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Abstract: In recent years, water quality degradation associated with rapid socio-economic 

development in the Taihu Lake Basin, China, has attracted increasing attention from both 

the public and the Chinese government. The primary sources of pollution in Taihu Lake are 

its inflow rivers and their tributaries. Effective water environmental management strategies 

need to be implemented in these rivers to improve the water quality of Taihu Lake, and to 

ensure sustainable development in the region. The aim of this study was to provide a basis 

for water environmental management decision-making. In this study, the QUAL2K model 

for river and stream water quality was applied to predict the water quality and 

environmental capacity of the Hongqi River, which is a polluted tributary in the Taihu 

Lake Basin. The model parameters were calibrated by trial and error until the simulated 

results agreed well with the observed data. The calibrated QUAL2K model was used to 

calculate the water environmental capacity of the Hongqi River, and the water environmental 

capacities of CODCr NH3-N, TN, and TP were 17.51 t, 1.52 t, 2.74 t and 0.37 t, respectively. 

The results showed that the NH3-N, TN, and TP pollution loads of the studied river need to 

be reduced by 50.96%, 44.11%, and 22.92%, respectively to satisfy the water quality 

objectives. Thus, additional water pollution control measures are needed to control and 

reduce the pollution loads in the Hongqi River watershed. The method applied in this study 

should provide a basis for water environmental management decision-making. 
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1. Introduction  

The Taihu Lake basin is located in the provinces of Jiangsu, Zhejiang, Anhui and Shanghai and has 

a total area of 36,900 km2. This basin is the core of the Yangtze River Delta region, which has a large 

population and developed economy. Rapid development of the economy in the drainage area since the 

1990s has resulted in increasing emissions of pollutants, which has accelerated deterioration of the 

water environment and eutrophication of the lake. In summer of 2007, a cyanobacteria bloom (the 

major species are Microcystis, Anabaena and Aphanizomenon of Cyanophyta) occurred in Taihu Lake 

and the chlorophyll-a concentrations of the water surface exceeding 100 ug/L in many areas resulted in 

the drinking water source for Wuxi being polluted. This incident affected the daily lives of nearly two 

million residents, leading to widespread concerns about water quality. From 2007 to 2010, the water 

quality of Taihu Lake was inferior to Grade V according to the water quality standards of China [1].  

In recent years, the water quality has remained at a level of moderate eutrophication [2,3] while the 

nitrogen levels have been higher than the standard, especially for ammonia nitrogen. The water pollution, 

together with deterioration of the water ecological environment has resulted in frequent cyanobacteria 

blooms occurring in Taihu Lake every year from 2007, which not only affects the drinking water source, 

but also directly challenges the safety of the water supply to cities in the watershed.  

The pollution load of the Taihu Lake basin is primarily from the inflow rivers, which account for 

more than 80% of the total [4]. Therefore, the key to protection of the water environment of Taihu 

Lake is interception of the pollutants that discharge into Taihu Lake from various sources. The rational 

use of water resources has become a very important national policy issue in recent years and great 

efforts have been made to develop water environmental management strategies to ensure good water 

quality and sufficient water supply [5–8]. In this respect, water quality modeling is increasingly 

recognized as an effective tool for water quality management decision-making [9].  

In recent decades, many water quality models have been developed for various types of water 

bodies. For example, Thayer et al. [10] applied a 3-dimensional model to analyze the changes of water 

quality in space. Spillman et al. [11] used a combined 3-dimensional hydrodynamic ecological model 

(ELCOM-CAEDYM) to elucidate the temporal and spatial variability of food supply to commercially 

valuable clam populations of Barbamarco Lagoon. Ning et al. [12] applied QUAL2E to assess the 

pollution prevention program for the Kao-Ping River Basin, Taiwan. Hao et al. [13] weighed up and 

distinguished the impact induced by climate change effects and human activities on stream flow 

changes in Xiliaohe River Basin using soil and water assessment model. In addition, QUAL2E has 

been applied in studies conducted by Ghosh, Drolc and Palmieri [14–16].  

Pelletier et al. [17] confirmed the flexibility and applicability of the QUAL2K model for simulation 

of river water quality. Some successful examples of QUAL2K have also been published in recent  

years [18–22], for instance, Fang et al. [23] applied the QUAL2K model to evaluate the spatial 

distribution of BOD in the Qiantang River, Zhang et al. [24] selected the optimal water quality 
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improvement program via simulation of various hypothetical scenarios using the QUAL2K model, so 

the QUAL2K model was chosen for the present study due to its popularity and ease of application. 

