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Abstract: Solid organ transplant recipients on long-term immunosuppressive medication are at
increased risk of developing malignancy, and treatment of advanced cancers with angiogenesis
inhibitors in this context has not been widely studied. We present a case of recurrent high-grade
serous ovarian carcinoma treated with paclitaxel and bevacizumab in the context of prior renal
transplantation where the patient responded well to treatment with controlled toxicities, discussing
the potential for increased rates of adverse events and drug interactions in this select population.
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1. Introduction

Angiogenesis inhibitors such as vascular endothelial growth factor (VEGF) monoclonal antibodies
and tyrosine kinase inhibitors (Figure 1) are standard treatments across various cancer subtypes.
In advanced high-grade serous ovarian cancer (HGSOC), bevacizumab is part of the standard of
care as maintenance therapy in front-line and recurrent disease [1]. Although the toxicity profile is
generally well-managed, nephrotoxicity manifesting as proteinuria remains an important adverse
event that requires close monitoring [2]. There is limited literature surrounding angiogenesis inhibitors
as anti-cancer treatment in patients who have received solid organ transplants, and thus this report
presents a case demonstrating safety of angiogenesis inhibition as anti-cancer therapy in a patient with
a stable renal transplant.
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Figure 1. Angiogenesis pathways in malignancy and targeted therapies commonly used. Monoclonal
antibodies including bevacizumab and ramucirumab and tyrosine kinase inhibitors including sunitinib,
sorafenib, lenvatinib, pazopanib, axitinib, cediranib, and cabozantinib have been included (this list is
not exhaustive). Receptors including VEGFR, c-kit, epidermal growth factor receptor (EGFR), fibroblast
growth factor receptor (FGFR), and PDGFR are displayed here, but certain medications also target
other pathways not displayed here such as AXL and RET. The VEGFR pathway intersects with multiple
cell signaling pathways, including the PI3K/AKT/mTOR pathway. Created with Biorender.com.

2. Case Description

Consent: Fully informed, voluntary, written consent has been obtained to include patient
information and publish this report.

Ethics: As this is a case report with fewer than three patients, institutional approval was not sought
as per the University Health Network Research Ethics Board guidance document on case reports.

A 47-year-old woman presented with several months of dyspnea and abdominal distension to
Princess Margaret Cancer Centre in February 2019 (Figure 2). CT revealed a 13.9 cm pelvic mass with
peritoneal carcinomatosis and ascites. Omental biopsy confirmed HGSOC, and she received neoadjuvant
platinum-based chemotherapy with excellent tolerance and no renal complications before proceeding to
interval debulking in June 2019. There was no visible residual disease, and diagnosis of HGSOC was
confirmed, germline and somatic BRCA wild type. She completed three cycles of adjuvant chemotherapy.

Her background was significant for IgA nephropathy, which resulted in progressive chronic
kidney disease for 18 years prior to living donor kidney transplant in 2016. Both she and her
donor were cytomegalovirus-positive, and she developed cytomegalovirus-associated colitis shortly
post-transplantation. Her initial immunosuppression consisted of basiliximab induction followed by
tacrolimus, mycophenolic acid, and steroids. She developed antibody-mediated rejection one week
post-transplant, which was treated with plasmapheresis, immunoglobulin, and an increase in steroid dose.
This was repeated three months later due to biopsy confirming ongoing antibody-mediated rejection.
Mycophenolic acid was stopped upon HGSOC diagnosis. She has remained medication-adherent,
with regular serum tacrolimus levels within the target range (most recently, 5.3 micrograms/L) and no
signs of chronic graft rejection.

Her other comorbidities include diet-controlled, steroid-induced diabetes mellitus; ductal breast
carcinoma in situ requiring wide local excision in 2011; asthma; reflux disease; hypertension;
and hyperlipidemia. Other medications include prednisone 5 mg daily, acetylsalicylic acid, bisoprolol,
trimethoprim–sulfamethoxazole, vitamin D, and inhaled salbutamol as needed.
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Figure 2. (a) Summary oncology treatment timeline. (b) Ca125 trend from diagnosis to current.

In December 2019, she developed recurrence in the peritoneum and retroperitoneal lymph nodes,
signifying platinum resistance. In January 2020, she commenced weekly paclitaxel 80 mg/m2 with
bevacizumab 10 mg/kg every two weeks, and at that time, tacrolimus dose was reduced to 2 mg daily to
aim for a serum level of 5 micrograms/L. She continued this therapy for over 6 months, and continued
on the same dose of immunosuppression throughout with tacrolimus levels ranging between 3 and
7.6 micrograms/L. Serial imaging and Ca125 confirmed good response to treatment with reduction in
size of tumor deposits. Her albumin/creatinine ratio was normal at 0.9 prior to the diagnosis of ovarian
cancer, and most recently has been 15.6, signifying microalbuminuria; this has been monitored via
urinalysis, which has consistently reported protein as negative or trace. Her most recent estimated
glomerular filtration rate was 55 mL/min, similar to pre-diagnosis, and creatinine levels have mostly
fluctuated between 95 and 120 µmol/L.

