcinoma, 5 (8.2%)–with NSCLC not otherwise specified, and one (1.6%)
with biopsy positive for atypical cells not otherwise specified. Histopathology was un-
known in 30 patients (49.2%).

The clinical tumour stage was T1a in 50 patients (82%), T1b in 10 patients (16.4%), and
T2A in 1 patient (1.6%), respectively. The median tumour size was 2.1 cm with an IQR of
1.6–2.8 cm. The lesions were treated to a dose of 60Gy/8Fr in 9 patients (14.8%), 48Gy/4Fr
in 50 patients (82%), and 60Gy/15Fr in two patients (3.3%). Eleven patients (18%) had
central tumours. The median ITV and PTV volume were 11.2 and 35.6 cm3, respectively.
In our cohort, 30 patients (49.1%) developed disease recurrence. The Median follow-up
period was 2.14 years with the range of 0.1–5.6 years. Median OS duration was 3.0 years;
83.4% and 68.5% of patients were alive one year and two years after treatment, respectively.
The main characteristics of the patients are illustrated in Table 1.

The baseline median neutrophil count at baseline was 5.40 × 109/L (IQR:
4.17–7.05 × 109/L), median lymphocyte count was 1.63 × 109/L (IQR: 1.29–2.10 × 109/L),
median monocytes count was 0.65 × 109/L (IQR: 0.54–0.83 × 109/L) and median platelet
count was 260.0 × 109/L (IQR: 211.0–302.0 × 109/L). Details are illustrated in Figure 1.
Median NLR was 3.42 (IQR: 2.38–5.04), median MLR was 0.9 (IQR: 0.31–0.53), and median
PLR was 156.4 (IQR: 117.2–197.5) respectively.

3.2. Survival Analysis

Univariable and multivariable analyses were performed for NLR, PLR, MLR, ECOG,
ITV volume, age, and gender. On univariate analysis, higher NLR was associated with
worse OS (p = 0.009; HR-1.27; 95% CI 1.06–1.53) and this relationship was linear (Figure 2).
There was no association between PLR and OS (p = 0.833; HR-1.05; 95% CI 0.69–1.59).
Similarly, MLR did not affect OS (p = 0.833; HR-2.92; 95% CI 0.62–13.78). Multivariable
hazard regression models for overall survival including ECOG and ITV volume showed
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that higher NLR was associated with decreased OS (p = 0.017; HR-1.26; 95% CI 1.04–1.53),
and the delta AIC between the two multivariable models was 3.4, suggesting a moderate
impact on OS by NLR. The 1-index of adequacy was 0.52 and scaled integrated brier of
0.11. There was no association between MLR (p = 0.227; HR-2.80; 95% CI 0.53–14.86)
and PLR (p = 0.930; HR-1.02; 95% CI 0.57–5.08) and OS; the delta AIC was less than 2,
suggesting weak or no impact. Overall survival curves were calculated for 10th, 50th, and
90th percentile of NLR, MLR, and PLR are shown in figure (Figure 3), and demonstrates
the larger impact of NLR on OS compared to MLR and PLR through the larger differences
in OS estimates. The larger impact of NLR relative to MLR and PLR is also demonstrated
with higher 1 minus index of adequacy values and scaled Brier increases (Table 2).
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Table 1. Patient demographic and characteristics.

Variable Frequency

Patients (n) 61

Sex (n (%))
Female 41 (67.2%)
Male 20 (32.8%)

Age (years)
Mean (SD) 77.5 (6.6)

Median (Q1, Q3) 78 (72, 82)
Range 72–82

ECOG (n (%))
0 11 (18.0%)

1–2 37 (60.7%)
missing 13 (21.3%)

ITV (cm3)
Mean (SD) 18.0 (17.7)

Median (Q1, Q3) 11.2 (6.9, 20.8)
Range 1.10–94.80

PET SUV max (SD) 10.4 (6.2)
Histopathological diagnosis (total patients) (n (%)) 32 (57.4%)

Adenocarcinoma 15 (24.6%)
Squamous cell carcinoma 10 (16.4%)

NSCLC 5 (8.2%)
Atypical cells 1 (1.6%)

Tumor size (cm)
Mean (SD) 2.35 (1.0)

Median (Q1, Q3) 2.1 (1.6, 2.8)
Range 1.1–5.2

Clinical stage (n (%))
T1A 50 (82%)
T1B 10 (16.4%)
T2A 1 (1.6%)

