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Abstract: Brain parenchyma infiltration with glioblastoma (GB) cannot be entirely visualized by
conventional magnetic resonance imaging (MRI). The aim of this study was to investigate changes in
the energy and membrane metabolism measured with phosphorous MR spectroscopy (31P-MRS) in
the presumably “normal-appearing” brain following chemoradiation therapy (CRT) in GB patients
in comparison to healthy controls. Twenty (seven female, thirteen male) GB patients underwent
a 31P-MRS scan prior to surgery (baseline) and after three months of standard CRT (follow-up
examination. The regions of interest “contrast-enhancing (CE) tumor” (if present), “adjacent to the
(former) tumor”, “ipsilateral distant” hemisphere, and “contralateral” hemisphere were compared,
differentiating between patients with stable (SD) and progressive disease (PD). Metabolite ratios
PCr/ATP, Pi/ATP, PCr/Pi, PME/PDE, PME/PCr, and PDE/ATP were investigated. In PD, energy
and membrane metabolism in CE tumor areas have a tendency to “normalize” under therapy. In
different “normal-appearing” brain areas of GB patients, the energy and membrane metabolism
either “normalized” or were “disturbed”, in comparison to baseline or controls. Differences were
also detected between patients with SD and PD. 31P-MRS might contribute as an additional imaging
biomarker for outcome measurement, which remains to be investigated in a larger cohort.

Keywords: phosphorous magnetic resonance spectroscopy (31P-MRS); cerebral energy metabolism;
ATP; glioblastoma; chemoradiation; normal-appearing brain tissue; tumor infiltration

1. Introduction

Glioblastoma (GB) is a malignant tumor with infiltrating growth in the adjacent brain
and is not always visible on conventional magnetic resonance imaging (MRI) sequences.
Standard therapy consists of maximal possible gross total tumor resection followed by
adjuvant concomitant chemoradiotherapy (CRT) [1].

During migration, glioma cells utilize myelin sheaths of adjacent neurons as a matrix
for attachment [2]. In the early stages, invasive cells along the myelinated white matter
pathways harm the pre-existing neural structures while leaving the white matter pathways
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undamaged [2–4]. Consequently, glioma cells can no longer be distinguished from pre-
existing structures during infiltration [4], while increasing the cellularity, disturbing white
matter fiber tracts, and altering cerebral metabolism. The presence of infiltrative malign
cells in macroscopically inconspicuous areas distant from the tumor radiologically referred
to as “normal-appearing white matter, was histologically proven in postmortem stud-
ies [5]. These alterations are detectable with diffusion tensor imaging (DTI) and magnetic
resonance spectroscopy (MRS) [6–8].

With phosphorous-based MRS (31P-MRS), in vivo measurements of multiple func-
tionally important phosphorus-containing metabolites can be performed, which, in neu-
roimaging studies, can be divided into two groups: energy-related metabolites (the energy
metabolites inorganic phosphate (Pi), phosphocreatine (PCr), and adenosine triphosphate
(ATP)), and cell membrane-related phospholipids (the mobile membrane phospholipid
precursors phosphomonoesters (PME) and their breakdown products and intracellular
signaling molecules phosphodiesters (PDE), which are related to membrane turnover). Fur-
thermore, the PCr/ATP ratio is considered a surrogate for the energetic state of a tissue [9],
the PCr/Pi ratio for the oxidative capacity [10–12], the Pi/ATP for ATP turnover [13,14],
and PME/PDE ratios for membrane metabolism [15–18]. Ratios between the membrane-
related and the energy-related metabolites (PME/PDE, PME/PCr, PDE/ATP, PDE/Pi, and
PDE/PCr ratios) are regarded as a reflection of tumor growth [19].

