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ORIGINAL ARTICLE

Digital gene expression analysis might  
aid in the diagnosis of thyroid cancer
H. Armanious md phd,*† B. Adam md,*† D. Meunier md,*† K. Formenti bsc,† and  
I. Izevbaye mbbs phd*†

ABSTRACT

Background  Thyroid cancer represents approximately 90% of endocrine cancers. Difficulties in diagnosis and low 
inter-observer agreement are sometimes encountered, especially in the distinction between the follicular variant of 
papillary thyroid carcinoma (fvptc) and other follicular-patterned lesions, and can present significant challenges. 
In the present proof-of-concept study, we report a gene-expression assay using NanoString nCounter technology 
(NanoString Technologies, Seattle, WA, U.S.A.) that might aid in the differential diagnosis of thyroid neoplasms 
based on gene-expression signatures.

Methods  Our cohort included 29 patients with classical papillary thyroid carcinoma (ptc), 13 patients with fvptc, 
14 patients with follicular thyroid carcinoma (ftc), 14 patients with follicular adenoma (fa), and 14 patients without 
any abnormality. We developed a 3-step classifier that shows good correlation with the pathologic diagnosis of vari-
ous thyroid neoplasms. Step 1 differentiates normal from abnormal thyroid tissue; step 2 differentiates benign from 
malignant lesions; and step 3 differentiates the common malignant entities ptc, ftc, and fvptc.

Results  Using our 3-step classifier approach based on selected genes, we developed an algorithm that attempts to 
differentiate thyroid lesions with varying levels of sensitivity and specificity. Three genes—namely SDC4, PLCD3, and 
NECTIN4/PVRL4—were the most informative in distinguishing normal from abnormal tissue with a sensitivity and a 
specificity of 100%. One gene, SDC4, was important for differentiating benign from malignant lesions with a sensitivity 
of 89% and a specificity of 92%. Various combinations of genes were required to classify specific thyroid neoplasms.

Conclusions  This preliminary proof-of-concept study suggests a role for nCounter technology, a digital gene 
expression analysis technique, as an adjunct assay for the molecular diagnosis of thyroid neoplasms.

Key Words  Thyroid neoplasms, papillary thyroid carcinoma, follicular neoplasms, gene expression profiling, 
NanoString
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INTRODUCTION

Thyroid cancer represents approximately 90% of endocrine 
cancers1. Thyroid cancers are classified into distinct types, 
including papillary thyroid carcinoma (ptc), follicular vari-
ant of papillary thyroid carcinoma (fvptc),  follicular ad-
enoma (fa), and follicular thyroid carcinoma (ftc). The 
most common of these lesions is ptc. Surgical pathology 
diagnosis of ptc, largely dependent on nuclear features, 
is usually straightforward; nevertheless, those cytologic 
criteria are subjective, with no uniform minimum diag-
nostic criteria2,3.

Diagnostic dilemmas are sometimes encountered in 
which the distinction between fvptc and other follicu-
lar-patterned lesions presents challenges4. Occasionally, 
nuclear features are not sufficiently developed for an 
unequivocal diagnosis of ptc5. Difficulties also attend the 
differentiation of subtypes of follicular lesions, including 
separating reactive lesions such as adenomatous goiter and 
Hashimoto thyroiditis from neoplastic conditions such as 
fa. Given the differences in prognosis and management for 
those entities, accurate diagnosis is imperative.

The diagnostic challenges encountered in the assess-
ment of thyroid lesions are demonstrated by significant 
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inter-observer variability, with observer agreement being 
as low as 58% in some studies6–9. Factors implicated by such 
studies include the interpretive significance of microfolli-
cles and capillaries within tumour capsules, variations in 
the assessment of nuclear features such as nuclear clearing 
for ptc, and lack of strict criteria for distinguishing adeno-
matous goiter and fa.

Various attempts to address these common diagnostic 
challenges have been made. Past approaches have largely 
been confined to the use of various immunohistochemical 
stains, singly and in combination. Numerous antibodies 
have been explored—including those against hbme-1, 
CK19, galectin-3, galectin-1, cited-1, CD44, Trop-2, CD56, 
and tpo—with varying degrees of success4,10–19. Previous 
investigators have also assessed the utility of immuno-
histochemistry for confirming malignancy, identifying 
vascular invasion in follicular lesions, and differentiating 
fvptc from fa20–23. However, immunohistochemistry is also 
confounded with issues of inter-observer sensitivity and 
specificity and inter-laboratory variation in application.