Trial and error [25,26] is a method of reaching a correct solution or satisfactory result by trying out 

various means or theories until errors are sufficiently reduced or eliminated. The trial and error method 

has been widely used in water quality models and has achieved good effects in recent years [27,28]. 

Thus, it is reasonable that trial and error be applied in the simulation processes of the QUAL2K model. 

The Hongqi River was selected for this study because river water is used for domestic water and it 

is typical in many tributaries of the Wujin River, which is one of the major inflow rivers of Taihu Lake 

(China). In this study, the results simulated by the QUAL2K model are compared with measured data 

for the Hongqi River. The objective of this study is to apply the QUAL2K model to calibrate the 

parameters of the Hongqi River, and then simulate the water environmental capacity of the Hongqi 

River in accordance with the water environmental management requirements. The pollution load 

reduction rate was then calculated to meet the water quality objectives, which provide a basis for 

watershed environmental management and water quality improvement. Finally, a tool for pollution 

control and environmental management of the river is produced with the goal of assisting in  

decision-making for better use of water resources and forecasting the impending damages caused by 

socio-economic factors.  

2. Material and Methods  

2.1. Study Area  

Wujin River is situated to the north of Taihu Lake. The river is 29 km long, about 2–3 m deep and 

25–30 m wide. The river flows into Meiliang Bay of Taihu Lake as the main river of the City of 

Changzhou and the Wujin District, as well as into Zhushan Bay through a tributary named Yapu River. 

Furthermore, Wujin River is the main waterway that connects Beijing-Hangzhou Grand Canal with 

Taihu Lake. Both Meiliang Bay and Zhushan Bay are important bays in Taihu Lake as sources of 

drinking water and tourist destinations. However, these bays are also the most seriously affected by 

cyanobacteria blooms in Taihu Lake. The water quality of Wujin River is generally inferior to the 

Grade V water quality standards of China [1]. The main pollutants in the river are nitrogenous 

nutrients and organic pollutants, among which total nitrogen and ammonia nitrogen greatly exceed the 

standard. Petroleum substances, dissolved oxygen and total phosphorus fail to meet the Grade IV water 

quality standards in some sections of the river. In recent years, the community has paid great attention 

to water pollution issues associated with the Wujin River.  

The Hongqi River was selected as the study area. It is one of the tributaries of the Wujin River 

located in the north of Taihu Lake. It runs 1.68 km between the Machi River in the west and the Wujin 

River in the east, and has an average width of 12.5 m, an average depth of 1.6 m, and an average 

annual flow velocity of 0.025 m/s. Primary sources of pollution include rural domestic sewage, 

industrial wastewater, farmland surface runoff, and solid waste pollution. The self-purification 

capability of the river is weak, partly because of the sewage emissions substantially exceed the 

purification capacity, and parts of the river are thus mildly eutrophic.  
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Figure 1. Study area and monitoring sites along the Hongqi River.  

 

The study object included 1.5 km of the Hongqi River, with a watershed of 1.30 km2 (Figure 1). 

The arable land in the area is about 0.47 km2, most of which is used for paddy and vegetable 

cultivation, while forest and fruit trees occupy less of this area. The river is an important water source 

for drinking, irrigation, industry and entertainment for nearly 1,300 people. About twenty years ago, 

the water from the Hongqi River was drinkable after simple processing; however, rapid socioeconomic 

development in the area has led to increased emissions of untreated wastewater and pollutants from 

domestic, industrial and agricultural processes, which has resulted in decreased water quality in the 

river. Compared with surface water quality standards, the water quality of the Hongqi River is 

generally below the Grade V water quality standards [1] and the primary factors in excess are 

ammonia nitrogen, total nitrogen and total phosphorus. 

2.2. Monitoring Sites and Data 

In this study, five points P1–P5 along the Hongqi River were selected as monitoring sites  

(Figure 1). The distances from the monitoring sites to the downstream boundary are shown in Table 1. 

Table 1. Monitoring sites along the Hongqi River. 