Previous studies have described differences in energy and membrane metabolism
detected with 31P-MRS between contrast-enhancing (CE) tumor and the contralateral
hemisphere as well as brain tissue from healthy controls and further described changes
in metabolites under therapy [19–26]. For example, Hattingen et al. suggested that
metabolism of phospholipid cell membrane turnover is one of the major indicators for
tumor growth, and that an elevated phosphoethanolamine (PEth) to glyceroethanolamine
(GPE) ratio, as indicators for tumor malignancy and growth, could be a more sensi-
tive marker of glioblastoma recurrence than is conventional MRI [20]. Walchhofer et al.
demonstrated regional differences between energy metabolism in tumor areas and normal-
appearing areas of the brain [27]. Galijašević et al. showed differences in 31-P MRS
metabolites between GBs with distinct molecular characteristics [28]. Novak et al. used
31P-MRS to prove similarities in optic pathway gliomas and other low-grade gliomas, even
though 1H-MRS and conventional MRI showed some high-grade characteristics, contrary
to their later pathological diagnosis [29]. The aim of the present study was to investigate
whether the energy and membrane metabolism in the CE tumor or normal-appearing brain
tissue changes in the first months of CRT in GB patients, and whether this metabolism
differs between patients with stable disease (SD) and progressive disease (PD). Accurate
differentiation between SD and PD, as well as the development of bioimaging markers, for
the purpose of differentiating between progression and pseudoprogression and between
response and pseudo-response, is crucial in optimizing therapy and promptly reacting
to potential changes in the pathophysiology of the tumor. Currently, a certain number of
imaging modalities are available that help indicate these changes, but the invasive biopsy
remains the gold standard.

2. Materials and Methods
2.1. Patients

A total of 57 patients were prospectively enrolled in the study, after giving written
informed consent. Of these patients, 37 did not receive a follow-up MRI scan (FU), either
because of death (n = 11) or refusal to participate in the second scan (n = 26). Consequently,
20 patients (7 female and 13 male) with a mean age of 63 (range 36–77, median 64) years
were included in the final analysis (Figure 1). This study was approved by the local ethics
committee (AN 5100 325/4.19). Patients included in this study were newly diagnosed
with GB, and underwent two MRI scans (including 31P-MRS) prior to surgery (baseline)
and for the first staging scan (FU) after completion of chemoradiotherapy. The mean
interval between the two scans was 4.05 (median 3.9) months. All patients underwent
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gross tumor resection and chemoradiotherapy, consisting of radiation therapy [30,31], with
concomitant and adjuvant chemotherapy with temozolomide (TMZ), according to the
Stupp regimen [1,32].
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Figure 1. Flux diagram of patient selection and time flow of the study.

GBs were located in the temporal lobe (n = 5); parietal lobe (n = 5); frontal lobe
(n = 3); occipital lobe (n = 2); and one each in the basal ganglia, fronto-temporal, fronto-
parietal, temporo-parietal, and temporo-occipital. Of those, tumors in SD were located
in the temporal (n = 2), temporo-occipital (n = 1), fronto-parietal (n = 1), and frontal
(n = 1) lobes. Furthermore, tumors in PD were located in the parietal (n = 5), temporal
(n = 3), occipital (n = 2), frontal (n = 2), temporo-parietal (n = 1), fronto-temporal lobe
(n = 1), and basal ganglia (n = 1). Response assessment was performed by an experienced
neuroradiologist, who reviewed all MRI scans according to the response assessment in
neuro-oncology (RANO) criteria. PD is defined as a ≥25% increase in the cross-section
area with a ≥40% increase in total volume, a new lesion, a significant or ≥100% increase
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in the volume of T2/FLAIR abnormalities, and SD as the best response for patients with
non-measurable disease at baseline, with stable T2/FLAIR abnormalities [33].

In ten patients, no residual tumor was visible after surgery. In five of these patients,
no tumor progression was observed in the FU scan. This group is referred to as “stable
disease” (SD). In the other five patients with no residual tumor, the CE tumor was resected
completely, but CE progression was visible in the FU scan, which is herein referred to as
“progressive disease” (PD). In the remaining ten patients, residual CE tumor was detectable
after surgery and was progressive in the FU scan of all five cases; it is also defined as PD
(Figure 1).

31P-MRS data from age- and gender-matched controls in a cohort of 125 healthy
volunteers were available (AN 5100 325/4.19 384/5.3 4213a).

2.2. 31P-MRS and Conventional MRI Scans

MRI scans were performed on a 3T MRI scanner (Verio, Siemens Medical AG, Erlangen,
Germany). For the 31P-MRS sequence, a double-tuned 1H/31P volume head coil (Rapid
Biomedical, Würzburg, Germany) was used. The 3D 31P-MRS block was planned on an
isotropic T2-weighted 3D sequence, covering the entire cerebrum. Air-filled cavities, bone,
fat, and boundary regions were spared, in order to avoid voxel contamination. The volume
of interest was acquired with an 8 × 8 × 8 matrix, a field of view of 240 × 240 × 200 mm3,
resulting in a 30 × 30 mm2 voxel size, and a slice thickness of 25 mm. The sequence was
performed with a WALTZ 4 proton decoupling, a repetition time of 2000 ms, an echo time
of 2.3 ms, a flip angle of 60◦, and ten acquisitions for averaging. Similar variations of this
sequence have already been performed in various studies [20,24,26,27,34–38].

