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Abstract: Hydroquinone (1,4-benzenediol) has been widely used in clinical situations and 

the cosmetic industry because of its depigmenting effects. Most skin-lightening 

hydroquinone creams contain 4%–5% hydroquinone. We have investigated the role of 

resveratrol in prevention of hydroquinone induced cytotoxicity in mouse primary 

hepatocytes. We found that 400 µM hydroquinone exposure alone induced apoptosis of the 
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cells and also resulted in a significant drop of cell viability compared with the control, and 

pretreatment of resveratrol to a final concentration of 0.5 mM 1 h before hydroquinone 

exposure did not show a significant improvement in the survival rate of the hepatocytes, 

however, relatively higher concentrations of resveratrol (≥1 mM) inhibited apoptosis of the 

mouse primary hepatocytes and increased cell viability in a dose-dependent manner, and in 

particular the survival rate of the hepatocytes was recovered from 28% to near 100% by  

5 mM resveratrol. Interestingly, pretreatment with resveratrol for longer time (24 h), even 

in very low concentrations (50 µM, 100 µM), blocked the damage of hydroquinone to the 

cells. We also observed that resveratrol pretreatment suppressed hydroquinone-induced 

expression of cytochrome P450 2E1 mRNA dose-dependently. The present study suggests 

that resveratrol protected the cells against hydroquinone-induced toxicity through its 

antioxidant function and possibly suppressive effect on the expression of cytochrome  

P450 2E1.  

Keywords: resveratrol; hydroquinone; cytotoxicity prevention; CYP 2E1; primary culture 

of mouse hepatocytes 

 

1. Introduction 

Hydroquinone (1,4-benzenediol, Figure 1), a benzene-derived metabolite, has been widely used in 

clinical situations and the cosmetics industry because of its depigmenting effect through its influence 

upon melanocyte metabolism [1,2]. Most skin-lightening hydroquinone creams contain 4%–5% 

hydroquinone [3]. The U.S. Food and Drug Administration (FDA) has reported that even low 

concentrations (1%–2%) of hydroquinone can cause exogenous ochronosis [4] and has proposed a ban 

on over-the-counter (OCT) hydroquinone. The European Committee has banned the use of 

hydroquinone in cosmetics in 2001 and only physicians and dermatologists can prescribe the 

hydroquinone formulations (24th Directive 2000/6/EC). Previous studies have demonstrated DNA 

damage induced by hydroquinone via generation of reactive oxygen species (ROS) [5–9], and 

hydroquinone-induced carcinogenicity was observed in both mice and rats [10].  

Figure 1. Chemical structure of hydroquinone. 

HO OH

 

Resveratrol (trans-3,5′,4-trihydroxystilbene, Figure 2) is one of the naturally occurring polyphenols 

found in the skins of red grapes and some plants, and it is capable of promoting the activities of many 

antioxidant enzymes and inhibiting free radical-mediated cellular processes [11]. The potential role of 

resveratrol in cancer prevention [12] and antiaging activity in Drosophila melanogaster and 

Caenorhabditis elegans [13] have been noticed. Leone et al. reported that the anticancer effect of 
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resveratrol is exerted by acting as a topoisomerase II poison in proliferating cells to induce DNA 

double-strand breaks [14]. The present study used mouse primary hepatocytes to examine the effect of 

resveratrol on hydroquinone-induced cytotoxicity. 

Figure 2. Chemical structure of resveratrol. 

 

2. Methods  

2.1. Chemicals 

Resveratrol, hydroquinone, kanamycin sulfate, insulin, dexamethasone sodium phosphate, ethylene 

glycol tetraacetic acid (EGTA), collagenase, and kanamycin sulfate, were purchased from Wako Pure 

Chemical Industries (Osaka, Japan). The cell counting kit (WST-8) was from Dojindo Company 

(Osaka, Japan). All other chemicals were obtained from Sigma Chemical Co. (St. Louis, MO, USA) 

unless otherwise mentioned. 

