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Abstract: Adrenocortical carcinoma (ACC) is a rare malignancy with an overall unfavorable progno-
sis. Clinicians treating patients with ACC have noted accelerated growth in metastatic liver lesions
that requires rapid intervention compared to other metastatic locations. This study measured and
compared the growth rates of metastatic ACC lesions in the lungs, liver, and lymph nodes using
volumetric segmentation. A total of 12 patients with metastatic ACC (six male; six female) were
selected based on their medical history. Computer tomography (CT) exams were retrospectively
reviewed and a sampling of ≤5 metastatic lesions per organ were selected for evaluation. Lesions
in the liver, lung, and lymph nodes were measured and evaluated by volumetric segmentation.
Statistical analyses were performed to compare the volumetric growth rates of the lesions in each
organ system. In this cohort, 5/12 had liver lesions, 7/12 had lung lesions, and 5/12 had lymph
node lesions. A total of 92 lesions were evaluated and segmented for lesion volumetry. The volume
doubling time per organ system was 27 days in the liver, 90 days in the lungs, and 95 days in the
lymph nodes. In this series of 12 patients with metastatic ACC, liver lesions showed a faster growth
rate than lung or lymph node lesions.

Keywords: adrenocortical carcinoma; doubling time; growth rate; neoplasm metastasis;
volumetric segmentation

1. Introduction

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with an estimated
incidence of 1.5–2 per million people per year. It has a very poor prognosis with an overall
5-year mortality rate of 75–90% and an average survival from the time of diagnosis of
14.5 months [1,2]. Complete open resection of the primary tumor with negative surgical
margins confers the best prognosis, however local recurrence and/or metastatic disease
is still common even in this scenario [3]. Metastatic disease on presentation is seen in
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25–30% of patients and is a key prognostic factor associated with poor outcomes. ACC
most commonly metastasizes to the lung (40–80%), liver (40–90%), and bone (5–20%), and
resection of metastatic lesions can improve 5-year survival, reduce pain, and control hor-
mone production [2–6]. Single institution studies have shown that patients who undergo
local treatment of liver metastases have a 5-year survival of 39–51% while patients who
undergo resection of lung metastasis have a 5-year survival of 41%, with particular benefit
in younger patients [7–10]. Prospective and retrospective studies indicate that mitotane
monotherapy or combined therapy of mitotane with cytotoxic drugs such as etoposide,
doxorubicin, and cisplatin may increase progression-free and recurrence-free survival in
patients with adrenocortical cancer [11,12].

In many cancers, the growth rate of metastases is used as a prognostic factor that
guides treatment choice [13–15]. Serial analyses of imaging studies can be used to deter-
mine tumor doubling time. However, two-dimensional tumor measurement of the short
and long axis is susceptible to intra- and inter-observer variation and has limited utility in
the assessment of irregularly shaped tumors [16]. An alternative method of tumor evalua-
tion is volumetric measurement, which can generate more accurate shape calculations in
lesions [17]. Although volumetric segmentation has been considered the “gold standard”
of cancer imaging by some authors, it is time- and resource-intensive, which makes it
impractical for routine daily usage in clinical practice [18–21]. However, this is a more
accurate and reliable method in the study of rare cancers such as ACC where the patient
population is limited.

This study aimed to quantify the growth pattern and doubling time of metastatic ACC
lesions to the liver, lung and lymph nodes using volumetric analysis of serial computer
tomography (CT) images. Primary adrenal carcinomas were not evaluated in this study;
rather, metastatic lesions in the major organ hosts in liver, lung, and lymph nodes were
compared to investigate differences in growth rates across organ systems.

2. Materials and Methods
2.1. Patient Selection

A retrospective chart review at the National Institutes of Health identified 56 patients
with a pathologic confirmation of primary ACC from 1999 to 2019. Consent was obtained
to participate in an institutional review board (IRB)-approved investigational study at time
of treatment. Additionally, the present analysis was also performed under another IRB-
approved retrospective reporting protocol that met the criteria for waiver of further consent.