Additionally, conventional MRI sequences were acquired with a 12-channel head coil
(Siemens Medical AG, Erlangen, Germany) on the same scanner during the same session,
including a transverse T1-weighted MPRAGE (voxel size: 0.9× 0.7× 1.2 mm3, TR: 1750 ms,
TE: 3.3 ms, FA: 9◦, FOV: 220 mm3, FOV phase: 71.9%, TA: 4:26 min) prior to and after
injection of gadolinium-based contrast agent, and a transverse T2-weighted IR TSE (voxel
size: 0.9 × 0.7 × 3.0 mm3, TR: 7060 ms, TE: 97.0 ms, FA: 150◦, FOV: 220 × 187 mm2, base
resolution matrix: 320 × 80%, number of slices: 49, TA: 5:12 min).

2.3. Data Post-Processing

31P-MRS .rda data files (Siemens Medical AG, Erlangen, Germany) were analyzed
offline with jMRUI (version 5.0, MRUI Consortium, available at http://www.mrui.uab.es,
accessed 1 October 2020). The fitting process performed with the non-linear square fitting
algorithm AMARES [39] involved 12 Lorentzian-shaped exponentially decaying sinusoids
representing metabolites (Figure 2, left to right), including phosphocholine and phospho-
ethanolamine (summarized as phsophomonoesters—PME), Pi, glycerophosphocholine
and glycerophosphoethanolamine (summarized as phosphodiesters—PDE), PCr, and ATP.
Two doublets (α-ATP and γ-ATP) and one triplet (β-ATP) were summarized, divided by
three and designated ATP.

The following regions of interest (ROI) were investigated separately at both MRI time
points (Figure 2):

• contrast-enhancing (CE) tumor in the baseline scan and, if present, in the FU scan;
• areas adjacent to the CE tumor (AT) prior to therapy or the borders of the resec-

tion; area, including T2 hyperintense areas (which may represent either oedema or
tumor infiltration);

• areas in the ipsilateral hemisphere, distant (ID) to the tumor or former tumor;
• contralateral (CL) brain.

The ROIs consisted of one or more 31P voxels, depending on the size of the ROI.
If the GB was located in both hemispheres, the data from the contralateral brain were
not included.

http://www.mrui.uab.es
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Figure 2. Images of one layer of the 31P-MRS measurement grid, each co-registered on an axial T2 space structural MR
image of the same GBM patient, first at baseline (A) and subsequently 3 months after gross tumor resection and completion
of chemoradiotherapy (B). Areas of interest are colored for better distinction. The two MRS spectra are exemplarily derived
from the voxels highlighted with a blue X and depict the estimated individual metabolites of the MRS signal (red line)
superimposed by the corresponding calculated fit (blue line).

The number of voxels analyzed depended on the size of the area of interest and
the spectral quality of the individual voxels. The voxels were assigned to the respective
areas of interest by an experienced neuroradiologist (A.R.). Spectral quality was evaluated
with an established method [40]. To minimize the effect of “voxel bleeding”, due to poor
point spread function, only voxels with more than two-thirds of the tissue of interest
were included.

The post-processing software provided unitless “areas under the curve” of the metabo-
lites, from which the following ratios were generated: PCr/ATP, PCr/Pi, Pi/ATP, PME/PDE,
PME/PCr, and PDE/ATP.

2.4. Statistical Evaluation

For statistical evaluation, data of individual voxels were assessed. Descriptive statistics
were calculated with Excel (Microsoft 365, Microsoft, Redmond, WA, USA). Statistical
analyses were performed with GraphPad Prism (Prism 8, GraphPad Software Inc., San
Diego, CA, USA). Outliers were identified with the ROUT method and consequently
excluded from the analysis. The normal distribution of metabolite ratios was assessed with
the one-sample Kolmogorov–Smirnov test, applying a significance level of 5%. As the data
were not normally distributed, the Kruskal–Wallis test was applied for group comparisons
and multiple comparisons. SD and PD patients were compared using the Mann–Whitney
U test. p values of ≤0.05 were defined as statistically significant.

