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ABSTRACT

We applied a learning methodology framework to assist 
in the threshold-based segmentation of non-small-cell 
lung cancer (nsclc) tumours in positron-emission 
tomography–computed tomography (pet–ct) imaging 
for use in radiotherapy planning. Gated and standard 
free-breathing studies of two patients were indepen-
dently analysed (four studies in total). Each study had 
a pet–ct and a treatment-planning ct image. The refer-
ence gross tumour volume (gtv) was identified by two 
experienced radiation oncologists who also determined 
reference standardized uptake value (suv) thresholds 
that most closely approximated the gtv contour on 
each slice. A set of uptake distribution-related attributes 
was calculated for each pet slice. A machine learning 
algorithm was trained on a subset of the pet slices to 
cope with slice-to-slice variation in the optimal suv 
threshold: that is, to predict the most appropriate suv 
threshold from the calculated attributes for each slice. 
The algorithm’s performance was evaluated using the 
remainder of the pet slices. A high degree of geometric 
similarity was achieved between the areas outlined by 
the predicted and the reference suv thresholds (Jac-
card index exceeding 0.82). No significant difference 
was found between the gated and the free-breathing 
results in the same patient. In this preliminary work, we 
demonstrated the potential applicability of a machine 
learning methodology as an auxiliary tool for radiation 
treatment planning in nsclc.
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1.	 INTRODUCTION

Lung cancer represents a major public health problem. 
Canadian Cancer Statistics estimated that 14% of the 

approximately 166,400 new cases of cancer in 2008 
would be new lung cancer cases 1. Worldwide, lung 
cancer continues to be the leading cause of cancer-
related mortality in men and women alike 2. Several 
potential treatments are currently available for lung 
cancer, including surgery, chemotherapy, and radio-
therapy, but outcomes are generally poor, with a 5-year 
overall survival of only approximately 15% 3,4.

Current-day radical radiotherapy treatment con-
sists of three-dimensional (3D) conformal delineation 
of the tumour volume based on the 3D computed 
tomography (ct) image. Positron-emission tomog-
raphy (pet) 5–7 is already recognized as a valuable 
diagnostic technique in lung cancer, with higher sen-
sitivity and specificity than ct provides 8–10; however, 
the role of pet in radiation treatment planning is not 
as well established. A number of publications have 
already demonstrated that including pet imaging in 
the process of tumour volume definition often alters 
the result 8–13.

The delineation of the tumour volume in tomo-
graphic images is performed by a radiation oncolo-
gist. This process is not only time-consuming, it is 
also prone to inter- and intra-observer variability. 
The development of a computerized delineation tool 
that would be able to assist a radiation oncologist by 
providing a “second reader” opinion (and possibly 
substituting for a radiation oncologist in the future) 
is therefore greatly wanted.

Several threshold-based algorithms have been 
proposed for the automatic delineation of lung cancer 
in pet images 14–19, but none of these algorithms has 
proved to be robust enough for routine use 11,20. The 
proposed algorithms suggest that the optimal suv 
threshold is usually a linear function of 1–2 attributes 
of the pet image, such as the mean suv of background 
tissue and the maximum suv observed in the image 
(SUVmax).

In the present work, we addressed the automated 
delineation of lung cancer in pet images as a more 
complex problem that probably cannot be appro-
priately reflected by a linear combination of 1–2 
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attributes. Specifically, as compared with the forego-
ing algorithms, we proposed to base the calculation of 
the optimal thresholds on richer information (“attri-
butes”) extracted from pet images, and to use a more 
flexible machine learning methodology to generate a 
non-linear dependency between the optimal thresh-
olds and the attributes.

2.	 PATIENTS AND METHODS

Our study was approved by the research ethics board 
of our institution.

2.1	 Patients and Data

We analyzed data for two patients, where each pa-
tient had both a free-breathing and a gated study. 
Each study comprised three images: 18F-fluorodeox-
yglucose (18fdg)–pet and ct images obtained using 
a Philips Gemini pet/ct scanner (Philips Medical 
Systems, Andover, MA, U.S.A.), and a treatment 
planning ct image acquired on a Philips Brilliance 
ct scanner (Philips Medical Systems). A single bed 
position was used for the gated pet images (thorax 
area only; resolution: 144×144  voxels; voxel size: 
4×4×4  mm). The free-breathing pet images were 
acquired using multiple bed positions covering the 
whole body at the foregoing resolution and voxel 
size. However, only the axial slices corresponding 
to the thorax were used for the present work. The 
free-breathing pet imaging started 90 minutes after 
18fdg injection and was immediately followed by the 
corresponding gated imaging (approximately 120 
minutes post 18fdg injection).