An independent review of medical records by two investigators identified 56 pa-
tients with metastatic ACC. Forty patients who were on active systemic treatment were
excluded from this study to exclude variations in treatment response. In total, 16 out
of 56 patients were identified as not receiving systemic therapy during the evaluation
window. A total of 5 of the 16 patients with metastatic lesions had a history of systemic
therapy > 1 year preceding the evaluation window. Subject 1 had treatment consisting
of PSC Velban, mitotane 3 years prior; subject 2 had records that indicated MAVE treat-
ment from June 1999–Feb 2000, subject 4 had treatment consisting of tariquidar/MAVE
(mitotane, Adriamycin, vincristine, and etoposide) × 6 cycles 2 years prior to evaluation
window and Gemcitabine and cisplatin × 6 cycles 1 year prior. Subject 10 was initially
treated with cyclophosphamide, vincristine, and dacarbazine (CVD) × 6 cycles for pre-
sumed metastatic pheochromocytoma and then pembrolizumab (based on her history of
Lynch syndrome and loss of expression for MSH-2 and MSH-6 in her tumor cells). She then
presented to our institution and the diagnosis of ACC was confirmed and she received
EDP and mitotane. However, this treatment was started after the measurement period [22].

Four patients who were included in our study (cases 1, 3, 4 and 7) received locoregional
therapy during the interval of study; however, treated lesions were excluded from our
growth rate evaluations. Eight patients were on mitotane. In all patients, mitotane levels
were <6 µg/mL and since there were sub-therapeutic levels it is unclear, however, not
likely, to have had an effect on the growth rate.
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Eligible subjects had metastatic ACC with two CT scans of chest/abdomen/pelvis
performed within a 1–6-month interval. These subjects were not receiving active systemic
therapy during the surveillance window. Of the 16 patients identified with the appropriate
medical criteria, 3 were excluded due to unavailable serial CT scans within the specified
evaluation time frame of 1–6 months. The remaining 13 patients had appropriate CT
imaging, and 3 patients within this group had additional 18FDG-PET scans. 18FDG-PET is
highly sensitive for detecting metastatic disease in ACC, yet only 3 in our cohort had the
aforementioned scan because it was not widely available >15 years ago for patients under-
going treatment. Moreover, this imaging modality is underutilized in ACC patients since
it is not routinely reimbursed by health insurance [23–25]. After reviewing the PET scans
from these three patients, one patient was included due to 18FDG-PET confirmation of
ACC metastatic lesions and another patient had avid pulmonary lesions but non-avid liver
lesions, therefore only the pulmonary lesions were included in the analysis. The third pa-
tient was excluded due to negative PET lesions. Ultimately, 12 patients (6 males; 6 females)
were included, with an average age of diagnosis at 50 years of age (range, 31–70 years)
(Figure 1). Eight patients were alive at the time of the analysis.
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2.2. Imaging Analysis

Axial soft tissue window series of chest/abdomen/pelvis CT scans with slice thickness
of 2–10 mm was selected for evaluation. Portal venous phase CT series were used when
available. A non-contrast axial CT series was used when the lesions were clearly evaluable,
for example in the lung, and the radiologist was confident about the lesion’s boundary
for segmentation. All lung lesions were evaluated with the standard lung window and
kernel setting, and the rest of the lesions were measured and segmented in soft tissue series
generated with a soft tissue kernel.

All baseline and follow-up lesions were measured two-dimensionally and segmented
using the Carestream picture archiving and communication system (PACS) 11.1 software
(Rochester, NY, USA). Lesion inclusion criteria were as follows: lesions in the liver and
soft tissue with a long axis diameter of ≥10 mm, lymph node lesions having a short axis
diameter of ≥10 mm, and pulmonary lesions having a long axis of ≥6 mm. Up to five
lesions per organ system were recorded to provide enough sampling of the metastatic
lesion growth rate (Figures 2 and 3).
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lobe, growing from 2.0 cm3 at the baseline (A) to 9.7 cm3 in the follow up (B) after 102 days.

Volumetric segmentation was performed manually by tracing the lesion within each
slice and was carried in Carestream PACS using the Livewire Segmentation Mode tool
by a postdoc with 3 years’ experience in image processing (A.S.) and was supervised
by a radiologist with 27 years of experience (H.B.). After finalizing the segmentation
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on each slice, the lesion volume was automatically calculated and saved in the PACS.
Lesions were classified by the organ involved into 4 categories: Liver (L), Pulmonary (P),
Lymph Node (N), and other locations (O).