A genomics study from The Cancer Genome Atlas 
(tcga) has proposed the classification of thyroid cancers 
based on molecular subtypes that better reflect the bio-
logic pathways involved with each cancer subtype24. Using 
gene-expression profiling (gep), that project was able to 
identify unique gene signatures for ptc. Molecular meth-
ods using next-generation sequencing (ThyroSeq: upmc, 
Pittsburgh, PA, U.S.A.) and gep (Affirma: Thermo Electron 
Scientific Instruments, Madison, WI, U.S.A) are established 
adjunct methods in indeterminate thyroid cytology. Those 
genomics technologies have thus far been limited to thyroid 
cytology. Their implementation in routine surgical pathol-
ogy has been hampered because of prohibitive operational 
and infrastructural costs. Some investigators have also 
used gene-expression techniques such as dna microarrays 
to identify biomarkers of ptc, ftc, and fa. However, those 
studies have been largely investigational and have not as 
yet been translated into a clinical assay for routine use in 
surgical pathology25,26.

In the present proof-of-concept study, we used a rap-
id, cost-effective digital counting technology, nCounter 
(NanoString Technologies, Seattle, WA, U.S.A.) for gene- 
expression analysis. We identified diagnostic biomarkers 
and developed a preliminary diagnostic algorithm that 
might aid in resolving diagnostically challenging cases in 
the surgical pathology assessment of thyroid neoplasms.

METHODS

Thyroid Samples
This study was approved by the Health Research Ethics 
Board of Universities of Alberta and Calgary.

The laboratory information system at the University of 
Alberta and Royal Alexandra hospitals in Edmonton, Alber-
ta, were searched for all patients with a diagnosis of thyroid 
neoplasm between January 2010 and December 2016. That 
search identified 81 patients with thyroid neoplasms and 
14 patients with normal results. Predetermined sample 
inclusion criteria were a tumour area of 5 mm or more2, 
tumour cellularity of 80% or more, rna quantity 100 ng or 
more, and satisfactory intrinsic quality control metrics in 

the nSolver analysis software (NanoString Technologies) 
for gene expression.

The 70 samples that met the inclusion criteria (86%) 
included 42 of ptc (including 29 classical ptc and 13 fvptc), 
14 of ftc, and 14 of fa. The ptc cases were separated into 
classical ptc and fvptc because previous publications 
have shown differences in the biologic behavior of those 
two groups27,28. The ptc group included only the classical 
type; other variants of ptc were excluded because too few 
cases were identified for statistical analysis. The fvptc cases 
included encapsulated minimally or widely invasive; the 
diagnosis of noninvasive follicular thyroid neoplasm with 
papillary-like nuclear features could not be made in any of 
the encapsulated cases because the entire capsule was not 
assessed during initial tissue processing. The normal-results 
group included multinodular hyperplastic thyroid tissue. 
Other reactive lesions such as Hashimoto thyroiditis were 
excluded. Archival formalin-fixed paraffin-embedded tis-
sue (ffpe) blocks were retrieved for all study samples. One 
hematoxylin and eosin–stained section and five 10-μm 
unstained slides of diagnostic tissue were prepared. The 
stained tissue sections were reviewed by a pathologist 
(HA), and an area of high tumour cellularity (>80%) was 
identified and circled. Corresponding tissue was then 
macrodissected from unstained slides for rna extraction.

RNA Isolation
The RNeasy ffpe kit (Qiagen, Hilden, Germany) was used 
to isolate rna from five 10-μm sections from each sample. 
The rna concentration and purity were measured using a 
NanoDrop 2000 spectrophotometer (Thermo Fisher Scien-
tific, Waltham, MA, U.S.A.).

Code Set Design
A literature search was performed to identify genes 
involved in thyroid cancer biology, and tcga was also 
reviewed24. Key words for our literature search included 
“thyroid carcinoma,” “gene expression,” “ftc,” “gene 
profiling,” “ptc,” “follicular neoplasms (fn),” “fvptc,” and 
“fa,” singly and in combination. The 83 genes selected as a 
result included 5 housekeeping genes: ACAT2, ACTB, ATF4, 
RPL27, and RPS13. The gene set included all 71 genes in the 
thyroid differentiation signature identified by tcga. Custom 
nCounter probes for the gene set were designed by NanoS-
tring Technologies and manufactured by Integrated DNA 
Technologies [Coralville, IA, U.S.A. (supplemental Table 1)].

Expression Quantification
Details of the nCounter technology have been reported 
previously29. Briefly, a custom nCounter code set consist-
ing of multiplexed probes targeting the 83-gene set, were 
used for gene-expression analysis. Each code set includes 
selected housekeeping genes to control for variations in 
rna input and quality.