2.2. Mouse Hepatocyte Isolation and Primary Culture  

Adult male mice (C3H/AnL) were used in this study. They were anaesthetized intraperitoneally 

with 9 μL/g body weight of pentobarbital sodium (10% in PBS) and then the liver was first perfused at 

37 °C with EGTA at a flow rate of 5.5 mL/minute for 10 minutes and thereafter with collagenase at the 

same flow rate for 15 minutes as described previously [15]. The yield of isolated hepatocytes was 

determined with a hemocytometer, and their viability was evaluated with the standard trypan blue 

exclusion method. The viability of the isolated hepatocytes was around 90%, The isolated hepatocytes 

(5 × 106) were seeded into 100-mm-diameter plates or 96-well plates containing serum free hepatocyte 

growth medium (HGM) (Block 1996, Miyazaki 2002) supplemented with 1 μM insulin, 1 μM 

dexamethasone sodium phosphate, 0.1 mg/mL kanamycin sulfate, and allowed to attach for 24 h 

before used in the experiments. 

2.3. Cell Viability Assay  

Primary hepatocytes seeded into 96-well plates at a density of 1.2 × 104 per well were used to 

evaluate the cytotoxic effect of hydroquinone and the preventive effect of resveratrol. Hydroquinone 

was added to the cells to final concentrations of 0.4 mM and incubated at 37 °C for 2 h. Resveratrol 

(final concentrations 0.5 mM, 1 mM, 5 mM, respectively) was added to the cells 1h before the addition 

of hydroquinone and was contained throughout the experiments. Cell viability was determined using 

OH 

HO 

OH 
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the WST-8 assay, based on the reduction of the tetrazolium salt to a water-soluble formazan product by 

the cellular dehydrogenase [16]. Absorbance was measured at 450 nm (VERSAmax microplate 

reader). The viability was expressed as a percentage of cell survival in the negative control group 

based upon the following formula: Survival (%) = (Absorbance of sample – Absorbance of 

blank)/(Absorbance of negative control – Absorbance of blank). At least three tests were performed in 

each experiment. 

2.4. Measurement of Hydroquinone-Induced Apoptosis 

Primary hepatocytes seeded into 6-well plates at a density of 5.6 × 105 per well was exposed to final 

concentrations from 0.1 mM to 0.4 mM of hydroquinone for 48 h on triplicate plates relative to 

control, then the cells were stained with Hoechst 33342 at 5 µM of final concentration (Sigma 

Chemical Co., St. Louis, MO, USA) for 10 min and observed under the fluorescence microscope [17]. 

The chromatin condensation was expressed as a percentage of the total nuclei in the same field.  

2.5. Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) 

Total RNA of primary hepatocytes was extracted with ISOGEN (Nippon Gene, Tokyo, Japan).  

RT-PCR was performed using TaKaRa RNA PCR kit AMV ver. 3.0 with oligo-dT primers according 

to the manufacturer’s instructions. Primers used for RT-PCR analysis of cytochrome P450 2E1 

(CYP2E1) were 5′-TCCCTAAGTATCCTCCGTGA-3′ and 5′-GTAATCGAAGCGTTTGTTGA-3′. 

PCR amplification was performed for 35 cycles (30 s at 93.5 °C for denaturation, 30 s at 55 °C for 

annealing, and 30 s at 71.7 °C for extension) in a final volume of 10 μL with 100 ng of cDNA, 200 nM 

primers, and 0.05 U/mL LA Taq DNA polymerase under the conditions recommended by the 

manufacturer (TaKaRa Biochemicals, Tokyo, Japan). PCR products were electrophoresed on 2.0% 

agarose gel and stained with ethidium bromide. The intensity of bands was quantified by the ImageJ 

software (National Institutes of Health, Bethesda, MD, USA) and data are expressed as the ratio of 

CYP2E1 mRNA to β-actin mRNA. 

2.6. Statistical Analysis 

Comparisons in the effect of resveratrol on hydroquinone-induced cytotoxicity and the expression 

of CYP 2E1 mRNA were performed using a one-way analysis of variance (one-way ANOVA) 

followed by the multiple comparisons, using a Windows version SPSS 15.0 statistical program 

package (SPSS Inc., Chicago, IL, USA). 