2.3. Statistical Analysis

Because of the instability of doubling times in potentially slow-growing lesions, the
growth rates (GR) were analyzed with an exponential (base 10) lesion growth model.
A mixed model analysis of variance was used to analyze growth rates. The lesion location
(liver, lymph node or lung) was specified as a fixed effect, and patient by location was
specified as the random effect. Deviations from expected values were graphically exam-
ined for normality and homoscedasticity; residual variance was partitioned because of
heteroscedasticity (liver vs. lymph node and lung). The Satterthwaite approximation for
the denominator degrees of freedom was utilized. Lesion growth rates and their paired
differences were estimated with model-based LS-Means, and uncertainty was estimated
with 95% confidence intervals (CIs for differences are Bonferroni adjusted). For the lesion
effect only model, the null hypothesis of equal rates was assessed by an F-test. Additional
F-tests were performed using age at diagnosis and sex as single factors included in the
location model. Age was modeled as a covariate having a linear trend effect. Equal effects
across locations were assumed. Additional analyses are included in the Supplemental
Statistical Section Tables S1 and S2.

3. Results

The final patient cohort included 12 patients, 6 males and 6 females: 5/12 had a
total of 11 liver lesions, 7/12 had 27 lung lesions, 5/12 had 6 lymph node lesions, and
2/12 patients had other retroperitoneal recurrence (patients 6 and 7); 5/12 patients had two
lesion locations (Table 1). We used a total of 24 CT examinations for baseline and follow
up evaluation volumetric segmentation of 88 lesions. In 18/24 of the scans, portal venous
phase CT series were used for measurement and volumetry of 72 lesions. Non-contrast CT
was used in 6/24 scans for measurement and volumetry of 24 lesions. Slice thickness was
constant at the baseline and follow up scans in 11/12 patients. In one patient the baseline
scan was in 2.5 mm thickness and 2 mm in the follow up scan. Slice thickness was 10 mm
in two patients for the baseline and follow up scans (4/24 scans) due to older scanning
techniques dated in 1998 and 1999. Image thickness was 5 mm in six patients, and 2 mm in
three patients. Metastatic lesions found in locations other than the lung, liver, or lymph
nodes were excluded from analysis due to small sample size. This resulted in the exclusion
of four retroperitoneal lesions across two patients. The outcome analyzed was the growth
rate of the exponential (base 10) volume growth model (Figure S4).

The volume doubling time per organ system was 27 days in the liver, 90 days in
the lungs, and 95 days in lymph nodes. Liver lesions exhibited the fastest growth rate
compared to other locations (0.34 vs. 0.095 vs. 0.10; F-test p = 0.025). Liver lesions had
a CI of 0.177–0.504 (Table 2 and Figures S1 and S2). As an indication of the scale of the
growth rates, note that an increase of 0.1 in the lymph node (N) or pulmonary (P) base
10 exponential growth rate would divide the corresponding volume doubling time by
two. We compared the liver lesion growth rates (L) and the lymph node lesion growth
rates (N) and found liver lesions grew significantly faster with the 95% CIs excluding
the null hypothesis of zero. A similar result was found when comparing liver lesion
growth rates (L) to pulmonary lesion growth rates (P) (Table 2). Confidence intervals were
calculated (Figures S3 and S4). Of note, there were two instances of similar growth rates
in the liver and the other two organs (Figures S1 and S2). The two lesions in the “other”
category, outside of the liver, lymph nodes, and pulmonary systems, were excluded due to
limited numbers.



Curr. Oncol. 2021, 28 4362

Table 1. Patient demographic characteristics. MAVE = mitotane, Adriamycin, vincristine, and etoposide.