Monitoring sites P1 P2 P3 P4 P5 

Location (km) 1.37 0.94 0.63 0.33 0.03 

The monitoring was conducted under low flow velocity conditions. In addition, data were not 

collected in rainy days so that the results could be fit to the steady flow model QUAL2K. Monitoring 

was conducted from September to December 2009 in the winter season and March to June 2010 in the 

spring. The following water quality and hydraulic parameters were measured: water temperature, flow 

velocity, depth, dissolved oxygen (DO), chemical oxygen demand (COD), ammonia nitrogen (NH3-N), 

total nitrogen (TN), and total phosphorus (TP). 

The water samples were collected, preserved, conveyed and monitored in accordance with the 

methods described in the Technical Specifications Requirements for Monitoring of Surface Water [29] 

and Waste Water and Water Quality Sampling-Technical Regulation of the Preservation and Handling 
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of Samples [30]. The hydrodynamic and physical parameters, such as temperature, flow velocity and 

dissolved oxygen, were measured in the field [31]. Temperature and dissolved oxygen were monitored 

using portable sensors. Water velocity was measured using a current meter. Other parameters were 

measured in the laboratory. CODCr (the amount of oxygen required when use potassium dichromate 

oxidize the organic matter in 1 L sewage), ammonium nitrogen, nitrate nitrogen, total nitrogen and 

total phosphorus were determined using the Monitoring and Analytical Method on Water and 

Wastewater of China [32]. The monitoring work was conducted once a month and the average values 

of every four months are presented in Tables 2 and 3.  

Table 2. Water quality monitoring data of Hongqi River for winter 2009.  

Monitoring sites Temp (°C) 
DO 

(mg/L) 
CODCr 
(mg/L) 

NH3-N 
(mg/L) 

TN 
(mg/L) 

TP 
(mg/L) 

P1 9.62 6.05 25.72 1.91 5.99 0.34 
P2 9.40 5.76 24.34 1.86 5.52 0.31 
P3 9.66 5.62 24.10 1.92 5.46 0.29 
P4 9.93 5.68 23.99 1.93 5.37 0.29 
P5 9.69 5.46 22.80 1.89 5.32 0.30 

Table 3. Water quality monitoring data of Hongqi River for spring 2010.  

Monitoring sites Temp (°C) 
DO 

(mg/L) 
CODCr 
(mg/L) 

NH3-N 
(mg/L) 

TN 
(mg/L) 

TP 
(mg/L) 

P1 12.38 6.21 27.06 2.47 6.61 0.20 
P2 12.32 5.81 25.73 2.40 6.19 0.18 
P3 12.27 5.68 27.10 2.42 6.46 0.19 
P4 12.37 5.73 25.78 2.43 6.29 0.16 
P5 12.30 5.67 25.38 2.39 6.08 0.17 

Table 4. Water quality standards of surface water [1]. 

Grade CODCr (mg/L) BOD5 (mg/L) NH3-N (mg/L) TN (mg/L) TP (mg/L) 

Grade IV 30.0 6.0 1.0 1.5 0.3 
Grade V 40.0 10.0 2.0 2.0 0.4 

The monitoring results indicate that the water quality of Hongqi River decreases a little from 

upstream to downstream. Compared with the Grade IV water quality standards (Table 4), high 

concentrations of nitrogen, phosphorus and chemical oxygen demand are the primary problems 

associated with water quality in the Hongqi River watershed. In addition, because the flow velocity of 

the river is slow and the sewage emissions exceed the purification capacity a lot, mild eutrophication 

and high turbidity remains [33,34].  

2.3. QUAL2K Model 

QUAL2K is a one-dimensional river and stream water quality model that is an upgraded version of 

the QUAL2E model [35]. The QUAL2K framework, which was developed by the US Environmental 

Protection Agency, can simulate the migration and transformation of conventional pollutants. The 
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model considers the stream as a one-dimensional channel with steady flow that is non-uniform and 

considers the influence of point source and non-point source pollution loads. The model also imitates 

changes with a user-opted time step inside of an hour within the daily cycle. In addition to being 

widely applied for the environmental management of relatively large rivers [12,18,19], the framework 

model also has several new features that make it applicable to shallow, upland and other rivers. 