3. Results and Discussion 

3.1. Resveratrol Inhibited Hydroquinone-Induced Apoptosis in Mouse Primary Hepatocytes 

Figure 3 shows that 48 h exposure to hydroquinone induced cell shrinkage, chromatin condensation, 

and nuclear fragmentation in mouse primary hepatocytes. Exposure to 100 µM hydroquinone caused 

2.5 times of chromatin condensation in comparison with the control (data not shown). However, no 

dose-dependent response was observed. Hydroquinone induced apoptosis was markedly decreased in 
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the cells by resveratrol pretreatment (1 h before hydroquinone exposure), particularly by 1 mM of 

resveratrol pretreatment. 

Figure 3. Fluorescence microscope images of hydroquinone-untreated (a) or treated (b) 

hepatocytes stained by Hoechst 33342. In comparison with the negative control (a), 48 h 

treatment of hydroquinone (b) caused morphological shrinking in hepatocytes, and 

apoptotic bodies and chromatin condensation were formed (indicated by arrows). 

Pretreatment by (c) 0.5 mM or (d) 1 mM of resveratrol 1 h before hydroquinone exposure 

inhibited hydroquinone-induced apoptosis. 

         
(a)             (b)           (c)     (d) 

 

Some researchers have found that hydroquinone caused apoptosis in human neutrophils, 

eosinophils, lymphocytes, HL-60, and Jurkat cells through both caspase-dependent and independent 

mechanisms [18–20]. Our findings were supported by these reports. Inayat-Hussain et al. indicated 

that both caspase-dependent and independent mechanisms should be considered in the intrinsic 

apoptotic pathway induced by hydroquinone [18]. Recently, Lee et al. reported that hydroquinone 

induced apoptosis in human by activating caspases 9/3 through caspase 9/3 pathway [20]. Zheng et al. 

found that resveratrol pretreatment significantly reduced H2O2 induced apoptosis in human lens 

epithelial cells [21]. Our study also proved that hydroquinone could cause apoptosis in mouse primary 

hepatocytes and pretreatment of resveratrol is capable of protect the cell against it. 

3.2. Resveratrol Inhibited Hydroquinone-Induced Cytotoxicity 

Figure 4 demonstrates that 400 µM hydroquinone exposure alone resulted in a significant drop of 

cell viability compared with the control. The addition of resveratrol to a final concentration of 0.5 mM 

1 h before hydroquinone exposure did not show a significant improvement in survival rate of the 

hepatocytes, however, 1 mM or 5 mM of resveratrol treatment before hydroquinone exposure 

increased cell viability in a dose-dependent manner, and in particular the survival rate of the 

hepatocytes was recovered from 28% to near 100% by 5 mM resveratrol treatment. Interestingly, 

pretreatment with resveratrol for longer time (24 h) even in very low concentrations (50 μM, 100 μM), 

blocked the damage of hydroquinone to the cells. 
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Figure 4. Effect of resveratrol on hydroquinone-induced hepatocyte toxicity.  

(a) Hydroquinone (0.4 mM) was exposed to the cells for 2 h at 37 °C. Resveratrol was 

added to the cells 1 h before hydroquinone exposure and was contained throughout the 

experiments. (b) Longer time of resveratrol pretreatment (24 h) at lower concentrations. 

Data are expressed as mean  SD (n  6). Comparisons in effect of the resveratrol on 

hydroquinone-induced cytotoxicity among concentrations were performed using a one-way 

ANOVA followed by Tukey’s multiple comparisons. * p < 0.05, ** p < 0.01. 

(a) 

        (a 

 

 

 

 

 

 

 

 

 
 

Hydroquinone        –                         +                         +                         +                       + 

Resveratrol            –                         –                     0.5 mM               1.0 mM               5.0 mM 
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Hydroquinone       –                           +                           +                            +              

Resveratrol            –                           –                      0.05 mM                0.1 mM  

 

It has been reported that hydroquinone-induced cytotoxicity was accompanied by ROS formation, 

particularly H2O2 formation [6,7,22]. An imbalance between cellular antioxidant defense capacity and 

ROS level could induce or suppress the expression of many genes [23]. Resveratrol is known to be 

capable of either scavenging free radicals directly or exhibiting antioxidant capacity indirectly through 

inducing antioxidant and detoxifying enzymes [11,21,24]. Zhang et al. found that resveratrol could 

activate the antioxidant transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) that 

0

20

40

60

80

100

120

140

C
e

ll 
vi

a
b

ili
ty

 (
%

)