SBRT dose/fractions (n (%))
60 Gy in 8 fractions 9 (14.8%)
48 Gy in 4 fractions 50 (82%)
60 Gy in 15 fractions 2 (3.3%)

Baseline neutrophils (×109/L)
Mean (SD) 5.75 (2.06)

Median (Q1, Q3) 5.40 (4.17, 7.05)
Range 2.07–10.89

Baseline lymphocytes (×109/L)
Mean (SD) 2.00 (2.46)

Median (Q1, Q3) 1.63 (1.29, 2.10)
Range 0.53–20.10

Baseline platelet (×109/L)
Mean (SD) 256.5 (85.9)

Median (Q1, Q3) 260.0 (211.0, 302.0)
Range 51.0–588.0

Baseline monocytes (×109/L)
Mean (SD) 0.67 (0.22)

Median (Q1, Q3) 0.65 (0.54, 0.83)
Range 0.08–1.19

Neutrophil/lymphocytes ratio
Mean (SD) 3.91 (2.29)

Median (Q1, Q3) 3.42 (2.38, 5.04)
Range 0.27–13.69

Platelet/lymphocyte ratio
Mean (SD) 169.9 (93.55)

Median (Q1, Q3) 156.4 (117.2, 197.5)
Range 146–534.6

Monocytes/lymphocytes ratio
Mean (SD) 0.44 (0.22)

Median (Q1, Q3) 0.39 (0.31, 0.53)
Range 0.03–1

Death [n (%)] 29 (47.5%)
Recurrence [n (%)] 30 (49.1%)

Follow-up (years)
Mean (SD) 2.28

Median 2.14

Median OS (years) 3.00
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Table 2. Regression model for OS.

Variables Univariable Multivariable
Multivariable +

Neutrophil/
Lymphocyte Ratio

Multivariable + Monocyte/
Lymphocyte Ratio

Multivariable + Platelet/
Lymphocyte Ratio

HR 95% CI p HR 95% CI p HR 95% CI p HR 95% CI p HR 95% CI p

Neutrophil/lymphocyte
ratio 1.27 1.06–1.53 0.009 1.26 1.04–1.53 0.017

Monocyte/lymphocyte
ratio 2.92 0.62–13.78 0.176 2.8 0.53–14.86 0.227

Platelet/lymphocyte
ratio /100 1.05 0.69–1.59 0.833 1.02 0.66–1.57 0.93

ECOG
Missing 0.91 0.24–3.47 0.609 1.11 0.29–4.24 0.5049 1.29 0.32–5.13 0.3555 1.34 0.33–5.42 0.415 1.12 0.29–4.28 0.5031

1–2 1.42 0.48–4.16 1.69 0.57–5.02 2.04 0.67–6.25 1.98 0.64–6.20 1.7 0.57–5.08

0 (ref) (ref) (ref) (ref) (ref)

ITV (cm) logged 1.44 0.99–2.10 0.06 1.47 1.01–2.15 0.045 1.38 0.93–2.05 0.114 1.44 0.98–2.13 0.064 1.47 1.01–2.15 0.046

Age /10
years 1.13 0.64–2.01 0.664

Gender Female 0.94 0.43–2.03 0.873

Male (ref)

PET SUV max /10 1.29 0.76–2.20 0.346

AIC 203.3964 199.9933 204.0053 205.38888

Delta AIC from
multivariable 3.4031 −0.6089 −1.99248

1 minus index of
adequacy 0.52 0.22 0

Scaled Integrated Brier 0.09 0.11 0.1 0.09

Scaled Brier change (%) 17.4 1 −2.5

OS—overall survival; ECOG—eastern cooperative oncology group; ITV—internal target volume; AIC—Akaike information criteria.
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3.3. Recurrence Free Survival Analysis