Probe pairs with sequences specific to a 100-base 
region of each target messenger rna were designed using 
a 3′ biotinylated capture probe and a 5′ reporter probe 
tagged with a specific fluorescent barcode, thus creating 
2  sequence-specific probes for each target transcript. 
Probes were hybridized with rna at 65°C, and then applied 
to the nCounter Preparation Station for automated removal 
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of excess probe and immobilization of probe-transcript 
complexes on a streptavidin-coated cartridge. Data were 
collected using the nCounter Digital Analyzer by count-
ing the individual barcodes. Raw gene expression counts 
were quality-controlled and normalized using the nSolver 
Analysis Software (version 2.0: NanoString Technologies) 
and manufacturer-included positive and negative controls. 
Quality control (qc) parameters include imaging qc, bind-
ing density qc, overall assay efficiency, assay linearity, and 
limit of detection (supplemental text: qc parameters). Data 
were normalized to the 5 housekeeping genes to correct for 
variation in rna input quantity.

Statistical Analysis
Post-normalization statistical analysis and visualization 
were performed with the R software application (ver-
sion 3.3.2: R Foundation for Statistical Computing, Vienna, 
Austria). Normalized transcript counts were used for in-
dividual gene analysis (supplemental Table 2). Geometric 
means of normalized transcript counts were used for 
aggregate gene-set analysis. Exploratory analysis was per-
formed using heat maps with unsupervised hierarchical 
clustering by Euclidean distance (heatmap.2 function in g 
plots package for R) and unsupervised principal component 
analysis (prcomp function in stats package for R). Receiver 
operating characteristic (roc) curve analysis (roc function in 
pROC package for R) was used to assess individual gene and 
gene-set performance in each of the diagnostic scenarios. 
Individual genes were first ranked by area under the curve 
values and then compiled into respective upregulated and 
downregulated gene sets. That is, 1-gene set is the top gene; 
2-gene set is the geometric mean of the top 2 genes; 3-gene 
set is the geometric mean of the top 3 genes; and so on. The 
roc curve analysis was then repeated for each gene set and 
the one with the highest area under the curve was identified 
for each diagnostic scenario (in the event of a tie, the one with 
the most transcripts was selected). Benjamini–Hochberg 
(false discovery rate) correction for multiple comparisons 
was used for all differential expression analyses. Only genes 
with corrected p values or false discovery rates less than 
0.05 were included in the gene sets. The Youden J-statistic 
(point on the roc curve furthest from the diagonal index 
line) defined the diagnostic thresholds. Leave-one-out 
cross-validation analysis (train function in caret package 
for R) was used to validate individual gene and gene-set roc 
results. Mann–Whitney U-tests (wilcox.test function in stats 
package for R) were used for diagnostic class comparisons. A 
p value less than 0.05 was considered statistically significant.

RESULTS

RNA and Quality Control
The mean rna yield obtained from five 10 µm sections per ffpe 
block was 7480.6 ng (range: 161.4 ng–31204.4 ng) with a mean 
concentration of 374.03 ng/µL (8.07 ng/µL–1560.22 ng/µL) 
and a mean A260/A280 rna purity ratio of 1.93.

Analytic Cohort of 84 Thyroid Cases
Of 95 identified samples with available paraffin-embedded 
material, 11 were excluded from downstream analysis 
because of quality control (n = 5) or normalization (n = 6) 

flags encountered during nSolver processing. Gene expres-
sion data were adequate for 84 of 95 samples (88%) using 
ffpe material, and those samples constituted the analytic 
cohort for the study.

Gene Expression Cluster Analysis Shows  
Clustering of PTC Compared with Other  
Lesions Using 78-Gene Set
Using all 78 genes and all 84 samples, hierarchical cluster-
ing identified molecular signatures for 3 diagnostic groups: 
ptc, follicular neoplasms, and normal thyroid tissue. Papil-
lary thyroid cancer appears to be molecularly distinct and 
clustered with 100% specificity within the ptc signature, 
which contained both classical ptc and some fvptc samples. 
The follicular neoplasms cluster included fvptc, ftc, and 
fa [Figure 1(A)]. Normal thyroid tissue samples were pre-
dominantly clustered together with some overlap with ptc, 
fa, and ftc. Using all 78 genes and all 84 samples, principal 
component analysis demonstrated findings similar to those 
for the heat-map analysis—that is, the genes mainly separ-
ated ptc from “not ptc” with fvptc cases scattered between 
both groups [Figure 1(B)].