The QUAL2K framework includes the following new elements: QUAL2K uses unequally spaced 

reaches, and multiple loadings and withdrawals can be input to any reach. Denitrification is modeled as 

a first-order reaction that becomes pronounced under low oxygen concentrations. Sediment-water 

fluxes of dissolved oxygen and nutrients can be simulated internally rather than prescribed. That is, 

oxygen and nutrient fluxes are simulated as a function of settling particulate organic matter, reactions 

within the sediments, and concentrations of soluble forms in the overlying waters. The model 

explicitly simulates attached bottom algae. These algae have variable stoichiometry. Light extinction is 

calculated as a function of algae, detritus and inorganic solids. Both alkalinity and total inorganic 

carbon are simulated. QUAL2K allows the user to specify many of the kinetic parameters on a  

reach-specific basis [36].  

QUAL2K can simulate the migration and transformation of a wide variety of constituents including 

dissolved oxygen, temperature, biochemical oxygen demand, organic nitrogen, ammonia nitrogen, 

nitrate nitrogen, total nitrogen, sediment oxygen demand, organic phosphorus, inorganic phosphorus, 

total phosphorus, phytoplankton and algae. The illustrations and uses of this model are described in 

detail in the QUAL2K user’s manual [36]. The model can also simulate some other factors, including 

pH, alkalinity and pathogenic bacteria. Overall, the bottom algae are indispensable for imitating 

shallow rivers.  

For all but the bottom algae variables, a general mass balance for a component concentration ci 

(Figure 2) in the reach i is written as [36]:  
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In the above formula, ci, Qi, Vi, Ei, and Wi symbolize the component concentration of water quality, 

flow, volume, dispersion coefficient, and outer component load of reach i, respectively. Si symbolizes 

the sinks and sources of the component due to a large number of transformation mechanisms and 

reactions in reach i. Qout,i symbolizes flow abstraction from reach i.  

Figure 2. Flow diagram of the mass balance for relevant components of the river system in reach i.  
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3. Application of QUAL2K to Simulate the Hongqi River 

3.1. Input Data  

According to hydrological and hydraulic conditions, locations of water quality monitoring sites, and 

distributions of pollution sources, the 1.5 km length of the Hongqi River was divided into three 

reaches, each with a length of 0.5 km. The latitude and longitude of each reach’s downstream are 

(31°35'35.3"N, 120°2'26.45"E), (31°35'35.1"N, 120°2'49.55"E) and (31°35'35.74"N, 120°3'6.28"E), 

respectively. There are 15 computational elements with a length of 100 m. Figure 3 shows the river 

reach with the locations of point sources of the Hongqi River. Table 5 shows the three reaches with 

different hydraulic characteristics.  

Figure 3. Schematic representation of the three reaches of the Hongqi River, and their 

sources of pollution.  

 

Table 5. Hydraulic characteristics of the three reaches of the Hongqi River. “Location” 

refers to the distance from the river’s end.  

Location (km) 
Flow (m3/s) 

Depth (m) Flow velocity (m/s) Travel time (d) 
Winter Spring 

1.340 0.446 0.485 1.586 0.024 0.071 
0.650 0.452 0.496 1.604 0.025 0.405 
0.150 0.465 0.504 1.618 0.026 0.694 

Based on the method provided by National Water Environment Capacity Verification Manual [37] 

and combined with the data obtained from the local environmental management agency, the pollutants 

emissions were calculated [38]. The average annual domestic sewage emissions in the watershed are 

90 L per person per day. It is estimated that the annual domestic sewage emissions in the drainage area 

are 41,719.5 t, of which CODCr is 7.51 t, NH3-N is 2.09 t and TP is 0.25 t. There is no livestock or 

poultry breeding in the area, so agricultural non-point source emissions are primarily from farmland.  

It is estimated that agricultural non-point source emissions of CODCr are 0.14 t, while those of NH3-N 

are 0.14 t, those of TN are 0.28 t and those of TP are 0.03 t per year in the drainage area. There were 

approximately twenty factories and enterprises in the drainage area, all of which but the Hongbo Paint 

Company are mechanical processing enterprises. Therefore, few pollutants are discharged into the 

river. It is estimated that the industrial wastewater emissions in the drainage area are 9,780 t and the 

CODCr is 20.5 t. The flow and concentration of pollution sources are shown in Table 6.  
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Table 6. Flow and concentration of pollution sources.  