On univariable analysis, higher NLR was associated with poor RFS (p = 0.01; NLRˆ1
HR-0.55; 95% CI 0.28–1.09; NLRˆ2 HR-1.8; 95% CI 1.01–1.17). The relationship between
NLR and RFS was nonlinear, and a polynomial function was used (Figure 4). The best RFS
was associated with NLR between 3.5–4.0 and the worst was above values 6. There was
no statistically significant association between both MLR and PLR and RFS in univariate
analysis (p = 0.340; HR-1.96; 95% CI 0.49–7.78 and p = 0.494; HR-1.13; 95% CI 0.80–1.60
respectively). On multivariable analysis, higher NLR was also associated with poor RFS
(p = 0.001; NLRˆ1 HR-0.36; 95% CI 0.17–0.78; NLRˆ2 HR-1.16; 95% CI 1.06–1.26), and the
delta AIC between two models was 16.20, implying a strong impact of NLR on RFS. The
1-index of adequacy was 0.7 and scaled integrated brier of 0.19. In our cohort MLR and PLR
were not associated with RFS in multivariable models (p = 0.252; HR-2.35; 95% CI 0.54–10.43
and p = 0.241; HR-1.28; 95% CI0.85–1.92). For MLR and PLR, the delta AIC was less than 2,
suggesting weak or no impact. Relapse-free survival curves were calculated based on the
10th, 50th, and 90th percentile of NLR, MLR, and PLR are shown in figure (Figure 5), which
demonstrates the larger impact of NLR on RFS than MLR and PLR through larger differences
in RFS estimates. The larger impact of NLR relative to MLR and PLR is also demonstrated
with higher 1 minus index of adequacy values and scaled Brier increases (Table 3).
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3.4. Local Recurrence Free Survival Analysis

On univariable analysis higher NLR was associated with poor RFS (p = 0.01; NLRˆ1
HR-0.73; 95% CI 0.44–1.21; NLRˆ2 HR-1.05; 95% CI 1–1.1). The relationship between NLR
and LRFS was nonlinear, and a polynomial function was used (Figure 6). The best LRFS
was associated with NLR between 2.0–4.0 and the worst was above values 6. There was
no statistically significant association between both MLR and PLR and LRFS in univariate
analysis (p = 0.18; HR-2.71; 95% CI 0.63–11.69 and p = 0.958; HR-1.01; 95% CI 0.68–1.50
respectively). On multivariable analysis, higher NLR was also associated with poor LRFS
(p = 0.021; NLRˆ1 HR-0.74; 95% CI 0.44–1.23; NLRˆ2 HR-1.05; 95% CI 1–1.1), and the delta
AIC between two models was 4.09, implying a moderate impact of NLR on RFS. The 1-index
of adequacy was 0.61 and scaled integrated brier of 0.14. In our cohort, MLR and PLR were
not associated with LRFS in multivariable models (p = 0.212; HR-2.72; 95% CI 0.56–13.14
and p = 0.935; HR-0.98; 95% CI 0.66–1.47). For MLR and PLR, the delta AIC was less than 2,
suggesting weak or no impact. LRFS survival curves were calculated based on the 10th,
50th, and 90th percentile of NLR, MLR, and PLR are shown in figure (Figure 7), which
demonstrates the larger impact of NLR on LRFS than MLR and PLR through larger differences
in LRFS estimates. The larger impact of NLR relative to MLR and PLR is also demonstrated
with higher 1 minus index of adequacy values and scaled Brier increases (Table 4).
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Table 3. Regression model for RFS.

Variables Univariable Multivariable Multivariable +
Neutrophil/Lymphocyte Ratio

Multivariable + Monocyte/
Lymphocyte Ratio

Multivariable + Platelet/
Lymphocyte Ratio

HR 95% CI p HR 95% CI p HR 95% CI p HR 95% CI p HR 95% CI p

Neutrophil/lymphocyte
ratio

ˆ1 0.55 0.28–1.09 0.0098 0.36 0.17–0.78 0.0009

ˆ2 1.08 1.01–1.17 1.16 1.06–1.26

Monocyte/lymphocyte
ratio 1.96 0.49–7.78 0.34 2.38 0.54–10.43 0.252

Platelet/lymphocyte ratio /100 1.13 0.80–1.60 0.494 1.28 0.85–1.92 0.241

ECOG
Missing 1.35 0.38–4.81 0.1387 1.57 0.44–5.62 0.0738 4.13 0.93–18.28 0.0052 1.86 0.49–6.99 0.0553 1.83 0.48–6.95 0.05

1–2 2.45 0.86–7.02 2.97 1.02–8.58 9.24 2.25–37.90 3.4 1.13–10.28 3.6 1.14–11.42

0 (ref) (ref) (ref) (ref) (ref)

ITV (cm) logged 1.33 0.95–1.88 0.098 1.43 1.03–2.00 0.035 1.38 0.95–2.01 0.089 1.42 1.01–2.00 0.044 1.42 1.02–1.98 0.039

Age /10 years 1.03 0.62–1.71 0.906

Gender Female 1.07 0.53–2.13 0.853

Male (ref)

PET SUV max /10 1.21 0.75–1.95 0.443

AIC 262.1701 245.9663 262.9462 262.8649

Delta AIC from
multivariable 16.2038 −0.7761 −0.6948

1 minus index of adequacy 0.7 0.12 0.13

Scaled integrated Brier 0.14 0.19 0.13 0.12

Scaled Brier change (%) 31.5 −8.1 −18.3

RFS—recurrence free survival; ECOG—eastern cooperative oncology group; ITV—internal target volume; AIC—Akaike information criteria.
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Table 4. Regression model for LRFS.