Her course has been complicated by grade 2 hypertension (up to 145/95 mmHg) and non-cardiac
chest pain, for which amlodipine was switched to ramipril 10 mg daily, and bevacizumab was withheld
on two different occasions. Furthermore, she developed a brief period of Kidney Disease: Improving
Global Outcomes (KDIGO) stage 1 acute kidney injury (AKI) of pre-renal etiology in September 2020
with creatinine of 160 µmol/L, which self-resolved following withdrawal of bevacizumab, and was
resumed after a 1-month-long break with no further episodes of kidney injury.



Curr. Oncol. 2021, 28 664

3. Discussion

Nephrotoxicity with angiogenesis inhibitors is relatively common, with proteinuria occurring
in over 60% of patients [2]. Most cases are low-grade, transient, and do not require interventions or
dose delays; however, more persistent, severe cases presenting as AKI and nephrotic syndrome can
occur [2,3]. Risk factors associated with high-grade proteinuria include increased dose, prolonged
administration, pre-existing renal disease, and administration of concurrent chemotherapy [4,5].

The pathophysiology of VEGF inhibitor-induced proteinuria remains unclear. Within a normal
kidney, VEGF is produced by podocytes, and VEGF receptors are typically present on the glomerular and
peritubular endothelium in addition to mesangial cells [6]. Inhibition of VEGF is thought to cause loss
of endothelial fenestrations, podocyte injury and reduce endothelial proliferation, ultimately causing
disruption of glomerular membranes [6]. Some cases have also demonstrated subacute thrombotic
microangiopathy with endotheliosis and membranoproliferative changes [7]. Another manifestation
of nephrotoxicity that is commonly seen is hypertension, occurring in more than a third of patients,
which arises due to various mechanisms of renal vascular injury including inhibition of nitric oxide,
rarefaction of microvasculature, and neuroendocrine dysregulation [8,9]. It is also hypothesized to
increase intraglomerular pressure and ultrafiltration, leading to proteinuria [10].

The lack of clarity surrounding pathophysiology of VEGF inhibitor-induced nephrotoxicity [11] is
demonstrated by the heterogeneity of published reports on glomerulopathy and other manifestations,
including minimal change disease, collapsing glomerulopathy, membranoproliferative glomerulonephritis,
focal segmental glomerulosclerosis, cryoglobulinemic glomerulonephritis, acute tubular necrosis,
and interstitial nephritis [7]. Furthermore, worsening kidney disease can further exacerbate hypertension,
which may perpetuate AKI [10].

Treatment for low-grade proteinuria usually includes an angiotensin-converting enzyme (ACE)
inhibitor or an angiotensin receptor blocker to reduce glomerular filtration pressure, and anti-VEGF
treatment can be continued providing stable proteinuria. However, proteinuria may worsen to the
nephrotic range (>3 g in 24 h) with nephrotic syndrome. Even after cessation of VEGF inhibitor therapy,
there are documented cases of persistent proteinuria [12].

3.1. Angiogenesis Inhibitors Post-Transplant

The role of the VEGF pathway in the pathogenesis of post-transplant complications is poorly
understood, with preliminary reports across various organ transplants showing hypothesis-generating
results [13–16]. Upregulation of angiogenesis factors was associated with increased allograft
vasculopathy, bronchiolitis obliterans, and recurrence of hepatocellular carcinoma in cardiac, pulmonary,
and liver transplants, respectively [13,15–17]. In renal transplants, VEGF is thought to be upregulated
in acute and chronic rejection, particularly associated with cyclosporine [14].

As the first VEGF inhibitor used for anti-cancer treatment, bevacizumab was approved by the
United States Food and Drug Administration in 2004, and is now licensed for use in many cancers [18]
(Table 1). In ovarian cancer, patients who were prior recipients of solid organ transplants or who
were receiving immunosuppressive therapies were not excluded from randomized bevacizumab
trials, but those with pre-existing uncontrolled hypertension or renal dysfunction based on serum
creatinine ≥ 1.6 mg/dL or proteinuria > 1 g per 24 h were excluded [19–21]. Similarly, in other large
randomized angiogenesis inhibitor studies across other tumor sites, prior solid organ transplant or use
of immunosuppressants is not an exclusion criterion, aside from studies involving immune checkpoint
inhibitors [22]. Identification of patients enrolled in large angiogenesis inhibitor trials who had received
prior transplants could potentially make for an interesting post-hoc pooled analysis.
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Table 1. Food and Drug Administration approved indications for bevacizumab [18].