Pollution sources 
Flow 
(m3/s) 

CODCr 
(mg/L) 

NH3-N 
(mg/L) 

NO3-N 
(mg/L) 

TN 
(mg/L) 

TP 
(mg/L) 

Inorganic 
phosphorus (mg/L) 

Non-point sources 0.00143 180 50 60 120 6 2.5 
Point sources 0.00031 2,100 100 90 250 13 5.5 

The input parameters involved in QUAL2K were temperature, flow velocity, CODCr, dissolved 

oxygen, ammonium nitrogen, nitrate nitrogen, organic nitrogen, inorganic phosphorus and organic 

phosphorus. The level of phytoplankton in the Hongqi River is negligible. According to field survey 

and hydraulic characteristics of the river, the bottom algae coverage and bottom SOD coverage were 

determined to be 70% and 100%, respectively.  

3.2. Parameters 

The extent of parameters (Table 7) that QUAL2K demanded were determined from a large number 

of studies including documentation for the stream water quality model QUAL2E [21,35], the 

QUAL2K user manual [36,39] and the Environment Protection Agency guidance document [40]. The 

internal calculation method was applied to calculate the re-aeration rate [36,41]. 

Table 7. Calibrated parameters for simulating the water quality of Hongqi River.  

Parameter Value Units Symbol Range 
Carbon 40 gC gC 30–50 

Nitrogen 7.2 gN gN 3–9 
Phosphorus 1 gP gP 0.4–2 
Dry weight 100 gD gD 100 
Chlorophyll 1 gA gA 0.4–2 

ISS settling velocity 1 m/day vi 0–2 
O2 reaeration model Internal    
BOD hydrolysis rate 0.1 day−1 khc 0.04–4.2 
COD oxidation rate 0.2 day−1 kdc 0.02–4.2 

Organic N hydrolysis 0.2 day−1 khn 0.02–0.4 
Organic N settling velocity 0.05 m/day von 0.001–0.1 

Ammonium nitrification 0.5 day−1 kna 0–10 
Nitrate denitrification 0.8 day−1 kdn 0–2 

Sed. denitrification transfer coeff. 1.0 m/day vdi 0–1 
Organic P hydrolysis 0.2 day−1 khp 0–5 

Organic P settling velocity 1.0 m/day vop 0–2 
Inorganic P settling velocity 0.5 m/day vip 0–2 

Sed. P oxygen attenuation half sat constant 1.8 mgO2/L kspi 0–2 
Bottom algae 
Growth model zero–order    

Max Growth rate 60 mgA/m2/day Cgb 0–500 
First–order model carrying capacity 1,000 mgA/m2 ab,max 1,000 

Respiration rate 0.25 day−1 krb 0.05–0.5 
Excretion rate 0.5 day−1 keb 0–0.5 

Death rate 0.25 day−1 kdb 0–0.5 
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The exponential model was selected for oxygen inhibition of BOD hydrolysis, COD oxidation,  

de-nitrification, nitrification, algae and phytoplankton respiration. The influence of wind was assumed 

to be ignored. There are six degradation parameters including COD oxidation rate (kdc), ammonium 

nitrification rate (kna), nitrate denitrification rate (kdn), organic N hydrolysis rate (khn), organic P 

hydrolysis rate (khp), and inorganic P settling velocity rate (kip) were obtained by trial and error. The 

remaining parameters were set by the default values (Table 7) in the QUAL2K model [42,43]. 

3.3. Implementation of the Model  

The QUAL2K model has greater flexibility, which can follow the specific circumstances of users to 

set the parameter values and transform the simulation equation, satisfying user requirements for water 

quality simulation. In this study, the parameters of khc, kdn, kdt (Detritus Dissolution rate) were set to 0 

and Foxc (CBOD decay rate of rapid reaction at low dissolved oxygen conditions) was set to 1, so 

CBODf (CBOD of rapid reaction) represents the concentration of COD. The kdc was then set as the 

COD comprehensive degradation coefficient; thus, QUAL2K can be used to simulate the changes of 

COD [36]. 

The monitoring data for the winter of 2009 were applied for calibration. The calculation time step 

was set to 5.6 min to ensure the model was maintained in the steady-state. The model was run with 

another completely different data set, which was set without altering the calibrated parameters, so that 

the ability of the calibrated model to forecast the component concentration under different 

circumstances could be examined. Thus, the model was utilized in the future simulation. 