2.2	 Data Preparation: Attributes and Reference 
Thresholds

For each study, the reference gross tumour volume 
(gtv) was identified by two experienced radiation 
oncologists based on the corresponding three spatially 
registered images (pet–ct and treatment ct). The 
mean suv inside the 70% SUVmax 3D contour was 
also calculated (SUV70).

The pet slices containing the tumour and eight 
adjacent tumour-free slices were extracted. Each of 
these pet slices was next assigned a reference suv 
threshold and a set of attributes: For each tumour-
containing slice, the threshold that most closely 
approximated the corresponding gtv contour was 
used as the reference suv threshold. The definition 
of these thresholds was performed by radiation on-
cologists, because they take into account not only the 
geometric similarity, but also other criteria (anatomic 
information and so on). For each tumour-free slice, 
the maximum suv of that slice was used as the refer-
ence suv threshold.

Several articles that compared and reviewed 
threshold-based tumour delineation algorithms 

suggested that (other things being equal) contrast-
oriented algorithms should be used 10,15. The algo-
rithm proposed in Nestle et al. 15 defines the optimal 
threshold value as 0.15×SUV70 over the mean 
background suv uptake, arguing that SUV70 is less 
subject to image noise than is SUVmax. Our obser-
vations have shown that the contours produced by 
thresholds lower than 0.1×SUV70 normally include 
both the tumour and the surrounding background tis-
sue, whereas the contours produced with thresholds 
higher than 0.2×SUV70 normally only partially cover 
the tumour. On the other hand, some studies suggest 
that the optimal threshold values can vary with target 
volume and cross-sectional area 18. In line with the 
foregoing considerations, we calculated the following 
6 attributes for each pet slice:

●	 The area and mean suv inside the 0.1×SUV70 contour
●	 The area and mean suv inside the 0.15×SUV70 contour
●	 The area and mean suv inside the 0.2×SUV70 contour

Figure 1 presents an example of the foregoing con-
tours. In other words, we propose to describe the dis-
tribution of suv in the given slice not by considering 
the SUV70 value only, but by considering the more 
informative interplay between the uptake and the size 
of the following three nested areas: the tumour and 
surroundings (0.1×SUV70 contour), approximately 
the tumour (0.15×SUV70 contour), and the hottest part 
of the tumour (0.2×SUV70 contour). Our experiments 
have shown that using these three contours—rather 
than 0.15×SUV70 alone—leads to a 2%–4% increase 
in the method’s performance.

2.3	 Algorithm Training

Using the machine learning terminology, our 6 attri-
butes represent the “feature vector.” The correspond-
ing reference suv threshold represents the dependent 

0.1*SUV70

0.15*SUV70

0.2*SUV70

0.7*SUVmax
(cross-section)

SUV70 = mean SUV inside                 
the 3-D 0.7*SUVmax contour

figure 1  An example of the contours discussed in “2.2 Data Prepa-
ration.” Please refer to the text for more details. suv = standardized 
uptake value; suvmax = maximum suv.



43
Current Oncology—Volume 17, Number 1

PET-BASED DEFINITION OF LUNG CANCER

variable, here called the “label.” If, for some pet 
slice, both the feature vector and the correspond-
ing label are known, then that features–label pair is 
called a “labelled instance”—that is, an instance of 
the relationship between the dependent variable and 
the features. The objective of the training process is 
to reflect (“learn”) this relationship from a number 
of labelled instances—the “training set.” Once the 
relationship is learned, it can be used to predict the 
labels for new feature vectors that are different from 
the ones used for training. In essence, pet slices from 
the training set are used to train the algorithm to pre-
dict the best threshold based on the slice attributes. 
Once the algorithm is trained, it can be used to predict 
the best threshold on new pet slices. Figure 2 sum-
marizes this process.

The learning algorithm used for this work be-
longs to the family of “support vector machines” 
(svms) 21. These are relatively new algorithms based 
on the results of statistical learning theory 21, which 
has demonstrated excellent results in a wide range of 
applications. Namely, we used μ-svm for regression 
estimation with Gaussian kernel and with the model 
selection performed by a fivefold cross-validation 
on a logarithmic grid of hyperparameters. (Further 
details go beyond the scope of this journal and its 
audience. The interested reader is referred to Vap-
nik’s The Nature of Statistical Learning Theory 21 and 
Smola and Schölkopf’s “Tutorial on support vector 

regression” 22.) All the experiments were performed 
using Matlab scripts (version 7.0.1 R14: The Math-
works, Natick, MA, U.S.A.) developed in house and 
a Matlab interface of the publicly available libsvm 
library (Chih-Jen Lin, National Taiwan University).