Cancer Stage Usage

Colorectal

Metastatic, first-line 5 mg/kg every two weeks with bolus IFL
10 mg/kg every two weeks with FOLFOX4

Metastatic, recurrent after first-line
bevacizumab-containing regimen

5 mg/kg every two weeks, or 7.5 mg/kg every three weeks
with fluoropyrimidine–irinotecan, or

fluoropyrimidine–oxaliplatin-based chemotherapy

Non-squamous, non-small-cell lung Unresectable, locally advanced, recurrent, or metastatic 15 mg/kg every three weeks with carboplatin and paclitaxel

Glioblastoma Recurrent 10 mg/kg every two weeks

Renal cell Metastatic 10 mg/kg every two weeks with interferon-alfa

Cervical Persistent, recurrent, or metastatic 15 mg/kg every three weeks with paclitaxel and cisplatin, or
paclitaxel and topotecan

Epithelial ovarian, fallopian tube, or
primary peritoneal

III or IV, following surgical resection
15 mg/kg every three weeks with carboplatin and paclitaxel

for up to six cycles, followed by 15 mg/kg every three
weeks as a single agent for up to 22 cycles

Recurrent, platinum-sensitive
15 mg/kg every three weeks with carboplatin and either

paclitaxel (6–8 cycles) or gemcitabine (6–10 cycles) followed
by 15 mg/kg every 3 weeks as a single agent

Recurrent, platinum-resistant

10 mg/kg every two weeks with paclitaxel, pegylated
liposomal doxorubicin, or topotecan given weekly

15 mg/kg every three weeks with topotecan every three
weeks

Hepatocellular Unresectable or metastatic, first-line 15 mg/kg with atezolizumab every three weeks

Abbreviations: mg/kg = milligrams per kilogram; IFL = infusional fluoropyrimidine; FOLFOX4 = 5-fluorouracil, folic acid, and oxaliplatin.
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Similarly, reports on angiogenesis inhibition in solid organ transplant patients remain scant in the
literature, as highlighted by a review on bevacizumab toxicity by Fenoglio et al [9]. Musri et al. reported
a case of colorectal cancer post-renal transplantation with baseline proteinuria, which significantly
worsened on administration of intravenous 5-fluorouracil, irinotecan, oxaliplatin, and bevacizumab [23].
Cheungpasitporn et al. described two cases with renal allograft dysfunction following administration
of intravitreal bevacizumab, aflibercept, or ranibizumab [24]. Doses of anti-angiogenics were lower
but not specified within this report. Although neither case proved causality with anti-VEGF therapy,
one was diagnosed with phospholipase A2 receptor-negative membranous nephropathy, and the
second revealed acute and chronic antibody-mediated rejection with glomerular thrombi and transplant
glomerulopathy. Jonkers and Buren reported a case of worsening IgA nephropathy presenting with
nephrotic-range proteinuria post-renal transplantation on sorafenib [25]. These reports highlight
the potential severe nephrotoxicity known to be associated with angiogenesis inhibitors; however,
there remain few documented positive experiences with angiogenesis inhibitor use in the post-transplant
setting. Given the prevalence of nephrotoxicity with these agents, these considerations are particularly
prudent for renal transplant recipients, but reports in other organ transplants remain similarly scarce.

3.2. Medication Interactions

Solid organ transplant recipients frequently take maintenance immunosuppressive agents,
including but not limited to corticosteroids, calcineurin inhibitors, anti-proliferative agents, and mTOR
inhibitors, which are associated with various complications and drug interactions (Table 2).

Table 2. Drug–drug interactions between post-transplant immunosuppressive medications and
angiogenesis inhibitors.

Transplant Medication Potential Interactions with Anti-Angiogenesis Agents [26–34]

Cyclosporine
Increased cyclosporine levels and subsequent toxicity due to CYP3A4 and

P-gp-mediated drug interactions (e.g., cabozatinib, axitinib, pazopanib,
sorafenib, sunitinib)

Tacrolimus

Increased tacrolimus levels and subsequent toxicity due to inhibition of or
competition with CYP3A4 metabolism and P-gp-mediated transport

(e.g., cabozatinib, axitinib, pazopanib, sorafenib, sunitinib)
Additive impairment of the renal function (e.g., cediranib, axitinib, pazopanib)

Increased risk of QT prolongation with other agents that prolong the QT interval
(e.g., cabozantinib, pazopanib, sorafenib, sunitinib)

Mycophenolate
mofetil Exaggerated leukopenia (e.g., ramucirumab, bevacizumab, sunitinib)

Azathioprine Exaggerated leukopenia (e.g., ramucirumab, bevacizumab, sunitinib)

Sirolimus

Increased tacrolimus levels and subsequent toxicity due to inhibition of or
competition with CYP3A4 metabolism and P-gp-mediated transport