3. Results
3.1. CE Tumour Areas

In patients with PD, significantly higher PCr/ATP and PCr/Pi ratios were found in CE
tumor areas at the FU scan than in CE tumor areas at the baseline scan. While both ratios
showed significantly lower values in comparison to controls at baseline, this difference
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was not present in the FU scans (Figure 3a,b). Significantly higher Pi/ATP ratios were
found in CE tumor areas at baseline than in healthy brains, with no difference between FU
scans and healthy brains or FU and the baseline scan (Figure 3c). The PME/PDE ratio was
significantly higher at baseline than at FU or in healthy brains, with no difference between
FU and controls (Figure 3d). The PME/PCr ratio was significantly lower in FU than at
baseline and did not differ from controls (Figure 3e). The PDE/ATP ratio was significantly
higher at FU than at baseline and significantly lower than in controls. In addition, this ratio
was found to be significantly lower at baseline than in controls (Figure 3f). Outliers were
excluded from the analyses.
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Figure 3. Different metabolite ratios (a–f) of energy and membrane metabolism (y-axis representing unit less metabolite
ratios), measured with 31P-MRS, in the contrast-enhancing areas of patients with glioblastoma at baseline (154 voxels)
and after approximately four months of standard therapy (70 voxels), as compared to the results for healthy controls
(3030 voxels) (x-axis representing examined patient and control groups). Mean and standard error of mean (SEM) are
depicted. Statistically significant differences in metabolite ratios Kruskal–Wallis test with post-hoc Dunn test are marked
(* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). Outliers were excluded from the analyses. Details on analyzed
individuals, voxels, and outliers are given in Supplementary Table S1.

3.2. Normal-Appearing Brain
3.2.1. Areas Adjacent to the CE Tumor (AT)

In the AT ROIs, significantly higher PCr/ATP and PCr/Pi ratios were found in
the FU scan than in baseline or controls, with no difference between baseline and con-
trols (Figure 4a,b). Both ratios were higher in patients with SD than in patients with PD
(p = 0.0003 & p < 0.0001) (Figure 5a,b). The Pi/ATP ratio was found to be significantly lower
in the FU scan than in the baseline scan or in controls, with no difference between baseline
and controls (Figure 4c). In patients with SD, this ratio was significantly lower than in
patients with PD at FU (p = 0.0421) (Figure 5c). The PME/PDE ratio was significantly lower
in FU than in baseline, with no differences between FU and controls (Figure 4d). The ratio
was significantly higher in SD patients than in PD patients (p = 0.0011) (Figure 5d). The
PME/PCr ratio was significantly lower and the PDE/ATP ratio was significantly higher
in the FU scan than in the baseline scan or healthy brains (Figure 4e,f). The PDE/ATP
ratio showed lower values at baseline than in controls, while the PME/PCr ratio revealed
no differences between baseline and controls (Figure 4e,f). For both ratios, no difference
was found between patients with SD and those with PD. Outliers were excluded from
the analyses.
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outliers are given in Supplementary Table S2.

3.2.2. Areas in the Ipsilateral Hemisphere, Distant (ID)

In the ID ROIs, the PCr/ATP and PCr/Pi ratios were significantly higher in the FU
scan than in the baseline scan or controls (Figure 4g,h). The PCr/ATP ratio did not differ
between baseline and controls, while the PCr/Pi ratio was significantly higher at baseline
than in controls (Figure 4g,h). The Pi/ATP ratio was significantly lower at baseline than
in controls, with no difference between FU and baseline or FU and controls (Figure 4i).
None of these three ratios showed a difference between patients with SD and with PD. The
PME/PDE ratio did not differ between any of the groups (Figure 4j), but was significantly
lower in patients with PD than in patients with SD (Figure 5e). The PME/PCr ratio was
found to be significantly lower at baseline and in the FU scan than in controls, with no
difference between baseline and FU (Figure 4k). No difference was found between SD and
PD. In addition, significantly higher PDE/ATP ratios in the FU scan were found than in
the baseline scan or the controls, with significantly lower values in the baseline scan than
in controls (Figure 4l). This ratio was significantly lower in patients with SD than in those
with PD (p = 0.0036) (Figure 5f). Outliers were excluded from the analyses.
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Figure 5. Different metabolite ratios of the energy and membrane metabolism (y-axis representing
unit less metabolite ratios), measured with 31P-MRS, in different “normal-appearing” brain areas
(adjacent (a–d), distant ipsilateral (e,f), contralateral (g–i)) of patients with SD (35 voxels) and patients
with PD (200 voxels) (x-axis representing examined patient groups). The mean and standard error of
mean (SEM) are depicted. Only statistically significant differences in metabolite ratios assessed with
the Mann-Whitney U test are shown. Outliers were excluded from the analyses. Details on analysis
individuals, voxels, and outliers are given in Supplementary Table S3.