Each study of each patient was analyzed separate-
ly and independently. The pet slices were randomly 
divided into two groups (75% and 25% of slices). The 
labelled instances obtained from the first group of 
slices were used to form a training set, which was then 
used to train the algorithm. The instances obtained 
from the remaining 25% of slices were used to form 
a “test set” (hidden during the training process and 
preserved to evaluate the performance of the trained 
algorithm). This random splitting was repeated 5 
times, resulting in 5 different pairs of training and test 
sets, each of which was used for training and subse-
quent evaluation of 5 different svms. The 5 evaluation 
results were then averaged. Table i summarizes the 
characteristics of the various datasets.

2.4	 Results Evaluation

The two measures used to evaluate the results [on a 
test set—see Figure 2(b)] were these:

●	 The correlation coefficients between the reference 
thresholds and those predicted by the algorithm 
were calculated.
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figure 2  A summary of algorithm training and performance evaluation. (a) A subset of positron-emission tomography (pet) slices is used 
to train the algorithm. For each slice, 6 attributes (the “feature vector”) are calculated, and the reference threshold (“label”) is manually 
assigned by two radiation oncologists. Together, a feature vector and a label form a “labelled instance” (row in the table), and a set of such 
instances obtained from the selected subset of pet slices forms the “training set” (the table). During the training process, a learning algorithm 
uses the training set to learn how the label (the threshold) depends on the feature vector (the 6 attribute values). (b) Later, when given a new 
pet slice (from a “test set”), the 6 attributes are calculated and sent to the trained predictor, which returns the corresponding threshold. To 
evaluate the performance of the predictor, two radiation oncologists manually assign the reference threshold for this specific pet slice. Refer-
ence and predicted thresholds are then compared to evaluate the quality of the predictor. suv = standardized uptake value.
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the results obtained, and Figure 5 presents several 
examples of contours.

For illustrative purposes, a previously published 
contrast-oriented algorithm 15 was also applied to con-
tour the tumours on the test set slices (two rightmost 
columns of Table  ii). Because of fundamental dif-
ference between that algorithm and the svm-based 
algorithm, these two sets of results should not be 
directly compared. In the present work, we applied the 
svm-based algorithm in an intra-patient fashion, with 
both the training set and the test set being obtained 
from the same pet image as described in “2. Patients 
and Methods.” In our approach, some knowledge 
about the pet image has to be provided by a radiation 
oncologist (in the form of the training set) to train the 
svm-based algorithm before the contouring proceeds. 
In contrast, prior knowledge of this kind is not re-
quired for the contrast-oriented algorithm.

Table  ii also demonstrates better results for the 
second patient. One of the possible explanations is 
that the second patient had a bigger tumour, occupying 
about 30% more pet slices (see Table i), resulting in a 
bigger training set and, hence, better training. (Learn-
ing performance typically improves with the number 
of instances 21.) No significant difference was found 
when the results of the gated and the free-breathing 
studies in the same patient were compared.

A single prominent peak is observable on the 
histogram for the gated study (Figure 4, left panel), 
which is not the case for the corresponding free-
breathing study. This observation also holds true for 
the suv thresholds in patient 1. The exact mechanism 
of this phenomenon is unclear; it may be attributable 
to the presence or absence of respiratory motion or to 
different 18fdg post-injection times for the gated and 
the free-breathing studies.

4.	 DISCUSSION

The methods for pet-based gtv definition of lung can-
cer can be broadly divided into two groups. The first 

table i  Summary of data sets

Patient Study type N N+ N– Ntrain Ntest

  1 Gated 32 24 8 24 8
Free-breathing 27 19 8 20 7

  2 Gated 41 33 8 30 11
Free-breathing 39 31 8 29 10

N = total number of slices extracted for the given patient and study; 
N+ = number of slices containing tumour; N– = number of tumour-
free slices; Ntrain = number of slices used to form the training set 
(randomly selected from N slices); Ntest = number of slices used to 
form the test set (N – Ntrain slices).

AR

J =
n. of voxels in

n. of voxels in

figure 3  An illustration of how the Jaccard similarity coefficient 
(J) for two regions (A and R) is determined.

●	 The quality of the results was evaluated in terms of 
geometric similarity of the regions contoured with 
the reference thresholds, and the regions outlined 
by the algorithm-predicted thresholds. To this end, 
a Jaccard similarity coefficient was calculated:

J = |RA| / |RA|	 [1],

where R and A stand for the regions contoured by 
the reference and algorithm-predicted thresholds, 
respectively; |RA| is the number of voxels that R 
and A have in common; and |RA| is the number 
of voxels belonging to either R or A (that is, in 
only R, or in only A, or in R and A together).