4. Results and Discussion 

The monitoring data for the water quality parameters are displayed in Table 2 (Water quality 

monitoring data for winter 2009), Table 3 (Water quality monitoring data for spring 2010) and Table 6 

(Flow and concentration of pollution sources). Figures 4 and 5 display the calibration and confirmation 

results, respectively.  

4.1. Calibration and Verification 

As shown in Figure 4, the water quality improved from the headwater to the downstream areas. The 

concentrations of dissolved oxygen in the Hongqi River meet the Grade III DO standards [1]. 

Throughout the river, the concentration of DO was greater than 5 mg/L, which indicates good water 

quality because it is better than the water quality objectives. Since the decomposition of pollutants 

consumes large amounts of dissolved oxygen, the DO is reduced. In addition, the decrease in DO 

concentrations was due in part to the discharge of organic pollutants by the Hongbo Paint Company, 

which adds high levels of organics, nitrogen substances and low DO wastewater to the Hongqi River. 

The concentrations of COD, NH3-N, TN and TP increased slightly at 0.9 km due to discharge of the 

local wastewater and point source pollution, which corresponds to the location of the Hongbo Paint 

Company. The temperature in the winter of 2009 increased from the headwater to the downstream 

portions of the river. 
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Figure 4. Water quality calibration results for the Hongqi River.  

 

The calibration results of the QUAL2K model were in accordance with the monitoring values, with 

a few exceptions. For example, the simulated curves of dissolved oxygen (DO) and TP deviated 

slightly from the observed values. The calibrated parameters are shown in Table 7. The model was 

confirmed with water quality monitoring data from spring of 2010 using parameters that were 

calibrated based on monitoring data from the winter of 2009. The confirmation results (Figure 5) 

showed that the calibrated parameters are very dependable.  
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Figure 5. Water quality confirmation results for the Hongqi River.  

 

From Figure 5, the observed values of DO were higher or lower than the simulated values, and the 

observed values of TP at the location of 0.3, 0.6, and 1.4 were deviated slightly from the simulated 

results. The standard deviation (SD) of temperature, DO, COD, NH3-N, TN and TP were 0.057, 0.129, 

0.461, 0.020, 0.126, and 0.015, respectively. The relative standard deviation (RSD) of temperature, 

DO, COD, NH3-N, TN and TP were 0.005, 0.021, 0.018, 0.008, 0.019, and 0.078, respectively.  

The relative standard deviation of TP was the largest in these factors. Some errors in this modeling are 

unavoidable because the fieldwork involved gathering a water sample at each monitoring point. 

Nevertheless, the simulation results were acceptable to realize water environmental management 

targets under the conditions of limited data. 
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4.2. Calculation of the Water Environmental Capacity  

4.2.1. Calculation of Pollution Load  

We conducted a pollution load investigation and analysis of the Hongqi River drainage area. 

Specifically, we studied the states of water environmental quality, the emissions of industrial 

wastewater, rural domestic sewage, and agricultural non-point source emissions. Based on the results, 

the average annual emissions of CODCr, NH3-N, TN, and TP were calculated to be 108.47 t, 7.26 t, 

16.31 t, and 1.07 t, respectively. The emissions from the headwater and the studied river reach are 

shown in Table 9. The proportions of CODCr, NH3-N, TN, and TP pollution loads discharged from the 

headwater and local river reach were 3.99, 1.00, 2.10, and 1.23, respectively.  

4.2.2. Simulation Method  

The water environmental capacity of the Hongqi River was calculated by the calibrated QUAL2K 

model (calibrated parameters in Table 7) using the trial and error method [26–28]. Specifically, the 

input pollution loads of the chemical oxygen demand, ammonia nitrogen, total nitrogen, and total 

phosphorus were adjusted by trial and error until the water quality simulation results met the water 

quality objectives [44]. Figure 6 shows the schematic diagram of the trial and error method. 

Figure 6. Schematic diagram of the trial and error method.  

 

The simulation steps are as follows: 

(1) The water quality objectives must be determined based on the water environmental management 

requirements of the Hongqi River. According to the water environmental management requirements of 

Jiangsu Province, the water quality objectives of the Hongqi River watershed are Grade IV water 
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quality standards [1]. In this study, the end of the river was the water quality control section. The water 

quality objectives of the Hongqi River are shown in Table 8. 