3.2.3. Contralateral (CL) Brain

In the CL ROIs, the PCr/ATP ratios were significantly higher in the FU scan than
in the baseline scan or in the controls, and were significantly higher in the baseline scan
than in controls (Figure 4m). The ratio was significantly higher in patients with SD than
in patients with PD (p < 0.0001) (Figure 5g). The PCr/Pi ratio was significantly higher
at baseline and in the FU scan than in controls, with no difference between the baseline
scan and FU (Figure 4n). This ratio was significantly lower in patients with PD than in
those with SD (p = 0.048) (Figure 5h). Significantly higher Pi/ATP ratios were found in the
FU scan than in the baseline scan, with no difference to controls (Figure 4o). In addition,
significantly lower values were found at baseline than in controls (Figure 4o). For this
ratio, no significant difference was found between patients with SD and those with PD.
Significantly lower PME/PDE ratios were found in the FU and at baseline than in controls,
with no difference between baseline and FU (Figure 4p). The ratio was significantly higher
in patients with SD than in patients with PD (p = 0.0002) (Figure 5i). The PME/PCr ratio
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was significantly lower in the FU scan and at baseline than in controls, with no difference
between baseline and FU (Figure 4q). The PDE/ATP ratio was significantly higher in
the FU scan than in healthy controls, with no difference to the baseline scan or between
baseline and controls (Figure 4r). For both ratios, no difference was found between patients
with SD and with PD. Outliers were excluded from the analyses.

4. Discussion

The present study confirms differences in energy metabolism between CE tumor areas
and healthy controls.

Organisms and cells have evolved systems to modulate metabolic flux over short- and
long-time scales [41]. Because metabolic needs can fluctuate on the order of seconds or
persist for prolonged periods, regulatory circuits in a healthy system effectively control
fluxes in a way that is adaptive for every situation [41]. These mechanisms of metabolic
regulation seem to be altered in GB, resulting in increased metabolic processes, herein
referred to as “disturbed”. It was seen that, in patients with residual or progressive tumor,
the energy and membrane metabolism ratios in CE areas have a tendency to be “disturbed”
under therapy, presenting higher values than for baseline or healthy brains. In the different
“normal-appearing” brain areas of GB patients, the energy and membrane metabolism was
either “normalized”, resembling values of healthy brains; “disturbed”; or did not differ
to baseline. Some of these changes were more pronounced in patients with SD than in
patients with PD.

The PCr/ATP ratio has been described as a marker for the energetic state of a tis-
sue [9], the PCr/Pi ratio for the oxidative capacity [10–12], the Pi/ATP ratio for ATP
turnover [13,14], and the PME/PDE ratio as a surrogate for membrane turnover [15–18],
and ratios between the membrane-related and the energy-related ratios have been described
as a reflection of tumor growth [19].

To the best of our knowledge, there are no FU studies on 31P-MRS in patients with
GB under standard therapy according to the Stupp regimen. One study investigated the
antiangiogenic effect of bevacizumab on energy metabolism and found lower Pi/ATP
ratios in CE tumor areas in responders than in non-responders, thus supporting the hy-
pothesis that bevacizumab not only induces relative tumor hypoxia (T2’ decrease), but also
affects energy homeostasis in recurrent GBM [26]. Furthermore, an increase in membrane
metabolism in bevacizumab non-responders, in comparison to responders, was found
in both CE tumor areas and normal-appearing brain tissue [20]. However, these studies
are not directly comparable to the present one, as different ratios were investigated and
patients included in our study received standard CRT according to the Stupp regimen
without bevacizumab. Still, both studies are in accordance with the present study, in which
standard therapy responders showed a decreased Pi/ATP ratio in the adjacent area as
well. ATP catalysis results in the production of ADP and Pi. Therefore, decreased ATP/Pi
in standard therapy responders could be a marker of increased ATP turnover, which is
defined as the ratio of ATP content to ATP production [42]. The increase in this ratio could
be due to either the increase in total ATP content or the decrease in ATP production. An
in-vitro study by Lenz et al. showed increased sensitivity to the blockage of mitochondrial
respiration in temozolomide-treated cells as compared to untreated cells [43]. GB is known
as a tumor with mitochondrial dysfunction. This could lead to the preference for glycolysis
over oxidative phosphorylation [44] and, consequently, to decreased ATP production.