A 3-Step Gene Expression Algorithm Classifies 
Thyroid Lesions
We developed a 3-step algorithm for diagnostic classifica-
tion: Step 1 distinguishes normal thyroid samples (n = 14) 
from abnormal (n = 70), including benign fa and malignant 
lesions (ptc, ftc). Step 2 differentiates benign tissue from 
malignant, and step 3 subclassifies malignant lesions.

Step 1 Analysis
We divided the cohort of 84 patients into 2 groups: normal 
(n = 14) and abnormal (n = 70). The 78-gene panel was then 
used to evaluate gene expression. The roc analysis of the 
results identified 3 genes—SDC4, PLCD3, and PVRL4—to 
be the combination of genes with the best discriminatory 
value between those diagnostic groups, with test perform-
ance sensitivity, specificity, and area under the curve being 
100% (Figure 2).

Step 2 Analysis
The cohort of 84 patients was stratified into 2 groups: be-
nign, including normal tissue (n = 14) and fa (n = 14), and 
malignancy (ptc, ftc; n = 56). The 78-gene panel was then 
used to evaluate gene expression. The roc analysis iden-
tified the gene SDC4 (alone and not in combination with 
any other gene) to be the most discriminatory between the 
cohorts, with test performance sensitivity of 89%, specific-
ity of 92%, and positive predictive value of 98% (Figure 3).

Step 3 Analysis
Finally, the 56 malignant thyroid lesion samples were sep-
arated into 3 groups: classic ptc (n = 29), ftc (n = 14) and 
fvptc (n = 13). The 78-gene panel was then used to evaluate 
gene expression. The roc analysis identified 3 gene sets that 
were differentially expressed in the groups (supplemental 
Table 3). A 13-gene set (SPOCK2, KCNN4, AHR, RUNX1, FN1, 
CTSC, ITGB8, PTPRE, ANXA2P2, PDLIM4, SLC34A2, CFH, 
STK17B) was most discriminatory between classical ptc 
compared with ftc and fvptc. A 3-gene set (CA12, CYB561, 
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KCNAB1) was most discriminatory between classical fvptc 
compared with ptc and ftc. A single gene, SLC4A4, was most 
discriminatory between classical ftc compared with fvptc 
and ptc (Figure 4).

The gene sets that are most discriminatory between 
each of the malignant groups (Figure 5) are a 2-gene set 
differentiating ptc and fvptc (SPOCK2, FN1), a 7-gene set 
differentiating ptc and ftc (SPOCK2, KCNN4, ITGB8, LY6E, 
PTPRE, CFH, PDE5A), and a 9-gene set differentiating ftc 
and fvptc (KCNN4, PDE5A, SDC4, ANXA1, SEL1L3, GABR82, 
TBC1D2, DUSP5, CREB5).

DISCUSSION

In the present study, we report a proof-of-principle gene ex-
pression approach using NanoString nCounter technology 
as an adjuvant test for classifying thyroid neoplasms. The 
genes included in the study were selected from publicly 
available gene expression data sources, including tcga, and 
a literature review of PubMed. Unsupervised hierarchical 
clustering of our gene expression results delineated 3 mo-
lecular signatures, 1 highly specific for ptc, as previously 
demonstrated by tcga, and 2 relatively less-specific signa-
tures for follicular lesions and normal tissue.

FIGURE 1  (A) With inclusion of the entire 83-gene panel, heat-map analysis demonstrates unsupervised hierarchical clustering of papillary thyroid 
carcinoma (PTC), follicular thyroid carcinoma (FTC), normal thyroid, follicular variant of papillary thyroid carcinoma (FvPTC), and follicular adenoma 
(FA) samples. Columns show genes; rows show patient samples. Blue shows downregulation of gene expression; red shows upregulation of gene 
expression. (B) Principal component (PC) analysis including all 78 genes and all 84 samples. No significant separation between FTC, FA, and normal 
is observed, with PTC appearing molecularly distinct from those three categories, and FvPTC overlapping PTC and “not PTC.”

FIGURE 2  Three genes differentiate “normal” from “not normal.” For 
each diagnostic group comparison, a receiver operating characteristic 
analysis was performed for each individual gene. The top upregulated 
gene set [highest area under the curve (AUC)] is shown. Acc = accuracy; 
Sens = sensitivity; Spec = specificity.