The Jaccard index is equal to zero when two re-
gions have no common area and equal to unity when 
the regions match perfectly. Figure 3 presents an il-
lustrative example of a Jaccard index calculation.

3.	 RESULTS

Figure 4 shows the slice-to-slice variation of refer-
ence suv thresholds for patient 2. Table ii summarizes 

table ii	 Summary of the results

Patient Study type Correlation Jaccard Jaccard
(ref. vs. svm) (ref. vs. svm) (ref. vs. co)

  1 Gated 0.72 0.82 0.60
Free-breathing 0.69 0.82 0.61

  2 Gated 0.77 0.96 0.73
Free-breathing 0.86 0.96 0.81

ref. vs. svm  = comparison of the reference data with the results 
obtained using the support vector machine–based algorithm 
(correlation coefficient between the threshold values, and geometric 
similarity coefficient between the delineated regions); ref. vs. co = 
comparison of the reference data with the results obtained using 
the contrast-oriented algorithm 15 (geometric similarity coefficient 
between the delineated regions).
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figure 4  The histograms for reference standardized uptake value (suv) thresholds: patient 2, free-breathing study (left) and gated study (right).

figure 5  Segmentation examples in the gated pet (left: patient 1; right: patient 2). Green contour = gross tumour volume (gtv); blue con-
tour = region contoured by the reference standardized uptake value (suv) threshold; dashed red contour = region contoured by the support 
vector machine–based algorithm prediction using the suv threshold.
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group aims to define the gtv by searching for some 
“inhomogeneity” throughout the pet image. Although 
there are some interesting examples from this group, 
such as gradient-based (watershed) methods 23,24 and 

a multimodal generalization of level set method 25, 
they are not as well established or as frequently 
cited in current reviews as are the methods from the 
second group. The second group aims to define the 
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optimal suv threshold so as to delineate the gtv. These 
approaches include using a fixed suv (for example, 
2.5) or a fixed percentage of suvmax (for example, 
40%). Other more sophisticated contrast-oriented ap-
proaches to determining the optimal threshold include 
mean target suv versus mean background suv, source-
to-background ratio, or the interplay of a target size 
and target-to-background contrast 14–19.

Our approach falls into the second group, with 
two important distinctions. First, the optimal suv 
threshold definition is based on a richer set of at-
tributes calculated for the pet images. Secondly, we 
used an “adaptable” machine learning algorithm ca-
pable of approximating data in a complex nonlinear 
way to define the optimal suv threshold based on the 
established attributes.

The two threshold contours (reference and pre-
dicted) in Figure 5 look very similar; however, this 
similarity does not guarantee high similarity between 
them and the gtv. For example, both the predicted and 
the reference region in the upper leftmost panel are 
composed of two contours, whereas the correspond-
ing gtv is a single contour, including some additional 
area. The explanation of this observation has two 
aspects: First, the radiation oncologist uses all the 
available material and continuously references the ct 
and the pet images during the process of gtv delinea-
tion. In contrast, a pet delineation process is based on 
the pet information only. Second, there is a limitation 
inherent in any approach based on suv thresholding. 
A radiation oncologist can assign the gtv nearly any 
imaginable shape, but the shape provided by any suv 
threshold is fixed. Therefore, choosing from a set of 
thresholds is equivalent to choosing from a set of 
fixed shapes, and sometimes (as in case of the upper 
leftmost panel of Figure 5), none of these fixed shapes 
resembles the manually drawn gtv closely enough. 
That is, even when performed in the best possible 
way, the threshold-based delineation of pet images 
is not necessarily sufficient, by itself, to define gtv; 
nonetheless, pet definition is helpful as an adjunct to 
target definition by the radiation oncologist.

Much effort has bseen made in this research to gen-
erate data samples of high quality, so that the results ob-
tained could be attributed to the algorithm used rather 
than to some unwanted artefacts of data preparation. 
To this end, three tomographic images were thoroughly 
reviewed by the consensus of two experienced radiation 
oncologists for each study. This commitment to data 
quality (rather than quantity) and the associated time 
demand explain a rather moderate number of studies 
analyzed in the present work. We then used an intra-
patient scenario, in which some initial input from a 
radiation oncologist (in the form of a training set) was 
required for each study to train the algorithm before it 
could process the remaining slices of the image. The 
results obtained for this intra-patient scenario encour-
age us to proceed further toward our ultimate goal: 
a standalone delineation system that will not require 

any initial input from a physician. This goal implies 
using an inter-patient scenario, in which an algorithm 
is trained on a substantial number of representative 
studies. As a result, the data preparation process would 
need to be automated. We are currently exploring these 
challenges and analyzing the diagnostic and radiation 
treatment databases available at our institution.
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