ID

Sex and Age
at Diagnosis Metastatic Lesions Per Organ

∆T *
(Days) Mitotane

Mitotane
Levels

(µg/mL)

Systemic Therapy
Treatment History

Liver Lung Lymph
Nodes Other

1 M33 0 4 2 0 63 Yes 3.3 PSC VALS 5CY, mitotane
Velban × 5 cycles,

2 M31 0 5 0 0 55 Yes 3.7 Records unclear, possibly on
MAVE from June 1999–Feb 2000

4 F46 0 4 1 0 56 Yes 4.1

Tariquidar/MAVE (mitotane,
Adriamycin, vincristine, and

etoposide) × 6 cyclesGemcitabine
and cisplatin × 6 cycles.

5 M32 5 0 0 0 36 Yes 1.1 None prior

6 F58 0 2 0 0 175 No - None prior

7 F36 1 0 1 1 60 Yes 1.1 None prior

8 M55 0 3 0 1 171 Yes 5.9 None prior

9 M67 2 0 0 0 100 Yes 5.0
Mitotane likely held with

subtherapeutic levels, medical
records unclear

10 F57 0 4 0 0 91 No - None during measurement period

11 F57 0 0 1 0 191 Yes <1.0 None prior

12 F70 2 5 0 0 33 No - None prior

14 M61 1 0 1 0 90 No - None prior

∆T * = change in time.

Table 2. Estimated (base 10) growth rates by lesion location and differences of lymph node and lung
rates from rates of the liver. CIs for differences are Bonferroni adjusted.

Lesion Estimate 95% CI Diff from L 95% CI

L 0.341 (0.177, 0.504) - -
N 0.095 (0.058, 0.132) 0.246 (0.034, 0.458)
P 0.101 (0.071, 0.130) 0.240 (0.029, 0.451)

As secondary aims, we tested degrees of associations between growth rate as com-
pared to sex and age at diagnosis, while adjusting for location (Supplemental Statistical
Section Table S2). Weak associations were found for sex (p = 0.67, F-test) and age (p = 0.39,
F-test), indicating a faster growth in females and the elderly.

4. Discussion

This retrospective analysis of ACC assessed the growth rate of metastatic lesions to
the liver, lung, and lymph nodes in patients with stabilization of tumor growth and we
followed the interval growth until disease progression that requires further treatment.
Lesion doubling time in the liver exhibited a faster growth rate than either the lungs or
the lymph nodes. Only weak associations were detected with higher age at diagnosis and
female sex. As the care of each individual patient can vary depending on case specifics
and the location of their metastatic burden, the data collected from this cohort may alert
clinicians to the importance of actively monitoring metastatic ACC liver lesions particularly
closely for signs of rapid growth compared to other organ systems. Extensive research
into ACC metastatic lesion behavior is limited given the rarity of this neoplasm, however
others have emphasized the severity of liver metastases when present. Gaujoux et al.
reported that surgical resection of ACC liver metastases was an independent positive
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predictive factor for survival and reported a median disease-free and overall survival after
hepatectomy of 7 and 31.5 months, respectively, with a 5-year survival of 39% [8]. Ripley
et al. also reported survival benefits in patients with metastatic ACC who underwent
resection or radiofrequency ablation of liver lesions with 5-year actuarial survivals of 29%
and 29%, respectively [26]. Furthermore, Mauda-Havakuk et al. reported that image-
guided locoregional imaging including the liver is associated with prolonged survival [27].
These and other studies argue for an aggressive approach to liver metastases as to improve
survival within the context of worse prognosis with advanced liver disease [28,29].

Prior reports offer valuable insight into tumor growth rate patterns, yet we found no
study that evaluated the differences in growth as a function of the organ system. Tanaka
et al. reported that patients with a hepatic colorectal cancer metastasis doubling time
of >45 days had few liver recurrences when compared with those having doubling time
of <45 days; the latter patients had a higher risk for multiple early recurrences and a
prediction of poor prognosis [30]. A meta-analysis study by Nathani et al. reported an
HCC doubling time of approximately 4–5 months, with heterogeneity depending on risk
factors identified [31]. Miura et al. similarly used a formula to calculate the volume
doubling times of solid and whole tumor components in patients with non-small cell lung
cancer and concluded that a solid tumor doubling time of <400 days is a poor prognosis
indicator when compared with tumor doubling times of >400 days [32]. Our study uniquely
offers a comparison of metastatic ACC lesions behavior between organ systems despite a
limited cohort.