Variables
Univariable Multivariable Multivariable + Neutrophil/

Lymphocyte Ratio
Multivariable + Monocyte/

Lymphocyte Ratio
Multivariable + Platelet/

Lymphocyte Ratio

HR 95% CI p HR 95% CI p HR 95% CI p HR 95% CI p HR 95% CI p

Neutrophil/lymphocyte
ratio ˆ1 0.73 0.44–1.21

0.001
0.74 0.44–1.23

0.021
ˆ2 1.05 1.00–1.10 1.05 1.00–1.10

Monocyte/lymphocyte
ratio 2.71 0.63–

11.69 0.180 2.72 0.56–13.14 0.212

Platelet/lymphocyte ratio /100 1.01 0.68–1.50 0.958 0.98 0.66–1.47 0.935

ECOG
Missing 0.90 0.24–3.40

0.407
1.06 0.28–4.03

0.311
1.27 0.33–4.95

0.239
1.27 0.32–5.11

0.256
1.05 0.28–4.03

0.3141–2 1.59 0.55–4.62 1.89 0.64–5.57 2.22 0.74–6.66 2.20 0.71–6.78 1.88 0.64–5.57

0 (ref) (ref) (ref) (ref) (ref)
ITV (cm) logged 1.37 0.93–2 0.110 1.42 0.97–2.09 0.074 1.30 0.86–1.97 0.217 1.39 0.93–2.07 0.105 1.43 0.97–2.10 0.074

Age /10
years 1.22 0.71–2.11 0.477

Gender
Female 1.10 0.52–2.32 0.813
Male (ref)

PET SUV max /10 1.40 0.82–2.38 0.215
AIC 227.69 223.60 228.23 229.69

Delta AIC from
multivariable 4.09 −0.54 −2.00

1 minus index of adequacy 0.61 0.22 0.00

LRFS—local recurrence free survival; ECOG—eastern cooperative oncology group; ITV—internal target volume; AIC—Akaike information criteria.
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4. Discussion

Accumulated evidence shows plausible link between inflammation, particularly sys-
temic inflammation, and cancer development and progression [7–10]. Systemic inflamma-
tion is known to promote tumour development and angiogenesis and inhibit apoptosis
and has been reported to increase the risk of various cancers, such as liver, colorectal,
breast, and lung cancer [7–10]. Neutrophil, platelet, lymphocyte, monocytes, and the ratios
thereof could serve as a measure of inflammatory response and provide prognostic value
in oncology [22].

The influence of surrogate markers for systemic inflammation on patient outcomes has
been previously assessed and showed mixed findings [23–25]. Cannon et al. demonstrated
that increased NLR and PLR were associated with poor overall survival with cutoffs of 2.98
and 146, respectively (p = 0.005 for NLR and p = 0.003 for PLR). However, when NLR and
PLR were analyzed as continuous variables, they were not significantly associated with OS.
Similarly, when NLR and PLR were analyzed as continuous variables, no significant associa-
tion was found between nonlocal treatment failure and NLR (p = 0.937) and PLR (p = 0.133).
Furthermore, no significant cutoff point was observed for NLR (AUC = 0.635; p = 0.15),
but a PLR cutoff of 250 was found to maximize sensitivity and specificity (AUC = 0.720;
p = 0.02) for nonlocal failure [23]. In a separate cohort, Shaverdian et al. found that higher
pretreatment NLR and PLR independently predicted worse OS in early-stage NSCLC
patients treated with SBRT on both univariate (p = 0.0003 and p < 0.0001 respectively) and
multivariate analysis (HR-1.39; p = 0.0088 and HR-1.07; p = 0.024). The optimal NLR and
PLR cutoffs in this study were 2.18 and 187.27, respectively. However, there was no correla-
tion between NLR and PLR and locoregional (p = 0.81 and p = 0.25 respectively) or distant
(p = 0.62 and p = 0.91 respectively) treatment failure [24]. Giuliani et al. demonstrated
independent correlation between NLR (P < 0.01) and OS in early-stage NSCLC patients
treated with SABR. Median OS was 4.3 years (95% CI 3.5 years to not reached) in patients
with an NLR equal to or below the median (≤3, “low NLR”) and 2.5 years (95% CI 1.7 to
4.8 years) with NLR above the median (>3, “high NLR”). The correlation between MLR
(P < 0.01) and disease-related failure was also found in this study [25]. The recent report
with 389 patients showed although NLR was associated with OS, it was associated with
non-lung cancer-specific survival and not lung cancer-specific survival [26].