FIGURE 3  SDC4 differentiates benign from malignant lesions. The 
top upregulated single-gene set is shown. AUC = area under the curve; 
Acc = accuracy; Sens = sensitivity; Spec = specificity; PPV = positive 
predictive value; NPV = negative predictive value.
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A 3-step classifier was able to improve the diagnosis 
of the other classes of thyroid neoplasms. Using the 3-step 
classifier approach based on selected genes, we were able 
to differentiate various tissue categories, including nor-
mal compared with abnormal; benign compared with 
malignant; and distinct malignant entities, including ptc, 
fvptc, and ftc. Three genes, SDC4, PLCD3, and PVRL4, were 
most informative in distinguishing normal from abnormal 
tissue with a sensitivity and specificity of 100%; SDC4 was 
most important for differentiating benign from malignant, 
with a sensitivity of 89% and a specificity of 92%. Various 
combinations of genes were required to classify specific 
thyroid neoplasms.

Many of the genes that we identified as being most 
discriminatory in our study have previously been shown 
by other authors to be of significance in this context. SDC4 
has been shown in various studies to be highly expressed 
in thyroid carcinoma compared with normal samples30–32. 
SLC4A4, which in our study showed significant differential 
expression between ftc and other types of cancers, has 
been used in a 15-gene set for differentiating benign from 
malignant samples in indeterminate cytology specimens33. 

That result is especially promising in the otherwise chal-
lenging histologic distinction between cases of ftc and 
fvptc. SLC4A4 could potentially serve as a distinguishing 
biomarker if validated as an immunohistochemical stain.

Our study demonstrates the potential utility of 
nCounter technology as an adjunct assay for clinical 
molecular diagnosis of thyroid neoplasms. NanoString is 
an innovative technique for the rapid digital assessment 
of gene expression that is amenable to in-house clinical 
implementation because of simplicity of use, efficient work-
flow, cost effectiveness, and user-friendly bioinformatics 
analysis. The successful analysis of 84 from among 95 of 
our archival ffpe samples (88%) demonstrates the robust-
ness and efficacy of the technique for surgical pathology 
specimens. To date, the complexity of other methods for 
gep, such as dna microarrays and rna sequencing, present 
significant challenges for the widespread clinical labora-
tory adoption of such techniques as an ancillary in-house 
assay. Gene-expression profiling using NanoString is amen-
able to in-house implementation by smaller laboratories 
with limited resources. In a number of disease entities, 
gep has been adopted clinically for diagnostic, predictive, 

FIGURE 4  Top upregulated gene sets differentiate specific thyroid neoplasms from others: (A) 13 genes differentiate papillary (P) thyroid carcinoma 
from other malignancies (OM); (B) 3 genes differentiate the follicular variant of papillary (FVP) thyroid carcinoma from other malignancies (OM); and 
(C) 1 gene differentiates follicular (F) thyroid carcinoma from other malignancies (OM). AUC = area under the curve; Acc = accuracy; Sens = sensitivity; 
Spec = specificity; PPV = positive predictive value; NPV = negative predictive value.

A B C

FIGURE 5  Top upregulated gene sets differentiate specific thyroid neoplasms from others: (A) 7 genes differentiate papillary (P) from follicular (F) 
thyroid carcinoma; (B) 2 genes differentiate classical papillary (P) thyroid carcinoma from the follicular variant of papillary (FVP) thyroid carcinoma; 
(C) 9 genes differentiate the follicular variant of papillary (FVP) thyroid carcinoma from classical follicular (F) thyroid carcinoma. AUC = area under 
the curve; Acc = accuracy; Sens = sensitivity; Spec = specificity; PPV = positive predictive value; NPV = negative predictive value.

A B C
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and prognostic indications, including determining the cell 
of origin in diffuse large B-cell lymphoma and identifying 
the primary site of tumours of unknown origin34,35. And 
gep has also been demonstrated to be a useful prognostic 
and predictive tool in breast carcinoma36,37, brain38 and 
gastric cancers39, and melanomas40.

NanoString is particularly suitable for the highly de-
graded nucleic acid material derived from ffpe samples, 
which is the standard processing method used in the 
surgical pathology assessment of thyroid neoplasms. Our 
results demonstrate good sensitivity and specificity in 
thyroid diagnosis, but limitations of this preliminary study 
include the use of only a limited training-sample cohort. 
Thus, the performance characteristics of sensitivity and 
specificity have not been definitively established. More 
extensive validation in an independent validation cohort 
is required to establish the performance characteristics 
(including positive and negative predictive value) and to 
investigate use of the technique as both a “rule in” and a 
“rule out” test. To assess the clinical utility of our classifier 
assay in diagnostic pathology, the validation cohort should 
include diagnostically challenging cases and other reactive 
thyroid lesions such as Hashimoto thyroiditis.

CONCLUSIONS

Using the NanoString nCounter platform, we developed a 
3-step gene-expression classifier assay for the diagnosis of 
thyroid neoplasms. This classifier has potential utility in 
diagnostically challenging cases of thyroid lesions.
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