Our methodology is in line with prior studies, as we aimed to characterize tumor
doubling times in selected patients off-treatment, using imaging studies at two time points
and setting a prior time restriction between CT comparisons [33–37]. Mehrara et al. high-
lighted the difficulties of using doubling time for tumor growth, particularly in the setting
of short measurement time intervals and uncertainties in tumor volume. To overcome any
possible inaccuracies of calculating the lesion volume by the Schwarz’s formula, we aimed
to reduce this limitation by using volumetric segmentation analysis.

ACC lesions can demonstrate aggressive growth and the interval of 1–12 months
between CT scans was considered representative. According to RECIST 1.1 guidelines,
follow-up at 6–8 weeks interval is appropriate when the beneficial effect of therapy is not
known during a Phase II trial. For the purposes of this retrospective study, a wide time
interval is justified given the known heterogeneity in growth patterns across patients [38].

We chose to target our investigation to a population with no active systemic therapy
to determine the growth during the time when systemic treatment was not indicated, in
order to characterize baseline metastatic lesion growth without intervention. Excluding
the patients on treatment regimens greatly reduced our sample size. In future studies,
it would be informative to compare growth rates of metastatic lesions under various
systemic therapy options. This information would aid in further understanding the effect
of treatment and identify whether the location of the metastatic disease plays a role in the
lesion’s response to treatment. Future studies should also include patients with lesions
outside of the liver, lung, and lymph nodes to reliably estimate growth rates in soft
tissue locations.

Limitations

This study is limited by patient sample size due to the rare nature of ACC, as well
as the non-random selection of patients. Moreover, this limited number of patients may
have underestimated the accurate growth rate of the metastatic lesions, since only those
with slower growing lesions are recommended to undergo careful monitoring of lesions
with serial imaging studies instead of rapid intervention. ACC is a heterogenous disease
and varies from an aggressive course with patient survival measured in months to a more
indolent course with patients living with the disease for years. The basis for these differing
clinical presentations is not known and tumor classification methods with better clinical
prognostic value are needed to help rationally guide the clinical management of patients
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with ACC. Our study excluded all patients currently undergoing therapy, which further
restricted our selection to patients that had indolent tumors at the baseline. Treatment
typically involves surgical resection of the primary tumor, and in advanced disease not
amenable to radical resection, cytotoxic drugs can be added to mitotane [5]. In our cohort,
four patients received systemic therapy prior to our window of CT scan review, which
superimposes another theoretical complication of patients continuing to experience the
benefits of chemotherapy even months after treatment had been discontinued.

Lesion selection bias may also have been a factor, since lesions requiring interventional
radiology treatment during the chemotherapy-free window were necessarily excluded
from our evaluation. Four patients fell in this category of receiving radiofrequency ablation
or targeted therapy during the evaluation window. Excluding the more concerning lesions
likely predisposed our data to reflect more conservative growth rates than would be seen in
a general patient stream and to diminish the true differential of growth rates. Furthermore,
although ablated lesions were excluded from our analysis, there is an unlikely possibility
that the intervention affected the tumors of interest for this study in a spill-over effect
on neighboring target lesions. 18FDG-PET scans were available for only three patients,
which restricted our ability to confirm ACC metastatic lesions using this imaging modality.
Another imaging limitation of this study is that in 6 out of 24 CT scans, we had to use
non-contrast CT series, as these were the only available imaging studies on those specific
time points. We included these scans only if the radiologist of the team was confident about
the lesion boundaries for measurement, segmentation, and volumetry. One additional
imaging limitation was that we had to use thick slice CT scans in two patients (and four
scans) as those scans were old and thin section images were not available.

5. Conclusions

This retrospective analysis used volumetric segmentation in CT examinations to
assess the growth rates of ACC metastatic lesions to the liver, lung, and lymph nodes in
12 patients where systemic treatment was not indicated. Lesions in the liver grew the
fastest, with an expected doubling time of 27 days as compared to the lungs or liver, which
had doubling times of 90 and 95 days, respectively. Based on this limited observation,
metastatic ACC liver lesions should be monitored closely for signs of rapid growth to guide
us on treatment approaches.
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