In our study, multivariable models including ECOG and ITV volume showed that
higher NLR was associated with decreased OS (p = 0.017; HR-1.26; 95% CI 1.04–1.53),
and the delta AIC between the two multivariable models was 3.4, suggesting a moderate
impact on OS. Our findings suggest an association between NLR with OS, and these would
corroborate findings from previous reports [23–25]. We found that the higher pretreatment
NLR values independently predicted poor OS.

In multivariable analysis, higher NLR was also associated with poor RFS (p = 0.001;
NLRˆ1 HR-0.36; 95% CI 0.17–0.78; NLRˆ2 HR-1.16; 95% CI 1.06–1.26), and the delta AIC
between two models was 16.20, implying a strong impact on RFS. In our cohort, MLR and
PLR were not associated with RFS in multivariable models (p = 0.252; HR-2.35; 95% CI
0.54–10.43 and p = 0.241; HR-1.28; 95% CI0.85–1.92). On multivariable analysis, higher
NLR was also associated with poor LRFS (p = 0.021; NLRˆ1 HR-0.74; 95% CI 0.44–1.23;
NLRˆ2 HR-1.05; 95% CI 1–1.1), and the delta AIC between two models was 4.09, implying
a moderate impact of NLR on RFS. The 1-index of adequacy was 0.61 and scaled integrated
brier of 0.14. In our cohort MLR and PLR were not associated with LRFS in multivariable
models (p = 0.212; HR-2.72; 95% CI 0.56–13.14 and p = 0.935; HR-0.98; 95% CI 0.66–1.47). In
contrast to previous reports, our data suggest an NLR correlated with RFS and LRFS [23,24].
The previous studies reported cutoff values, and this may have decreased the sensitivity to
detect relationship.

We did not use cutoff values for NLR, and our data demonstrated that, unlike for OS,
the relationship of NLR with RFS and LRFS was nonlinear, with the risk of relapse increased
when NLR values fell outside the optimal range. In our group of patients with early-stage
NSCLC treated with SBRT had a lower RFS with NLR values between 3.5 and 4.5. Similarly,
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we found lower LRFS with NLR values between 2 and 4. To the best of our knowledge, this
is the first study reporting the nonlinear relationship between NLR-RFS and NLR-LRFS.
The nonlinear relationship may indicate an optimal immunological environment is needed
for optimal SBRT action and tumoricidal mechanisms.

The conventional fractionated radiation therapy revolves around classical “4 Rs” in-
cluding: repair, reassortment, reoxygenation, and repopulation. However, the radiobiology
of SBRT is not fully explained by the 4Rs and resultant DNA damage, and additional mecha-
nisms of vascular damage and antitumor immune response are also implicated [27]. Several
reports suggest elevated immunomodulatory expression is associated with SBRT [27–29].
Understanding the role of systemic inflammation and its implications in SBRT is critical and
of prognostic value. Thus, the utility and prognostic performance of systemic inflammation
in stage I NSCLC undergoing SBRT are particularly interesting as the treatment mechanism.

Limitations: our study has several limitations and represents experience at our center,
and a small number of patients of which (50.8%) had histopathological confirmation of the
diagnosis. In addition, CBC draws from patients in this study were up to 3 months prior to
initiation of SBRT, unlike other studies in surgical and chemotherapy series where CBC
was done within 1 week to 1 month before treatment. It is unclear if the wider lead-time of
CBC testing in our study had any material impact on the study results. Furthermore, the
impact of baseline comorbidity (Charleson Comorbidity Index or other similar comorbidity
indices) and immunomodulatory or anti-inflammatory medications could not be evaluated,
and confounding could not be excluded. Therefore, our findings should be interpreted
with caution and need confirmation in larger prospective studies.

5. Conclusions

Our study suggests NLR, as a marker of systemic inflammation, is an independent
prognostic factor for worse OS, RFS, and LRFS. The nonlinear relationship with RFS
and LRFS may indicate an optimal immunological environment is needed for optimal
SBRT action and tumoricidal mechanisms. These findings require further validation in
independent cohorts.
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