(e.g., cabozatinib, axitinib, pazopanib, sorafenib, sunitinib)
Additive impairment of the renal function (e.g., cediranib, axitinib, pazopanib)

Additive impairment of wound healing

Everolimus

Increased everolimus levels and subsequent toxicity due to inhibition of CYP3A4
metabolism and P-gp-mediated transport (e.g., cabozantinib, pazopanib)

Additive impairment of the renal function (e.g., cediranib, axitinib, pazopanib)
Additive impairment of wound healing

Corticosteroids Competitive CYP3A4 metabolism (e.g., prednisone) with other CYP3A4 substrates
(e.g., cabozantinib, axitinib, pazopanib, sorafenib, sunitinib)

Abbreviations: CYP3A4 = cytochrome P450 3A4; P-gp = P-glycoprotein.

In the case presented, tacrolimus levels were measured every few months to be within the
therapeutic range; this is significant as potential drug interactions between transplant medications and
angiogenesis inhibitors involve pharmacokinetic and pharmacodynamic interactions. Pharmacokinetic
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interactions typically occur due to cytochrome P450 enzyme (CYP) and P-glycoprotein (P-gp) drug
transport systems [26–28], and risk of competitive metabolism as substrates for the same enzyme
or transporter may increase serum levels. Axitinib and sorafenib are CYP3A4 and P-gp substrates,
and cabozantinib and pazopanib are substrates and inhibitors of both enzyme systems [29–32].
Drug interactions are well-described for CYP3A4 substrates cyclosporine, tacrolimus, and sirolimus,
with metabolic inhibition leading to increased immunosuppressant concentrations (~20%) [28].
Pharmacodynamic interactions primarily concern cumulative toxicities between these two classes
(Table 2) [26,27,33,34]. Interestingly, Onodera et al. reported upon a case of metastatic colorectal
cancer post-renal transplant where a patient was administered five cycles of 5-fluorouracil, oxaliplatin,
and bevacizumab where although severe proteinuria occurred, serum tacrolimus levels were not
affected throughout the course of treatment [35]. This report remains one of the only cases in the
literature that demonstrates stability of immunosuppression whilst on bevacizumab post-transplant.

3.3. Long-Term Adverse Events

One of the leading causes of morbidity and mortality in solid organ transplant recipients
is malignancy, most commonly non-melanomatous skin cancers [36]. Other malignancies such
as colorectal, kidney, and cervical cancers are also prevalent in the post-transplant context,
and angiogenesis inhibitors such as bevacizumab are commonly used in metastatic disease [18]
(Table 1). Surveillance recommendations within transplant recipients are variable across the globe
due to a paucity of robust screening trials [37]. Other long-term complications associated with organ
transplantation and prolonged immunosuppressant use include cardiovascular disease, diabetes
mellitus, hypertension, and infection associated with cytopenia. In the patient presented, adverse
events have not outweighed benefits of ongoing treatment, but this will need close monitoring given
the risk of overlapping toxicities as long-term adverse event data remain limited [3,38].

4. Conclusions

Whilst there are minimal data justifying that bevacizumab or other angiogenesis inhibitors
are unsafe in the post-transplant setting, there is similarly scarce literature demonstrating safe
administration, as in the patient presented. As life expectancy continues to improve with increasing
indications for transplantation, long-term risks for malignancy with prolonged immunosuppression are
increasingly relevant as a cause of mortality in solid organ transplant recipients. In patients who have
undergone renal transplantation, careful consideration of treatment options with risk of nephrotoxicity
and close monitoring remains paramount.

Although treating oncologists should remain vigilant about potential drug interactions and
overlapping toxicities, these are not necessarily contraindications for agents such as bevacizumab.
Treatment decisions should consider the best available evidence, and collating information about
toxicity and tolerance from randomized trials and post-approval Phase IV studies would provide
detailed information from at-risk subgroups. This calls for a stratified, inclusive approach to allow
enrolment of those with chronic diseases and comorbidities in prospective trials, allowing objective
assessment of the risk–benefit ratio.
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Abbreviations

VEGFR vascular endothelial growth factor receptor
EGFR epidermal growth factor receptor
FGFR fibroblast growth factor receptor
PDGFR platelet-derived growth factor receptor
SCF stem cell factor
PI3K phosphoinositide 3-kinase
AKT protein kinase B
mTOR mammalian target of rapamycin
RET RET proto-oncogene
AXL AXL receptor tyrosine kinase
TAH–BSO total abdominal hysterectomy and bilateral salpingo-oophorectomy
Ca125 cancer antigen 125
U/ml units per milliliter
AKI acute kidney injury
CYP cytochrome P450
HGSOC high-grade serous ovarian carcinoma
FOLFOX4 5-fluorouracil, leucovorin, and oxaliplatin
IFL irinotecan, leucovorin, and 5-fluorouracil
P-gp P-glycoprotein
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