In the present study, lower PCr/ATP, PCr/Pi, and PDE/ATP ratios were found
in CE areas than in brain tissue of healthy controls, which is in accordance with the
literature [21,22,25,26]. In addition, we found an increase in PCr/ATP and PCr/Pi as well
as a decrease in Pi/ATP in CE areas in the FU scan, as compared to the baseline scan.
This may reflect a “disturbance” in the energetic state, the oxidative capacity, and the
ATP turnover. As previously described [19,21–25,27,36], the Pi/ATP ratios were increased
in the CE tumor areas at baseline as compared to those of controls, which persisted at
FU, and may reflect a persistent increase in ATP turnover following therapy. PME/PDE
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and PME/PCr ratios showed decreasing values under therapy, resembling the values of
controls, which may be an indicator of decreased membrane turnover and tumor growth.

In the present study, various changes in the energy and membrane metabolism were
found in the “normal-appearing” brain tissue of patients with therapy-naïve GB on con-
ventional MRI sequences, as compared to controls, which is in accordance with the existing
literature [27]. In the AT areas, an increase in the energetic state (PCr/ATP) and oxidative
capacity (PCr/Pi), a decrease in ATP turnover (Pi/ATP) and tumor growth (PME/PCr),
as well as normalization of membrane turnover (PME/PDE), in comparison to baseline
and healthy controls, occurred under therapy. This up- or down-regulation was more
pronounced in patients with SD.

In the ID areas, an up-regulation of the energetic state (PCr/ATP) and the oxidative
capacity (PCr/Pi) as well as a down-regulation of the tumor growth markers (PME/PCr
and PDE/ATP) occurred under therapy and were more pronounced in patients with SD
and less pronounced than in the AT areas.

In the CL hemisphere, an up-regulation of the energetic state (PCr/ATP) was found,
which was more pronounced in patients with SD. An increased oxidative capacity (PCr/Pi),
as well as decreased membrane turnover (PME/PDE) and tumor growth markers (PDE/ATP
& PME/PCr), persist between baseline and FU, as compared to controls. In patients with
SD, PCr/Pi and PME/PDE ratios were higher than in patients with PD. In addition, a
normalization of ATP turnover (Pi/ATP) was found in this area under therapy.

Therefore, the present study underlines the results from earlier studies, suggesting
that the cerebral energy and membrane metabolism in patients with GB is modified in the
entire brain, in comparison to healthy brains. In addition, to the best of our knowledge,
the present study is the first to find that cerebral energy metabolism is changed under
short-term therapy; this effect is, to some extent, different between patients with SD and
those with PD. However, a potential application of 31P-MRS as an outcome predictor needs
to be investigated in a larger cohort.

This study has several other limitations inherent to the aggressive nature of the
investigated tumor and the rapidly deteriorating health condition of our patients. 31P-
MRS scans are time-intensive and, therefore, seriously intolerable for some GB patients.
Consequently, 31P-MRS scans were only available for a small number of patients, especially
at the time of FU, when we experienced a large number of dropouts. As GB still has a
short survival time, even following state-of-the-art therapy, this limitation is difficult
to overcome. The effect of “voxel bleeding” due to a poor point spread function is an
omnipresent problem in MRS. We attempted to minimize this effect by choosing voxels in
which the tissue to investigate was present in at least two-thirds of the voxel. However,
the relatively low standard deviations and significant differences between the areas might
prove the value of the presented results.

5. Conclusions

The present study underlines that the energy and membrane metabolism is modified
in the entire brain of patients with GB and that it further changes under therapy. Observed
changes also depend on the therapeutic success. 31P-MRS, together with other imaging and
clinical parameters, might be an additional imaging biomarker for outcome measurement
or therapy response, i.e., in the framework of radiomics studies. This could potentially
pave the way for a more reliable and reproducible non-invasive diagnosis and more
individualized therapy planning.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/curroncol28060424/s1, Supplementary Table S1: Analysed individuals and analysed voxels
(total voxels minus excluded outliers) reported in Figure 3, Supplementary Table S2: Analysed
individuals and analysed voxels (total voxels minus excluded outliers) reported in Figure 4, Supple-
mentary Table S3: Analysed individuals and analysed voxels (total voxels minus excluded outliers)
reported in Figure 5.
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