**

*

*
**

0

20

40

60

80

100

120

C
el

l v
ia

bi
lit

y 
(%

)

** **



Int. J. Environ. Res. Public Health 2012, 9         

 

 

3360

involves the increased expression of many antioxidant and detoxifying genes like NAD(P)H:quinone 

reductase-1, and heme oxygenase-1 and the maintenance of the cellular redox homeostasis [25]. The 

work by Ungvari et al. demonstrated that resveratrol treatment prevent the endothelial cells against 

increase in intracellular H2O2 and H2O2-mediated apoptotic cell death induced by xenobiotics [26]. In 

the present study, pretreatment with either higher concentrations of resveratrol (≥1 mM) for 1 h or 

lower concentrations (50 μM, 100 μM) for longer time (24 h) markedly inhibited hydroquinone 

cytotoxicity and increased the cell viability. The former might imply a direct radical scavenging by 

resveratrol; the later possibly indicates an induction of antioxidant and detoxifying enzymes, which 

increases cellular oxidative stress resistance. 

Several works also demonstrated that in vivo resveratrol could increase mitochondrial complexes in 

skeletal muscle, liver, and blood vessels [27–29]. It is known that the mitochondrion, the energy-

converting organelle of eukaryotes, is often the target for toxic compounds [30]. Mitochondrial 

biogenesis is suggested to be involved in the regulation of cellular metabolism, redox regulation, and 

signal transduction [31]. The present study detected cell viability using WST-8 cell counting kit, based 

on the reduction of the formazan dye by the cellular dehydrogenase, in which NAD(H), NADP(H), and 

mitochondrial activity are also involved [16]. The increased survival by resveratrol pretreatment in the 

present study might also imply that resveratrol might protect the cells against hydroquinone-induced 

cytotoxicity through enhanced mitochondrial biogenesis.  

Figure 5. The effect of resveratrol on the expression of CYP2E1 mRNA in mouse primary 

hepatocytes exposed to hydroquinone. (a) Comparison of the expression of CYP2E1 

mRNA among each treatment groups. (b) Comparison of the ratio of CYP2E1/β-actin 

mRNA among each treatment groups. Data were analyzed by one-way ANOVA followed 

by Tukey’s multiple comparisons. * p < 0.05, ** p < 0.01. 

(a) 
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3.3. Resveratrol Suppressed Hydroquinone-Induced Expression of CYP2E1 mRNA  

We further observed how resveratrol treatment could affect metabolic enzyme cytochrome P450 

2E1 expression that is responsible for the metabolism of many oxidative xenobiotics [32]. We found 

that relative to untreated primary hepatocytes, 2 h hydroquinone exposure showed an increase in 

CYP2E1 mRNA level (Figure 5), whereas 1 h pretreatment of various concentrations of resveratrol 

before hydroquinone exposure to the cells suppressed the expression of CYP2E1 mRNA in  

dose-dependent manner (p for Trend: 0.001). In particular, the pretreatment of 5 mM resveratrol 

markedly downregulated hydroquinone-induced CYP2E1 mRNA level.  

Cytochrome P450 2E1 is one of the phase I xenobiotics metabolizing enzymes and it can generate 

ROS as byproducts after being bioactivated [33,34]. An elevated expression of CYP 2E1 mRNA in 

primary hepatocytes after hydroquinone exposure and a decreased expression of this enzyme when 

pretreated the cells with resveratrol in our study probably imply that resveratrol could effectively 

modulate hydroquinone-induced cytotoxicity through its antioxidant activity and suppressive effect on 

the expression of CYP 2E1. Our result of inhibitory effect of resveratrol on CYP 2E1 expression was 

consistent with the one by Piver et al. [35].  

4. Conclusions  

The present results demonstrated that resveratrol protected hepatocytes against hydroquinone 

toxicity and suppressed hydroquinone-induced expression of CYP 2E1 mRNA in a dose-dependent 

manner. These findings suggest that resveratrol protected the cells against hydroquinone-induced 

toxicity through its antioxidant function and possibly suppressive effect on the expression of CYP 2E1.  

However, concerning the suppressive effect of resveratrol on the expression of CYP 2E1, further 

experiments are needed to reach a conclusion. 
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