Table 8. Water quality objectives of the Hongqi River.  

Factors CODCr NH3-N TN TP 

Concentration (mg/L) 30.0 1.0 1.5 0.3 

(2) To simulate the pollution loads and obtain various pollutant environmental capacities of Hongqi 

River, we selected the water quality requirements for the water quality control section above as the 

simulation objectives and adjusted the input pollution loads of CODCr, ammonia nitrogen, total 

nitrogen, and total phosphorus.  

(3) To calculate the water environmental capacity of the studied river reach, the water quality of the 

headwater was set to Grade IV, and the pollutants discharged into this river reach from both shores 

were considered.  

4.2.3. Simulation Results  

The simulation results of the pollution loads are shown in Figure 7. Table 9 shows the results of the 

Hongqi River water environmental capacity. The water environmental capacity was obtained by 

multiplying the simulation results by the average annual total flow. The water environmental capacities 

of CODCr, NH3-N, TN, and TP were 17.51 t, 1.52 t, 2.74 t and 0.37 t, respectively.  

Figure 7. Simulation curve of water environmental capacity.  
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4.3. Pollution Load Reduction  

Based on the comparative results of the pollution load emissions with the water environmental 

capacity of the studied river reach, the pollution load reduction required to meet the water quality 

objectives for the river were obtained [45]. The results are shown in Table 9.  

Table 9. Pollution load reduction in Hongqi River.  

Water quality factors CODCr NH3-N TN TP 

Total pollution load (t) 108.47 7.26 16.31 1.07 
Pollution load of headwater (t) 80.32 3.63 11.05 0.59 

Pollution load of headwater in Grade IV water quality (t) 85.20 2.56 4.26 0.85 
Pollution load reduction in headwater (t) −4.88 1.07 6.79 −0.26 

Pollution load reduction rate of headwater (%) −6.08 29.48 61.45 −44.07 
Pollution load of studied river reach (t) 28.15 3.63 5.26 0.48 

Water environmental capacity of studied river reach (t) 17.51 1.52 2.74 0.37 
Pollution load reduction in the studied river reach (t) 10.64 1.85 2.32 0.11 

Pollution load reduction rate of the studied river reach (%) 37.80 50.96 44.11 22.92 

The pollution load reductions required to satisfy the water quality objectives were calculated by 

subtracting the water environmental capacity from the pollution load emissions of the studied river 

reach [12]. Positive values indicate that the pollution load exceeds the environmental capacity and 

needs to be reduced, negative values indicate that the environmental capacity remains in surplus and 

can accommodate a greater pollution load. Based on the data in Table 9, the CODCr, NH3-N, TN, and 

TP pollution loads of the headwater need to be reduced by −4.88 t, 1.07 t, 6.79 t, and −0.26 t, 

respectively, to achieve Grade IV water quality objectives. According to the water quality objectives of 

the Hongqi River, the pollution loads of CODCr, NH3-N and TN in the river greatly exceeded the 

environmental capacity. These findings show that the nitrogen pollution in the river is very serious. 

The pollution loads of NH3-N, TN and TP must be reduced by 50.96%, 44.11% and 22.92%, 

respectively, to satisfy the water quality objectives. Thus, water pollution control measures such as 

economic instruments or macrophytes purification [46,47], are required to carry out.  

5. Conclusions 

In this study, the one-dimensional river model QUAL2K was calibrated and confirmed using data 

from field monitoring carried out during the winter of 2009 and spring of 2010. The simulated results 

correlated with the measured data quite well. The water environmental capacity of the Hongqi River 

was simulated by QUAL2K and found to be 17.51 t, 1.52 t, 2.74 t and 0.37 t for CODCr, NH3-N, TN, 

and TP, respectively. The pollution load reductions of NH3-N, TN, and TP required to meet the water 

quality objectives were calculated to be 29.48%, 61.45%, and −44.07% for the headwater and 50.96%, 

44.11% and 22.92% for the studied river reach, respectively. Therefore, economic instruments or 

macrophytes purification are required to control pollution loads in the Hongqi River watershed in the 

long run. 

The primary goal of this study was achieved in that the calibration was available for simulation of 

the water environmental capacity of the Hongqi River, which allowed confirmation of the parameters 
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by the second data sets. The results of this study should provide a basis for water environmental 

management strategies that will be taken on by the government.  
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